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Longitudinal and Shear Strains 

Hello everyone! Welcome to Lecture 12! In the previous lecture, we had begun with the formulation for 

longitudinal strain. In this lecture, we will finish that and then discuss about shear strain. 

1 Longitudinal Strain (contd.) (start time: 00:19) 

In the last lecture, we had derived the following expression for stretch ( λ): 

(1) 

We finally need to reduce the length of the line element in the reference configuration to zero in order 
to obtain the local value of stretch, i.e., we have to take the limit of ||∆ X|| → 0. The O(||∆X||) then 

vanishes. We finally have 

 (2) 

We can simplify this even further. In this course, we will only be working with displacements such that 

their gradients are very small, i.e., 

 (3) 

The term ∇ uT ∇ u in (2), when written in matrix form, has two matrices multiplied and each of them 

contains derivatives of u. So, the product matrix will have components which are quadratic combinations 
of displacement gradients. As the displacement gradients themselves are very small, their quadratic 
combinations will be even smaller. Hence, the term ∇ uT ∇ u becomes insignificant compared to ∇ u and 
can be neglected. One may think that as ∇ u itself is much smaller than 1, it should also be neglected. 

But, in the definition for strain, it will turn out to be the most significant term (see equation (6) below). 
The idea is that we keep the most significant term while neglecting the other less significant terms. So 
finally, we have the following expression: 

  

 

(4) 

 

Having obtained longitudinal stretch, the longitudinal strain then becomes 



 

  

(5) 

We can now use binomial expansion to simplify the square root term which yields the following simpler 

tensor formula for longitudinal strain at a point in a prescribed direction 

(6) 

Here again, we have dropped quadratic and higher order terms from binomial expansion for the same 
reason as earlier. 

1.1 Longitudinal strains along coordinate axes (start time: 10:17) 

If the line element direction (n) is taken to be e1, the matrix form of (6) in (e1, e2, e3) coordinate system 
will be 

 

 

(7) 

Similar analysis can be done for n = e2,e3 leading to 

(8) 

We can compare the strains obtained above with what we have seen in our schools. For example, 

consider the straight bar that we had seen in the last lecture (see Figure 1). The origin of the  coordinate 
system is at the clamped end and the bar length is along x-axis. If we say the bar gets uniformly stretched 
by λ or the bar gets axially strained by ϵ, the displacement of the bar will be given by 

(9) 

This is because displacement will be zero at the clamped end and then increases linearly along the length 

of the bar. When we calculate 
𝜕𝑢

𝜕𝑥
 from the above equation, we get 

(10) 

So, we can see that our formula for strain 
𝜕𝑢

𝜕𝑥
 yields correct strain value. This completes our discussion 

for longitudinal strain in a general three-dimensional body. 



 

 

Figure 1: A straight bar with a force applied along the length of the bar.  

2 Shear strain (start time: 15:41) 

We have another type of strain which measures the change in angle between two line elements which 

are perpendicular in the reference configuration (also see Figure 2). Such a measure of strain is called 
shear strain. After the body gets deformed, the angle between the line elements changes and need not 
be 90◦ anymore. If the angle between them after deformation is denoted by β, the change in angle 
(denoted by α) will be 

 α = 90◦ − β  (11) 

which is the shear strain at this point in the body. It generates distortion in a body leading to change in 
its shape whereas longitudinal strain changes the size of the body. For example, a rectangular b ody can 

become a parallelogram (keeping its area unchanged) due to shear strain as the angle between its edges 
changes. 

2.1 Formulation (start time: 19:09) 

Our goal is to find a mathematical expression for shear strain just as we found one for longitudinal strain. 
Consider a body before and after deformation as shown in Figure 2. At the point of interest  X in the 
reference configuration, we identify two perpendicular line elements ∆ X and ∆Y. After deformation of 

the body, ∆X becomes ∆x and ∆Y becomes ∆y. Let the unit vectors along line elements ∆X and ∆Y be 
denoted by n and m respectively, i.e., 

  (12) 



 

 

Figure 2: Two initially perpendicular line elements at a point X in the body are shown on the left. The 
right figure shows the deformed body with the angle between the line elements changed. 

In general, the two line elements undergo stretching and the angle between them also changes. We have 

already derived the expression for deformed line element in terms of the deformation gradient te nsor 
(F) according to which 

  (13) 

Similar to the case of longitudinal strain, we keep the higher order terms because we don’t know if they 

are significant or not. The angle between these two line elements in deformed configuration (denoted 
by β) will be given by 

  (14) 

Let us substitute equation (13) in the numerator above and express the terms in denominator using  
stretch, i.e., 

  (15) 



 

Here h.o.t. denotes all the higher order terms which would vanish in the limit of length of both the line 
elements going to zero. As ϵ(X,n) and ϵ(X,m) are along directions n and m respectively, we denote them 
as ϵnn and ϵmm, i.e., 

  (16) 

We can now apply binomial expansion formula because we know that longitudinal strains are very small 
compared to 1 since they are of the order of the displacement gradients, i.e.,  

  (17) 

Upon further expressing the deformation gradient tensor in terms of displacement gradient, we have 

  (18) 

We can now use the following identity (proved in previous lecture): 

A a · b = a · AT b            (19) 

to bring the (I + ∇ u) term to the other side of the dot product, i.e., 

  (20) 

We can again drop ∇ uT ∇ u term as we had done in the longitudinal strain formulation leading to 

  (21) 

As m and n are perpendicular, their dot product will be zero. Also, as longitudinal strains are much less 
than 1, the terms (1 - ϵmm) and (1 - ϵnn) can be approximated to be 1. Thus, we finally have 

  (22) 

Using basic trigonometry and equation (11), we can then write  

  (23) 



 

As the gradients of the displacement are very small, the RHS of the above equation is very small (usually 
of the order of 10−2). Therefore sin(α) also becomes very small and can be replaced with just α, i.e., 

  (24) 

We can notice that the above formula for shear strain depends on the directions of the two line 
elements. Thus, at a point in the body, we will have different value of shear strain for different pairs of 
perpendicular line elements. 

3 Significance of [
𝟏

𝟐
(∇ u + ∇ uT)] (start time: 33:06) 

Let us write the matrix form of 
𝟏

𝟐
(∇ u + ∇ uT) in (e1,e2,e3) coordinate system, i.e., 

       (25)  

Being a symmetric tensor, its matrix form also turns out to be symmetric.  We can see upon comparing 
from equation (8) that the diagonal elements of the above matrix give us longitudinal strains along e1, e2 

and e3 directions. To understand the significance of the off-diagonal elements, let us choose the two line 

element directions n and m in equation (24) to be e1 and e2 respectively. We denote the shear strain for 
this case as α12 because of the directions chosen which equals 

  (26) 

When worked out using the matrix form, it turns out to be twice of the off-diagonal term in second row 
and first column of (25), i.e., 

  (27) 

We can thus conclude that in matrix (25), the off-diagonal elements represent half the shear strains. 



 

3.1 Geometric interpretation of shear strain formula 

Let us visualize the above expression for shear strain. Consider the body shown in Figure 3 and  try to 
obtain shear strain at point X. We choose the line elements along e1 and e2 in the reference configuration 

having their lengths ∆X1 and ∆X2 respectively. After deformation, the point X as well as the line vectors 
will shift to new positions as shown in the figure. We have also drawn horizontal and vertical axes (shown 
by dotted lines) at the deformed position x. These lines will help us to evaluate the angle change. The 
total change in angle of the two line elements will be the sum of the angles shown in blue and green. We 

call the angle shown in blue as αb and the angle shown in green as αg. Thus 

 α = αb + αg (28) 

Let’s find αb first. Consider the right-angled triangle containing angle αb. The red distance there is the 

difference in y-displacement of the tip and vertex of the initially horizontal line element. 

 

Figure 3: An arbitrary body with angles between the reference line elements and deformed line 
elements shown. 

 

The length of the base of this right angled triangle will be approximately ∆X1 since the longitudinal strain 
is much smaller than 1. Thus, the angle αb will be given by 

  (29) 

Finally, to find this angle at point X itself, ∆X1 should tend to zero, i.e., 



 

  (30) 

By similar analysis, we can find αg as 

  (31) 

Using equation (28), we then get 

  (32) 

Thus we have realized the physical significance of this expression for shear strain. It is the sum of the 
change in angles of the two line elements from their initial orientation.  


