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Lecture - 20 
Extension-torsion-inflation in a hollow cylinder 

Hello everyone! Welcome to Lecture 20! In this lecture, we will discuss about extension-torsion-inflation 

in a hollow cylinder. 

1 Introduction (start time: 00:28) 

1.1 Extension (start time: 00:34) 

If we apply axial force on a cylinder by applying normal traction at the end cross-sections as shown in 
Figure 1, the cylinder gets stretched. Such deformations are called extension. 

 

Figure 1: Normal traction applied at the ends of a cylinder to generate stretch in it . 

1.2 Torsion (start time: 01:38) 

If we hold the two ends of a cylinder and rotate them in opposite directions as shown in Figure 2, 

different cross sections of the cylinder get rotated by different angles. Such a deformation is called  
twisting or torsion and requires torque of equal and opposite directions applied at the ends of the 
cylinder. A torque is a form of moment which is applied along the axis of the beam. 

 

Figure 2: The two ends of a cylinder are rotated in opposite directions to twist the cylinder.  

1.3 Inflation (start time: 02:06) 

If we apply pressure to a hollow cylinder from within the inner cavity as shown in Figure 3, the radius of 

the cylinder changes. Similarly, when we fill air in a balloon, the radius of the balloon  increases. Such 
deformations are called inflation. 



 

 

 

Figure 3: An internal pressure acts on a hollow cylinder. 

2 Combined extension-torsion-inflation of a hollow cylinder (start time: 02:44) 

2.1 Problem Definition (start time: 02:44) 

Let us consider a hollow cylinder subjected to axial force (F), torque (T) as well as internal pressure  (P) 
as shown in Figure 4. Let us also suppose that the end-to-end rotation of the cylinder due to torque is 

denoted by Ω. Our goal is to find all the displacement and stress components induced within the cylinder. 
We will solve this problem using cylindrical coordinates. Thus, we need to find ur, uθ, uz, σrr, σθθ, σzz, τrθ, 
τθz and τrz. 

 

Figure 4: A hollow cylinder which is stretched, twisted and inflated.  

2.2 Simplification using physical considerations (start time: 08:17) 

Before we start solving the problem mathematically, let us simplify the problem based on physical 

consideration. The displacement u, in general, is given by 

pressure P 



 

 u = urer + uθeθ + uzez (1) 

where each of the displacement components is a function of r, θ and z, i.e., 

 ur = ur(r,θ,z), uθ = uθ(r,θ,z), uz = uz(r,θ,z). (2) 

However, as we are analyzing a special deformation here, some of the dependencies of the displacement 

components on r, θ and z can be removed as we show now. 

2.2.1 Axisymmetry (start time: 09:39) 

We can imagine that upon applying axial force, torque and pressure  to an axisymmetric cylinder, the 

deformation induced would also have to be axisymmetric. This automatically implies that none of the 
displacement components depend on θ, i.e., if we consider any two points in the cylinder with the same 
r and z coordinates but different θ coordinate, the displacements at the two points are same. For 

example, if ur depends on θ, circular cross sections will not remain circular after deformation (see Figure 
5). However, such a deformation is possible for arbitrary deformation of the cylinder but for the special 
case considered here, that is not permissible. Similarly, if uθ or uz changes with θ, axisymmetry will be 
lost. Thus, using axisymmetry, we can write 

 ur = ur(r,z), uθ = uθ(r,z), uz = uz(r,z). (3) 

 

Figure 5: The cross section of a hollow cylinder is shown. A circumferential line element is shown 
before and after deformation for the case when ur changes with θ. 

 



 

2.2.2 Axial Homogeneity (start time: 13:18) 

If ur is a function of z, homogeneity along the axis will be lost. Figure 6 displays such a case where a simple 
cylinder (constant radius along the axis) with outer radius ro is is shown. If ur changes with z, the radius 
of the cylinder at different points on the axis will be dif ferent and the deformed configuration will not 

be a simple cylinder. This is usually the case when we stretch a cylinder while holding the end cross -
sections rigidly. The end cross section radius does not change but the radius of the cross sections 
between the two ends decreases due to Poisson’s effect.  

 

Figure 6: A cylinder before and after deformation is shown for the case where ur changes with z. 

The analysis of such a deformation is more difficult. Let us imagine a simpler physical case where we are 
allowing the end cross sections to also shrink - we just need to not hold the end cross-sections rigidly 

and let them relax. In such a case, all the cross sections of the cylinder will undergo same decrease in 
radius giving us an axially homogeneous deformed configuration. Thus, ur would be independent of z, 
i.e, 

 ur(r,z) ⇒ ur(r). (4) 

2.2.3 No warping of the cross-section (start time: 17:38) 

We can think of the cylinder again and consider its planar cross-section whose normal is along the axis 
of the cylinder. All the points in the cross-section have the same z coordinate. The displacement 

component uz displaces points in the axial direction. If uz changes with r, two points on such cross sections 
(having different radial coordinate) would displace in the axial direction by different amounts. This will 
make the deformed cross section non-planar which is also warping of the ccross-section. We assume no 

such warping occurs. So, uz must be independent of r, i.e., 



 

 uz(r,z) ⇒ uz(z) (5) 

2.2.4 uθ generated due to torsion (start time: 20:30) 

We also have some restrictions on uθ which we explain now. The extension of the cylinder generates 
both axial and radial (due to Poisson’s effect) components of displacement but no uθ  for isotropic tubes. 

Similarly, by applying uniform pressure, we can generate radial and axial displacements (due to Poisson’s 
effect) but no uθ  again for isotropic cylinders. An application of torque, on the other hand, causes a 
typical cross-section to rotate and hence generates only uθ for isotropic tubes. To quantify this 

displacement, let us consider a cross section of the cylinder as shown in Figure  7 which rotates by an 
angle α. An arbitrary point on the cross section having initial coordinate  (r,θ,z) displaces to (r,θ+α,z). The 
arc of rotation of the point is shown as a solid red curve whose length equals rα. This arc would become 

a straight line in eθ direction when α is very small. Thus, we get 

 uθ = αr (if α is very small) (6) 

 

Figure 7: A cross section of a cylinder rotates by angle α: a point on the cross-section displaces due to 
this rotation 

Let us now write α in terms of end-to-end rotation Ω. The right most cross-section rotates by 
Ω

2
 in one 

direction while the leftmost cross-section rotates by 
Ω

2
  in the other direction as shown in Figure 4. 

Assuming that this rotation of cross sections is varying linearly along the length L, the rate of change of 
this angular rotation will be 

Rate of change of angle of cross section = 
𝑇𝑜𝑡𝑎𝑙 𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑎𝑛𝑔𝑙𝑒

𝑇𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ
 = 

Ω

𝐿
 



 

This quantity is also called twist. If we choose the origin at the center of the cylinder, the rotation of the 

cross section (α) at z = 0 will be zero. Thus, α for a general cross section at axial location z will be 

 α(z) = rate x z = 
Ω

𝐿
𝑧 (8) 

Plugging this into equation (6), we get 

  (9) 

We can observe that uθ does not depend on θ as required due to axisymmetry. We have finally simplified 
our displacement functions to 

  (10) 

Note that, except for Ω which is induced due to applied torque, uθ is fully known while the mathematical 
forms of ur and uθ are unknowns. 

2.3 Strain Matrix (start time: 31:54) 

To solve for the unknowns, we need to use stress equilibrium equations in cylindrical coordinate system 
for which we need to express stress components in terms of strain components and finally strain 
components in terms of displacement components. Let us first find the strain matrix in cylindrical 

coordinate system. Upon substituting the simplified displacement components (10) in the below formula 
for strain matrix 

 , (11) 

we get 



 

 0 0 

  (12) 

 

Note that we have shear strain only in θ − z plane. 

2.4 Stress-Strain relation (start time: 37:22) 

Using the below form for stress components in isotropic materials 

  (13) 

and substituting strain components from (12), we get 

         (14) 

2.5 Solving equilibrium equations (start time: 40:09) 

Let us now substitute the above stress components in the below equations of equilibrium: 

        (15) 

Most of the terms in the above equations become zero which simplifies the equations to  



 

          (16) 

If we had used Cartesian coordinate system, the terms that became zero due to axisymmetry would have 

remained non-zero and the formulation would have then become difficult to solve. The cylindrical 
coordinate system proves handy here because it allows us to use axisymmetry directly. 

3 Some examples 

Let us now consider some simple axisymmetric deformation examples and find out the corresponding 
body force components and acceleration components. 

3.1 A horizontal cylinder under gravity (start time: 46:48) 

If the axis of the cylinder is horizontal and gravity acts vertically downwards as shown in Figure 8, the 
body force components (br and bθ) will become function of θ as shown below: 

 br = ρg cosθ, bθ = ρg sinθ, bz = 0. (17) 

This breaks our axisymmetric assumption. 

 

Figure 8: A horizontal cylinder with gravity acting vertically downward 

3.2 A vertical cylinder under gravity (start time: 47:52) 

When the cylinder is vertical and g acts along the axis of the cylinder as shown in Figure 9, the body force 
components would be: 

 br = 0,  bθ = 0, bz = −ρg. (18) 



 

 

Figure 9: A vertical cylinder under gravity 

3.3 A rotating shaft/cylinder without gravity (start time: 48:31) 

If the cylinder rotates about its axis with a constant angular speed ω as shown in Figure 10, it will have 

centripetal acceleration of magnitude ρω2r acting in the radially inward direction, i.e., 

 ar = −ω2r, aθ = 0, az = 0. (19) 

There is no body force in this case if we neglect gravity. If we sit on the shaft itself, we need to apply 

pseudo force to use Newton’s second law. Also, in such a frame, the shaft will not be rotating.  Thus, a 
body force in the radially outward direction (called centrifugal force)  substitutes the radial acceleration 
component, i.e, 

 ar = 0,  aθ = 0, az = 0, br = ρω2r, bθ = 0, bz = 0. 

In both the view points, the radial equation of equilibrium will become  

(20) 

  (21) 

 

 

Figure 10: A cylinder rotating with constant angular speed ω about its axis 

 

3.4 Zero gravity and statics problem (start time: 54:26) 

For the original problem where only axial force F, torque T and internal pressure P are applied, all body 

force components will be zero. If it is also a statics problem, all the acceleration components will be zero 



 

too. Setting all body force and acceleration components to zero in (16), we see that the equation in θ 

direction gets trivially satisfied. Thus, the final simplified set of equations for extension-torsion-inflation 
problem is 

  (22) 

We can solve these to obtain the unknown displacement components (ur,uz) which we show in the next 
class. 


