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Stress-Strain relation for Isotropic Materials 

Hello everyone! Welcome to lecture 16! In this lecture, we will learn about a specific case of linear 
stress-strain relation, i.e., isotropic stress-strain relation. 

1 Isotropic Materials (start time: 01:12) 

We had learnt the following general form of linear stress-strain relation: 

  (1) 

The stiffness tensor Cijkl has 21 independent constants for a general material. Such materials are also 
called anisotropic materials which means that at a point in the body, the material properties are different 

in different directions. We will now discuss about a special material called isotropic materials which have 
the same property in every direction. To understand this, consider a body made up of an isotropic 
material. We stretch the material at an arbitrary point along e1 direction as shown in Figure 1. 

 

Figure 1: A body made up of an isotropic material with a coordinate system being stretched at an 

arbitrary point along e1 direction. 

We have restricted the body in such a way that deformation is not allowed in any direction other than 
e1. Thus, the strain matrix at the point of stretching only has ϵ11 as a non-zero component, i.e., 



 

   (2) 

Using equation (1), we can write 

  (3) 

We now do another experiment with the same body. However, this time instead of stretching along e1 

direction, we stretch along e2 direction as shown in Figure 2. We again constrain the body to not allow 

deformation in any direction except e2. 

 

Figure 2: The same point in the same body as in Figure 1 is now stretched in the e2 direction. 

 Now, the new strain matrix at the point of stretching will be 

   (4) 

Using equation (1), we can write: 

  (5) 



 

As the material is isotropic, it has same property in all the directions. This also means that the stress 

generated in the two cases above should be the same if the strain applied is also the same. Thus, if ϵ11 in 
the first case equals ϵ22 in the second case, then σ11 in the first case should be same as σ22 in the second 
case. On comparing equations (3) and (5), we find that this is possible if and only if C1111 = C2222. Similarly,  
if we do the analysis for stretching along e3, then we can conclude that 

 C1111 = C2222 = C3333 (6) 

These are additional constraints for the coefficients of stiffness tensor for isotropic materials. They are 
not covered by either minor or major symmetry. In fact, a rigorous analysis proves that there are several 

other constraints in this case all of which finally lead to only two independent constants for the stiffness 
tensor of isotropic materials. This also means that for isotropic materials, we just have to do two 
experiments to obtain its material constants and then generate the comple te stress-strain relation (for 

a general material, we will accordingly need to do 21 experiments).  

1.1 Stress-Strain relation (start time: 08:20) 

Once we work out the stress-strain relation using a rigorous mathematical derivation, we get 

  (7) 

Here (λ,µ) are called Lame’s constants and are the two material constants for an isotropic material. Let 
us consider the component where i = j = 1, i.e., 

  (8) 

Comparing with equation (1), we can see that C1111 (the constant relating σ11 and ϵ11) will be given by the 
coefficient of ϵ11, i.e., 

 C1111 = λ + 2µ (9) 

Likewise, we can also deduce C1122 and C1133 as 

 C1122 = C1133 = λ  (10) 

Similarly, using equation (7), we can write 

  (11) 

Comparing this with equation (9), we can verify that C1111 = C2222 for isotropic materials. When i ≠ j, the 
first term in equation (7) goes to zero because of the Kronecker delta function present in it. For example, 

σ12 will be 



 

  (12) 

Equation (7) gives the relation where stress is expressed in terms of strain. Alternatively, we can use 
another form where strain is expressed in terms of stress. It is also called three-dimensional Hooke’s law 
of Elasticity and can be written as 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

 

In this representation, we have three constants: E denoting Young’s Modulus, ν denoting Poisson’s Ratio 
and G denoting shear modulus of elasticity. As we know that isotropic materials have only two 
independent constants. So, there is actually a relation between E, G and ν given by 

  (19) 

Comparing equation (16) with equation (12), we can also immediately note that 

 µ = G (20) 

1.2 Physical significance of E, G and ν (start time: 15:54) 

Consider equations (13), (14) and (15). We can see that the strain in one direction not only depends on 
the stress component in that direction but also on the stress components in other two directions. To 

visualize this, we can think of a simple experiment. Suppose that we have a rectangular beam of length 
L, breadth B and height H as shown in Figure 3. The beam is kept such that its length is along e1, its height 
is along e2 and i’s breadth is along e3. We apply force on the left and right faces to stretch the beam. 



 

 

Figure 3: A rectangular beam is stretched by applying force through its left and right faces.  

So, the stress component generated is σ11 (because force is in e1 direction on e1 plane). The shear 
components σ12 and σ13 will be zero. Also, as we are not applying any force on e2 and e3 planes, there is 
no stress on them. In fact, any section with normal along e2 and e3 will not have any traction component. 
The state of stress in this case will then be 

   (21) 

This stress will lead to some strain in the body. We know that ϵ11 will be generated because the length 
of the beam will change. However, ϵ22 and ϵ33 also generates. Due to stretching in one direction, there 

will be contraction in the other two directions. We can realize this when we stretch a rubber bar or a 
soft bar along its axis. Their cross-section reduces when they are stretched. But, there will be no shear 
strains generated if we are careful in stretching in only one direction. Thus, the state of strain for the 

rectangular beam of Figure 3 will be 

  (22) 

1.2.1 Young’s Modulus (E) (start time: 22:10) 

We know that local longitudinal strain (ϵjj) is given by  . If the elongation is uniform along the  

length of the bar, the local strain will be equal to the global strain. Thus: 



 

longitudinal strain =  
𝑐ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ

𝑙𝑒𝑛𝑔𝑡ℎ
                        (23) 

Thus, we have: 

  (24) 

If we now draw the graph of σ11 vs ϵ11 for the above experiment by measuring the change in length, we 
will get a curve as shown in Figure 4. The initial slope of this graph (shown as the red dotted  line) gives 

us the Young’s Modulus (E). 

 

Figure 4: A typical plot of σ11 vs ϵ11 for the rectangular beam experiment of Figure 3 

Thus, E is given by 

  (25) 

While computing this derivative, we should not have σ22 or σ33 present. Essentially, the beam should be 

stretched in such a way that it can freely shrink in the lateral directions. We can also prove the above 
formula using equation (13). We can put the conditions of the experiment into this, i.e. σ22 = 0 and σ33 = 
0. So, we will get: 



 

  (26) 

From this equation, we can see that the slope of the graph of σ11 vs ϵ11 will give us E. One thing to note 
here is that equation (13) gives us the slope of σ11 vs ϵ11 plot to be a constant. But in reality, the slope is 
not a constant as evident from Figure 4. This is because the linear stress strain relation (13) works only 
for small strains. On the other hand, Figure 4 shows the curve even for large strains and this is the reason 

that we had computed the slope of this graph at ϵ11 = 0. 

1.2.2 Poisson’s Ratio (ν) (start time: 25:30) 

The Poisson’s ratio is defined as 

 ν = − 
𝑖𝑛𝑑𝑢𝑐𝑒𝑑 𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛

𝑖𝑚𝑝𝑜𝑠𝑒𝑑 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛
  (27) 

In the rectangular beam experiment shown in Figure 3, we are directly imposing longitudinal strain in e1 

direction and this, in turn, induces strain along e2 and e3 directions. For an isotropic body, the lateral 
strains in these directions will be equal. Thus, Poisson’s ratio for this experiment will be  

  (28) 

We can also derive this from the stress strain relations. Consider equations (13) and (14). We will 
substitute the conditions of the experiment, i.e. σ22 = 0 and σ33 = 0. From equation (13), we get 

  (29) 

while from equation (14), we get 

 

  (using (29)) (30) 

Using equations (29) and (30), we get to the same formula for Poisson’s ratio as given in (28). So, to find 
the Poisson’s ratio for a material, we need to stretch a bar made up of that material, measure the 
imposed and induced strains and then use equation (27). 

1.2.3 Shear Modulus (G) (start time: 30:05) 

From equation (16), we can see that shear modulus is given by 



 

  (31) 

So, if we can induce shear in a body and measure the corresponding shear stress, the ratio of stress to 
strain will give us the shear modulus. Let us conduct another experiment with the rectangular bar. The 
bar is clamped at the bottom face and we apply shear force on the top face (face with normal along e2) 

as shown in Figure 5. The force is along e1 direction. 

 

Figure 5: A rectangular bar is clamped at the bottom face. Shear force is applied at the top face. The 
coordinate system is also shown. 

This effectively imposes shear stress τ12 in the body. Due to this, the bar shears (as shown in black in 
Figure 5). The initially perpendicular edges of the front face now get inclined and shear strain (γ12) would 
be equal to the change in angle between these two edges (as shown in Figure 5). If we draw the plot for 

τ12 vs γ12, we get a curve as shown in Figure 6. 



 

 

Figure 6: Plot of τ12 vs γ12 for the experiment shown in Figure 5 

The initial slope of this curve will give us the shear modulus, i.e.  

  (32) 

The initial slope is measured because the linear relations are valid only for small shear strains.  

1.3 Bulk Modulus of Elasticity (K) (start time: 34:02) 

We have discussed Young’s modulus of elasticity and shear modulus of elasticity. Young’s modulus 
relates normal strain with normal stress while shear modulus relates shear strain with shear stress. We 
will now discuss about bulk modulus of elasticity which relates volumetric strain with some kind of 

volumetric stress/pressure. Bulk modulus for gases is usually discussed in schools. When we apply 
pressure to any fluid (liquid/gas), the fluid volume decreases. This decrease can be quantified by 
volumetric strain given by 

 Volumetric Strain =  (33) 

If a pressure change of ∆P generates volumetric strain 
∆V

𝑉
 in a fiquid, bulk modulus is then given by 

  (34) 

For solids, 
∆V

𝑉
 is nothing but the volumetric strain discussed earlier, i.e.,  



 

  (35) 

To obtain an equivalent of pressure in solids, we can use the decomposition of stress tensor, i.e.,  

  (36) 

The hydrostatic part is analogous to the pressure acting in liquids. As the stress tensor for liquids (in 
statics) is given by 

 σ = −pI. (37) 

Comparing this with the hydrostatic part of stress for solids, we can conclude that the equivalent 
pressure p for solids is 

  (38) 

The negative sign comes because pressure is compressive in nature while the normal component of 
traction is tensile when positive. So, we can finally write: 

  (39) 

Let us use three-dimensional Hooke’s law to obtain the formula for above quantity. Adding equations 
(13), (14) and (15), we get 

  (40) 

This is a very important relation. Firstly, it tells us that bulk modulus is not an independent constant. If 
we know the Young’ modulus and the Poisson’s ratio, we can get the Bulk modulus using the above 
relation. Secondly, this relation also gives an upper limit for the Poisson’s ratio as discussed below.  



 

1.4 Theoretical limits for the Poisson’s Ratio (start time: 43:22) 

The Poisson’s ratio is usually positive as it is very difficult to find a material which when stretched in one 

direction, expands in the lateral directions also.  We can observe that when ν is very close to 
1

2
 in equation 

(40), the bulk modulus becomes very large which means that if we apply a finite amount of change in 
pressure, the volumetric strain that gets induced in the body is very small (also see (34)). This  signifies 

incompressibility. Thus, ν ->  
1

2
  corresponds to the incompressible Limit. If this limit is crossed, K will 

become negative which is not physically meaningful. To obtain the lower limit for the Poisson’s ratio, we 
can use equation (19), i.e., 

  (41) 

From the rectangular beam experiment in Figure 3 and Figure 5, we can observe that when we apply a 

positive σ11, ϵ11 should be positive and when we apply a positive τ12, γ12 should be positive. So, Young’s 
modulus and shear modulus are both positive quantities. As both the LHS and the numerator of the RHS 
in equation (41) are positive, the denominator of the RHS must also be positive, i.e., 

2(1 + ν) > 0 ⇒ 1 + ν > 0 ⇒ ν > −1           (42) 

We thus have the following theoretical limits for the Poisson’s ratio, i.e., 

  (43) 

which holds only for isotropic materials. 

2 Other types of materials (start time: 50:55) 

There are materials which are not isotropic but commonly seen in nature. Let us consider an isotropic 
material as shown in Figure 7. Fibers are engraved in the material to make it a fiber re -inforced material. 

− 1 <  ν ≤ 
1 

2 



 

 

 

Figure 7: An initially isotropic material is engraved with fibers 

When we put fibers in the material, the Young’s modulus of the material in the direction of the fiber 
would become different to the Young’s modulus in the direction perpendicular to the fibers. Actually, in 
all directions transverse to the fibers, it has same young’s modulus but different from the one along the 

fiber. Due to this directional dependence, the material no longer remains isotropic. Such materials are 
called transversely isotropic and they have 5 independent material constants. Let us now put another 
family of fibers in the material but perpendicular to the initial family as shown in Figure 8. 

 

Figure 8: An initially isotropic material is engraved with two families of fibers perpendicular to each 
other 



 

 

Assume the two fibers have different properties. So, the Young’s modulus along the fibers will be 
different. Also, the Young’s modulus in the direction perpendicular to both the fibers will be different. 
Such materials are called orthotropic materials and they have 9 independent constants. Wood is an 
example of an orthotropic material. We should note that all the discussion in this lecture is valid only for 

elastic materials where stress depends only on the current value of strain. There are other materials 
where stress not only depends on strain but also on strain gradients. We can also have elastoplastic 
materials where we have plastic strain in addition to elastic strain. In this course however, we will mostly 

discuss isotropic elastic materials. 


