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Laws of Thermodynamics: 

Entropy. Entropy change for a system.
 

Now, we will look at Entropy. And go to the same sort of set of arguments which we did

yesterday, in looking at energy into energy for that mole.

(Refer Slide Time: 00:34)

Here any two properties against which we have plotting here. And like yesterday we say

that we have two state points 1 and 2. And a process takes the system from state 1 to

state 2 along path A. During this time there is some work transfer and heat transfer with

this system. And then we complete the cycle by saying that there is one path which is B

with (Refer Time: 01:17) and we also define yet another path by with which we complete

the cycle, this is C.

And yesterday we applied to we looked at two cycles now here, A plus B is one cycle

and A plus C this is the other cycle. Yesterday we looked at cyclic integral of heat equal

to cyclic integral of work for this. Today we will look at cyclic integral of delta Q by T.

So, first we evaluate this and we know that from Clausius inequality this is less than or



equal to 0. And for to begin with we will assume that equal to sign is applicable for

reversible cycles.

So, we will consider that A plus C, A plus B is a reversible process. And A plus C is also

a reversible cycle. So, that two cycles both are reversible. So, cyclic integral of this for A

plus B becomes integral 1 to 2 along path A integral delta Q by T plus integral 2 to 1

along path B, delta  Q by T and this  we say is  0.  That is  a  reversible  cycle,  we are

assuming that all process are reversible.

We get the same sort of statement for A plus C cycle now. So, this becomes integral 1 to

2 delta Q by T upon along path A to a integral 2 to 1 along path C delta Q by T, this is 0.

And we subtract these two and what we get is integral 2 to 1 along path B delta Q by T is

equal to integral 2 to 1 along path C delta Q by T. And what it is this tells us is that

integral delta Q by T from 2 to 1 is path independent.

Here all BCD or anything else did not matter. The only restriction we have took so far

were that these are reversible processes. So, we define, so this has to be a property. So,

we define the new property now entropy dS S delta Q by T means some these argument

is  come out from a reversible  process and also tells  us that delta  Q for a  reversible

process is TdS ok. So, if we integrate this equation now.

(Refer Slide Time: 04:48)



So, we have integrate dS is 1 to 2 is equal to integral sorry I am just splitting on the steps

delta Q by T. Then left side becomes S 2 minus S 1 is equal to integral 1 2 delta Q by T

for a reversible process. So, that is a important relation we have got that tells us what is

the entropy change during a process. But what if the process were irreversible?

Hey, so now we will read what we have done there going back. Now we say that C,

earlier we took this as reversible now we take this irreversible; and irreversible means

that at every intermediate state is not defined. So, this line should not technically be

shown as a dotted line. So, that is process C which is now irreversible. As we develop the

same things here and what we get is A plus B remains unchanged.

But A plus C is now an irreversible cycle and so Clausius inequality tells us is that A plus

C is the B equal to 0 is now less than 0 here is. So, what happens now from the first

equation? This is equal to 0 because that is a reversible cycle. So, we get integral 1 to 2 A

delta Q by T is equal to minus integral 2 to 1 by path B delta Q by T. And you know this

is a reversible process so yes we can say that is C over a reversible process 2 to 1 C

reversible then I can put this way.

Hey, so what I have done is we taken this first equation taken this term to a right side and

that gave us this equation. And now we argue that is to the B if this was C and C were

reversible then it will be equal because this is path independent we just shown that ok.

So, that is what we done and now we will go back and put it in our this equation A plus

C. So, now, we will go back and see what happens to A plus C.

So, A here integral 1 to 2 A is now replaced by this one 2 to 1 C reversible process. So, a

minus there plus integral 2 to 1 C which is now we are looking at the irreversible one is

less than 0. So, what it tells us if we change things and flip little bit of things there a

integral 1 to 2 delta Q by T C reversible is greater than 1 to 2 delta Q by T C irreversible.

And the left side we just derived that for a reversible process integral of delta Q by T

over two states which is here is S 2 minus S 1 this will be greater than integral delta Q by

T then the process is irreversible.

And that is one important inequality that has come about. And to make it equal what is

we can do is say that S 2 minus S 1 I want to make it equal. So, this terms stays where it

is 1 to 2 delta Q by T plus a minus sigma which is entropy generation. Why? On plus

minus  sigma we  will  come up little  later  when  we do some more  analysis.  But  its



implication is the same thing that when Clausius inequality says that be less than 0 sigma

should be a positive number.

So, this sigma itself is a positive number, then things fall place sorry this is sigma the

entropy generation the cycle to remind us sorry. Now let us go back and look at these

equations,  say  if  it  is  a  reversible  process  and  in  a  reversible  process  we  say  it  is

adiabatic which means that delta Q is equal to 0 then S 2 is equal to S 1.

(Refer Slide Time: 11:28)

And this becomes nice for us because that is what we were talking of an; the question

that how can I make a Carnot cycle. And what we are seen here is that the two isothermal

heat transfer processes.

Then, the reversible adiabatic process a reversible adiabatic process and we just saw that

if it is reversible and if it is adiabatic then S 2 is equal to S 1; that means, during the

process there is no entropy change.



(Refer Slide Time: 11:56)

So, this is an isentropic process.

(Refer Slide Time: 12:14)

We looked at the second law statements the Clausius Inequality which told us that cyclic

integral of delta Q by T is less than or equal to 0. We looked at two statements of the

second law, the Kelvin Planck statement and the Clausius statement. Both of this told us

that certain thing certain cycles are not possible. We can looked at how what would it

take to make such as objective possible.



And came up with the fact that it must have heat exchanged with two reservoirs and have

work input or output work output will be a heat engine work input will be a refrigerator.

And then we went on to look at what is most ideal cycle that we have. And that is where

we came up with the idea of a Carnot cycle where we said that every process is internally

reversible and externally reversible.

We saw that it  consist  of four process;  two isothermal  heat  transfer process and two

adiabatic work transfer process all of which are reversible. That gave us the idea that we

can; so, the cycle that is going to be the best cycle or it given TH and TL. And for that

we calculated  the  efficiency that  the  maximum efficiency  which is  the  Carnot  cycle

efficiency will be 1 minus TL upon TH. TL is the temperature of the low temperature a

reservoir which is the sink; TH is the temperature of the source from where we draw

energy. 

So, this gives us the upper limit on how good a cycle we can make. Irrespective of what

type of a cycle it is what source we have easy. And we put some numbers last time on it

that if I have a (Refer Time: 14:07) power plant what do I get if it is solar thermal ocean

thermal. We looked may easy and set to be the type of efficiency we get there all listed in

1. And the real world the actual efficiency we get are even much lower than that. But that

is the motivating factor why we need to do from the development and research and come

up with new technology is to try to increase that efficiency of real cycle.

Knowing  that  the  most  ideal  case  will  be  the  Carnot  cycle  which  have  been  never

achieve. But the clever I get back the better it is. And the (Refer Time: 14:43) for doing it

these days is that when you make the cycle more efficient of the same output your energy

input goes down which means that your carbon foot print has gone down it will become

more  in  coefficient.  So,  whether  it  is  an  aircraft  engine  or  a  coal  filed  power  plant

everyone is looking to go in that direction.

So, this was very simple, but, but our statement or a fact of very far which consequences

which makes everything move in some directions. We then went on to look at we defined

entropy. And we said that how what is entropy we for control mass we got a relation dS

greater than or equal to dQ del Q by T. Or to make it an equal to sign we said that we

have generated entropy which means that that was some irreversibility in the system.



Because of that irreversibility this entropy got generated and our objective would be in a

process or in a cycle can we minimize the generation of entropy. Basically we are saying

the same thing that we can be increase the efficiency of this. So, we got this equation for

a control mass, the rate of change of entropy of the control mass d dT S CM equal to

entropy associated with all the heat transverse which is the summation for every heat

transfer that is happening to the control mass which is Q dot j by T j, j is individual heat

transfer terms plus the rate of generation of entropy. So, this is just the term for a process

this is a rate term d by d t, but this is for a control mass. So, that is one equation we have

and we left it at that point.

(Refer Slide Time: 16:37)

I will take one more little time to put up this equation which is entropy generation or

entropy equation for a control volume. Then the derivation will go very much the same

way that we did for the mass conservation or energy conservation. Whereas, instead of

energy  we  are  now looking  at  entropy  and  the  difference  is  that  across  the  system

boundary we now are looking at where the heat transfer is taking place.

So, this way that was the system, then our control volume like before it closes all the

mass that is inside the control volume. And the way entropy first we will say then what

was the inflow and outflow this is just like what we had before. This is one and this

could be called inlet i. This was exit e and there was a mass flow rate associated with this

m dot i.



And like that for everyone of the inflows and for here there was a out flow m dot e. And

we say that which we are considered last time it carried mass then it carried energy. Now,

it is carrying its specific entropy s i and this element that got out after sometime this

carried it is entropy s e. And this is the control volumes so this will have S CV which is

the entropy of this which we can write as m of the control volume multiplied by s of the

control volume the specific entropy.

The entropy is associated with irreversibilities that will come and also with every time

there is a heat transfer to the system there will be an entropy transfer in to the system. So,

if at this point there was a heat transfer then the system temperature there was T j. And

the heat transfer input here was q delta Q CV, j then this cost an entropy inflow of delta

Q CV j upon T j. So, that is what is doing that every place where there is a heat transfer

into the system there is a entropy transfer associated with that. 

And then we can go about the same way that we did last time. And in the equation that

comes out will be that the rate of change of entropy of the control volume rate of change

of entropy of the CV. This has got the rate of outflow minus rate of inflow it on the other

side of the equation state will looking like that.

That what it telling us that if that this is rate of inflow with mass rate of inflow with mass

flow mass inflow this is rate of change with mass outflow. And this term this is rate of

change of entropy transferred to the control volume across the system boundary due to

heat associated with Q dot CV. And in the end we have this term S dot gen; this is the

rate of generation of entropy. So, that is the equation that we have been looking for and it

differs from the other two equations very slightly.



(Refer Slide Time: 21:03)

So, if I have to make a very general statement about all these conservation equations. We

said that something out flow rate minus something inflow rate plus something rate of

accumulation in control volume is equal to rate of production or rate of generation or rate

of creation we can you use any of those term. And when we looked at this entity to be

mass we said that mass outflow rates minus mass inflow rates plus rate of accumulation

of mass in the control volume this we said rate of creation of mars which is 0. 

There was a question on the form that also I will take up. Why are we saying 0 then there

is energy associated with mass. So, I will come to that in a minute we are saying that rate

of creation of mass is 0 that is why we got this 0 over here. Then we looked at energy

and outflows were similar energy outflow this energy outflow. Then inflow was Q as

heat, outflow was work from the system plus rate of storage of energy in the control

volume.

And this equates to the fact that rate of generation of energy which it was 0 and that is

how we got this equation. So, outflow rate minus inflow rate plus rate of accumulation of

energy is equal to 0. For entropy things are bit different; the outflow rates inflow rates

are  the  same  there  is  no  work  no  entropy  associated  with  work  transfer,  plus

accumulation of entropy in the control volume. This is rate of generation or the rate of

creation of entropy which is always greater than 0.



Rate of generation of entropy will always be greater than or equal to 0 equal to if it the

reversible process greater than otherwise. And that difference which is there we said that

this  is  rate at  which entropy is generated.  So, then the difference between these two

conservation equation where this a rate of creation of mass is 0 rate of creation of energy

0 entropy there is always a positive rate of creation of entropy ok. So, that is what that

equation was telling us.

And now we have all the equations we have completed everything that we wanted to

analyse the control mass or a control volume going either in a process or a cycle. And we

now have equations for all three mass energy and entropy. So, this completes the set of

governing equations of the laws of thermodynamics which each and every application

must  follow. There  is  no  chance  there  is  no  probability  that  any  of  these  could  be

violated.

The system would be impossible, or if we are solving a problem is (Refer Time: 24:53)

we made a mistake. So, this is what has come out as all these discussion. And we have

reached the point where we are now saying that I can analyse any system I want any

machine I want any device I want. We have now the tools and we know that starting

from here if we make suitable assumptions like to become bit easier. But there we will

we have to make sure that all these are obeyed by that system ok. So, this is one thing we

will then now look at some special cases and see how things work out and come up with

some more concepts.



(Refer Slide Time: 25:38)

Before that let me go back to what I just said that rate of creation of mass or rate of

destruction of energy or creation of energy we have taken to be 0. And there the question

that suppose we have a container in which we put some oxygen and we put some fuel

same liquid fuel or a solid fuel and we ignite it. So, initially it is all that the ambient

temperature T M. We ignited this hydrocarbon completely burns into this that everything

inside the chamber becomes very hot.

And then we transfer this energy out is heat transfer across the boundary. So, that it

comes back to T ambient and one more argue is well you know that energy out of the

same molecules which are there conservation of mass means every atom is still there, it

may be in a different form of a molecule. For example when we wrote CH 4 plus HO 2

go to CO 2 plus H 2 O when balance this 2 here and 2 there. What it tells us is that

before the reaction we had one carbon atom, 4 oxygen atoms, 4 hydrogen atoms.

And after the reaction 1 carbon atom 4 oxygen atoms 4 hydrogen atoms, this in a sense

of conservation of mass that at the atomic level we are saying that Bth atoms are still

there their mass has not change. And so at the molecule macro level the mass is still the

same the mass is  conserved.  So, it  may this  we got carbon dioxide and H 2 O, but

whatever kg was there on this side is remaining as kg of CO 2 and H 2 O still there.

And so mass is conserved, the question that if we put that much energy out should not

this mass be less because we have learned that E is equal to mc square and that is a very



valid question. So, let us me go quick calculation and so you look how much will be the

change  of  mass  and we will  do a  calculation  there.  In  this  case we take  1 kg of  a

hydrocarbon fuel like same in methane we completely burn it and get the energy out.

And we ignore from experience that for methane or for most such hydrocarbon fuels the

energy that you get out which means that you burn them and brought them back to the

ambient temperature the question is how much energy came out that energy is of the

order of 40 to 45 mega joules per kilogram. So, what this methane,  butane, pentane,

hexane, by in large it is in the same bowl path A little bit this way that way now counts

are less is even less that that we will look at this particular case.

So, if we burn burnt 1 kg of a hydrocarbon fuel and say we got out 40 mega joules. So, E

is 40 into 10 to the power 6 joules. The question is what was the change in the mass that

took place? So, if I do this calculation the decrease in mass that we expect this will be 40

into 10 to the power 6 joules divided by C square with a speed of light 3 into 10 to the

power 8 metres per second and this whole thing is square. And if we take this calculation

little further this is becomes 40 upon 9.

So, we say this is about 3.5 into 10 to the power this is 16. This is 6 minus 10 grams. So,

therefore, very very small amount compared to what we used of 1 kilogram. And so we

are  justified  in  classical  thermodynamics  are  saying  that  whenever  we  talk  of  heat

transfer the associated mass change is negligible. And so we neglect this, it is way less.

So, no where we what we are looking at and so the implication is that conservation of

mass is independent of conservation of energy.

This will be the case when we look at nuclear reactions where the change of mass in a

reaction is substantial, then we cannot do this in this case there will be a mass term or

here there will be a mass change term because of energy change and here there will be a

energy loss term which that reaction produce. So, in classical thermodynamics this is ok

for us. These are two independent equations they are not connected to one another. And

we are justified and saying that mass change associated with energy change in classical

thermodynamics is negligible ok. So, that takes care of this aspect.


