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Strain Matrix in Cylindrical Coordinate System 

Hello everyone! Welcome to Lecture 19! In this lecture, we will see how the strain tensor is represented 

as a matrix in cylindrical coordinate system. In the previous two lectures, we had derived the equations 
of equilibrium in cylindrical coordinate system and the idea was to solve the deformation problem in 
cylindrical coordinate system. Later on, we will also relate stress with strain in this coordinate system. 

1  Strain matrix in Cylindrical Coordinate System (start time: 01:02)  

The strain tensor (ϵ) is defined as 

  (1) 

We can recall its matrix form in Cartesian coordinate system: 

   (2) 

Let us work out the same in cylindrical coordinate system. 

1.1          Representation of gradient (start time: 03:03) 

We need to first express gradients in cylindrical coordinate system. In Cartesian coordinate system, the 
gradient of a quantity is given by 

  (3) 

whereas its definition in cylindrical coordinate system is 



 

  (4) 

Notice that the partial derivative with respect to θ is divided by r as θ is non-dimensional and we are 

taking the gradient in space. We will use the above form to obtain the gradient of the displacement 
vector u. 

1.2            Representation of displacement (start time: 05:05) 

The displacement vector can be written in cylindrical coordinate system by decomposing it along 
cylindrical basis as follows: 

 u = urer + uθeθ + uzez (5) 

To understand the physical significance of various components, a section of an arbitrary body (in its 
reference configuration) parallel to z plane is shown in Figure 1.  

 

Figure 1: A typical section of an arbitrary body parallel to z plane: a point with coordinates (r,θ) with 

respect to the origin of cylindrical coordnate system is also shown along with the components of 
displacement along basis directions. 

A point with coordinates (r,θ) is also shown. After deformation of the body, the displacement of this 
point in the radial direction is ur, displacement in the θ direction is uθ and displacement in the z direction 

(coming out of the plane) is uz. 



 

1.3           Representation of displacement gradient (start time: 06:27) 

Now, we can plug in the displacement vector given in equation (5) in the gradient definition (4) to obtain 
the following: 

  (6) 

For the 
𝜕

𝜕𝑟
 and  

𝜕

𝜕𝑧
 terms here, the basis vectors act as a constant as they change only with θ. The 

derivatives of basis vectors with respect to θ were derived earlier which are 

  (7) 

Upon substituting them in equation (6), we get 

 

We have gotten two extra terms here due to change in basis vectors. We can use the above equation to 
obtain the displacement gradient matrix in cylindrical coordinate system. The coefficient of the basis 

tensor ei ⊗ ej goes into ith row and jth column of the matrix to finally yield the following: 

                                                                                 (9) 

  



 

1.4           Representation of Strain tensor (start time: 16:09) 

Now, we can use equation (1) to obtain strain matrix which is the symmetric part of the displacement 
gradient matrix derived above. It turns out to be the following: 

  (10) 

If we compare this with the strain matrix in Cartesian coordinate system given in equation (2), we can 
notice extra terms here. 

2  Physical significance of strain components (start time: 19:14)  

2.1          Significance of ϵrr (start time: 19:20) 

  (11) 

This is called radial longitudinal strain or radial strain simply. To visualize this, we can think of a typical 
cross section of a hollow cylinder as shown in Figure 2. 

 



 

 

Figure 2: A typical cross-section of a hollow cylinder with longitudinal strains for two line elements, one 
in the radial direction and the other in the θ direction also shown. 

The elongation of a radial line element gives us ϵrr as shown. 

2.2         Significance of ϵθθ (start time: 21:03) 

  (12) 

This strain is also called hoop strain or circumferential strain. This is the elongation of a line element 

directed along θ direction (circumferential line element) as shown in Figure 2. The circumferential strain 
has two contributions. The partial derivative term is intuitive because longitudinal strain along a 
direction is understood as the derivative of displacement in that direction with respect to the same 

direction. The other term     is the unusual term which we now try to understand physically. Think of a 
displacement which has only radial component, i.e., 

ur ≠ 0, uθ = 0, uz = 0            (13) 

For such a displacement, if we find ϵθθ using equation (12), we will get 

  (14) 

Figure 3 again shows a typical cross section of a hollow cylinder. For the displacement given in (13), all 
points in the cross-section simply displace radially. 

  



 

 

Figure 3: A typical cross section of a hollow cylinder: the circumferential lines for both reference and 
deformed configurations are shown for the displacement function in (13)  

We have also drawn a circumferential line both before and after deformation. All points on this line 

initially at radial coordinate r displaces to radial coordinate r+ur. We can notice that the length of the 
original circumferential line (shown in red) has increased generating longitudinal strain in it, i.e., 

  (15) 

which by definition is ϵθθ. This specific case helps us to visualize the extra term present in the formula for 
hoop strain. Despite uθ being zero, the extra term generates non-zero ϵθθ. 

2.3         Significance of γrθ (start time: 27:19) 

We can see from the strain matrix that we have an extra term in ϵrθ also, i.e., 

  (16) 

This denotes the change in angle between two initially perpendicular line elements directed along er and 

eθ. Figure 4 shows a typical cross-section of a cylindrical body. At an arbitrary point, we consider two line 
elements directed along er and eθ respectively. You should try to figure out the physical meaning of the 
extra term that we get in γrθ. 

 



 

 

Figure 4: Two line elements are considered at a point on the cross section of a cylindrical body directed 
along er and eθ 

2.4         Significance of other components (start time: 29:37) 

The other strain components have no unusual term. The quantity γrz gives us shear strain between line 
elements along er and ez, γθz gives us shear strain between line elements along eθ and ez and finally, ϵzz 

gives us longitudinal strain of a line element directed along ez. 

3  Relating stress and strain in cylindrical coordinate system for isotropic materials (start time: 

30:08) 

Once we have stress and strain matrices in cylindrical coordinate system, let us relate them for an 
isotropic material. We know how to relate stress and strain in Cartesian coordinate system. We also 

know that for an isotropic material, all material properties are independent of the direction. Thus, the 
relationship between stress and strain components must also be independent of the coordinate system. 
This means that we could choose any set of three perpendicular directions and resolve our stress and 

strain tensors in those directions but the mathematical form of their relationship would remain 
unchanged. For example: 

  (17) 

We can obtain all other relations in a similar way leading to 



 

           (18) 

We emphasize that the above relationship would have a different mathematical form if the material 
were not isotropic. 

Having obtained stress and strain components and their relation in cylindrical coordinate system, we will 
learn in the next few lectures how using them for deformation of cylindrical bodies leads to simplified 
form of equations. Such problems could also be solved in Cartesian coordinate system but the equations 

would not simplify then. 


