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Lecture - 21 
Extension-Torsion-Inflation in a Hollow Cylinder (Contd.) 

Hello everyone! Welcome to Lecture 21! We will continue with our discussion on Extension -Torsion-

Inflation in a hollow cylinder. In the previous lecture, we had derived the reduced form of equilibrium 
equations which we need to solve to obtain the displacement. 

1 Recap (start time: 00:27) 

We had derived the following simplified form of equilibrium equations when the cylinder is in static 
equilibrium and not subjected to any body force: 

 (1) 

(2) 

We had also obtained the following expressions of stress components in terms of displacement 
components: 

(3) 

  (4) 

(5) 

(6) 

(7) 

(8) 

2 Mathematical form of uz (start time: 01:05) 

As uz and ur are functions of z and r respectively, we can rewrite equation (5) as 

  (9) 

 



From equation (2), we can infer that σzz does not depend on z. Also, σzz does not have any term that has 

dependence on θ. Thus, it is a function of r only, i.e., 

  (10) 

 

Accordingly, the term dependent on z in the LHS must be a constant or uz’ must be a constant. As uz’ 
denotes longitudinal strain in axial direction, we will denote it by ϵ, an unknown but constant parameter. 

3 Mathematical form of ur (start time: 05:04) 

The expressions of σrr and σθθ given in (3) and (4) now become 

(11) 

  (12) 

Subtracting them, we get 

                    (13)  

Likewise, taking the partial derivative of equation (11) with respect to r, we get 

   (as ϵ is constant)  (14) 

Now, we can plug equations (13) and (14) into equilibrium equation (1) to get 

  (15) 

We can infer from this that        is also a constant, say C. Further, from the definition of strain  

components, we know that      and   . Thus, we get 

  (16) 

 

Integrating (15) twice, we finally get 



 

  (17) 

where C and D are the unknown integrating constants. 

4 Solution for σrr and σθθ (start time: 09:51) 

4.1 Mathematical form (start time: 09:51) 

Let us add equations (11) and (12): 

    

(18) 

Thus, the sum of radial and hoop stresses turns out to be a constant through the thickness of the tube, 
however they individually vary through the tube’s thickness. Let us now solve the equilibrium equation 

(1) directly in terms of stress components as follows: 

  (using (18)). (19) 

From equation (11), we know that σrr is a function of r alone. Thus, the partial derivative with respect to 
r becomes total derivative, i.e., 

   

 

 

 

(using (18)) (20) 

 

 



4.2 Application of boundary conditions (start time: 14:48) 

Whenever we solve a differential equation, we get unknown integrating constants. To obtain those 
constants, one has to apply boundary condition. Similarly, we need to identify the boundary conditions 
for our deformation problem. Figure 1 shows our cylinder which is subjected to pressure on its inner 

surface. The pressure acts as an externally applied known traction and thus can be used as one of the 
boundary conditions. Similarly, there is zero traction on the outer surface of the cylinder which provides 
the other boundary condition. We had seen earlier that the internal traction due to stress at the surface 

point equals the externally applied traction (tapp) through the following relation: 

 σ n = tapp (21) 

 

Figure 1: Pressure acts on the inner surface of our hollow cylinder. The cross section of the cylinder is 
shown on the right. 

The outward surface normal of the inner curved surface (at r = r1) points in −r direction, i.e., 

   (22) 

Similarly, the external traction acts radially outward there, i.e., in the + r direction. So 

  (23) 

Upon writing equation (21) in cylindrical coordinate system and further substituing the above two 

results, we get: 

 

 or, σrr(r1) = −P, τθr(r1)0, τzr(r1) = 0. (24) 



 

Similar analysis for the outer surface where no external traction is present yields  

 σrr(r2) = 0,  τθr(r2), τzr(r2) = 0. (25) 

We have thus obtained the following two boundary conditions for σrr to obtain the unknown integrating 
constants in its expression (20): 

 σrr(r1) = −P, σrr(r2) = 0.  (26) 

4.3 Final Solution (start time: 21:02) 

Upon plugging the boundary condition (26) in equation (20), we get the following set of equations:  

  (27) 

solving which we get 

 . (28) 

 

For a positive internal pressure P, we always have A > 0 and B < 0. Using (20), we can now plot the 
variation in both σrr and σθθ through the tube’s thickness as shown in Figure 2. The red curve  shows the 
variation of σθθ while the black curve shows the variation of σrr. 

 

Figure 2: Plot showing variation of σrr and σθθ with r 



As r → ∞, both σrr and σθθ approach 
𝐴

2
 which is a positive number for positive pressure P although r is 

feasible only between r1 and r2. From the boundary condition, we also know directly from boundary 
condition that σrr is −P at r = r1 and 0 at r = r2. As the sum of σrr and σθθ always has to be A, the curve for 
σθθ is the mirror image of σrr about the blue dashed line. Furthermore, σrr and σθθ depend only on P and 

the radii as can be seen from equations (28) and (20). If there is no internal pressure, σrr and σθθ will 
simply vanish even if axial force and twisting moment are present. Thus, we infer that extension and 
torsion cannot generate σrr and σθθ. This happens because the cross section is free to relax during 

extension and torsion of a circular cylinder. For cross-sections of irregular shape however, we can have 
non-zero σrr and σθθ even due to extension and torsion. 

5 Final solution for ur (start time: 29:27) 

We have to find the constants (C,D) in the expression (17) to obtain complete solution of ur. The constant 
C can be found using (18) as follows: 

 .  

(29) 

 

To get D, we can use equation (11) as shown below: 

 

(using (17)) 

  
  

 (using (18)) (30) 

Comparing this with equation (20), we get: 

   

  (using (28)) (31) 

 

Thus, ur finally becomes 

  (32) 



 

Upon setting P=0 in (32), we get 

  (33) 

When we relate Lame’s constants (λ and µ) with Young’s modulus(E), Poisson’s ratio(ν) and shear 
modulus(G), it turns out that 

  (34) 

substituting which in the above expression for ur, we get 

  (35) 

The radial longitudinal strain for P = 0 then turns out to be 

  (36) 

This expression is exactly what we expect - radial displacement has arisen due to Poisson’s effect even 
in the absence of pressure. 

6 Solution for uz and uθ (start time: 36:30) 

As uz is only a function of z and axial strain uz’ is a constant, integrating axial strain leads to 

  (37) 

Here we assumed that uz vanishes when z = 0 because the axial displacement of the cylindrical mid-

section (z = 0) is zero by symmetry. We had also derived the expression for uθ in the previous lecture as 

  (38) 

We need to finally obtain axial strain ϵ and end-to-end rotation Ω in terms of prescribed quantities 

(applied axial force F and Torque T). 

6.1 Relating torque and end-to-end rotation (start time: 37:37) 

A typical cross-section of the hollow cylinder is shown in Figure 3. The cross-section normal points in the 

z direction. So, σzz, τθz and τrz act on it. 



 

Figure 3: A typical cross-section of the hollow cylinder: τθz acts in θ direction and contributes to torque. 

We had found τrz to be zero. Thus, we need to analyze σzz and τθz only. If the traction on any point on the 
cross-section is represented by t, then the moment due to this traction about the cross-section center 
’O’ will be given by the integration of r × t for each small area element in the cross section (r represents 

the position vector of the area element from the center). If Ω0 denotes the area of the cross section, the 
moment M will be given by 

   

 

(39) 

The torque T is simply the component of moment along the axis, i.e.,  

 

(using (8)) 

(40) 

The term   is the polar moment of area (a geometrical quantity) and is denoted by J. Thus, we 

finally get 

  (41) 



 

6.2 Relating axial force and axial strain (start time: 44:23) 

To find ϵ, let us obtain the axial force in the cross-section through the integration of σzz, i.e., 

         

 

 

   (42) 

Here, A denotes the cross-sectional area. As we know the value of C from equation (29), we are finally 

able to relate axial force F with axial strain ϵ. In the special case when P = 0, the expression of C becomes 
simpler which yields 

  (43) 

where E is the Young’s modulus of elasticity. In case of zero pressure,  ϵ  can also be obtained in a simpler 
way. We know that when P = 0, we get σrr = σθθ = 0. Using three-dimensional Hooke’s law, we can then 
write 

  (44) 

The axial force F for such a situation is then 

  (45) 

We have finally derived the relationship between Ω and T as well as the relationship between ϵ and F. 

The constant EA is called stretching stiffness while the constant GJ is called torsional stiffness, i.e.,  

 

The axial strain and twist are constant in the cross section of the cylinder. 

7 Variation of γθz and τθz in the cross section (start time: 50:18) 

We know 



  (46) 

Note that both the quantities vary linearly with r. This means that whenever we twist a cylinder/bar, 
shear strain and shear stress vary linearly in the cross-section as we go outwards from the center (see 
Figure 4). 

 

Figure 4: Variation of shear strain and shear stress in the cross section of the cylinder.  

7.1 Special case: composite cylinder (start time: 52:10) 

We can also think of a composite cylinder made up of two different materials as shown in Figure 5. 

Supposing the inner part (upto radius r1) is made up of Aluminium and the outer part is made up of Steel. 
The materials are glued together. 

 



 

 

Figure 5: The cross section of a composite cylinder made up of Aluminium and Steel. 

If we now twist the cylinder, the cross section is again going to rotate. The shear strain γθz will be the 
same as earlier since it is completely prescribed by applied deformation and thus varies continuously.  
However, when we calculate τθz by equation (46), we will have different shear modulus for aluminium 

and steel. Thus, there will be a discontinuity in the shear stress at r = r1. The plot of variation of γθz and 
τθz in the cross-section is shown in Figure 6.  

 

Figure 6: Variation of shear strain and shear stress in the cross section of the composite cylinder.  

The variation of γθz is shown by the continuous blue line while the variation of τθz is shown by the 
discontinuous red line (which is piecewise linear): the slopes of the two straight lines are different and 
proportional to the shear modulus of the corresponding material. There is no jump in shear strain 



because the steel and aluminum regions together act as a single body as they are assumed to be attached 

rigidly. 


