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Lecture - 8 

Consistency and Redundancy in Project networks  
 
In today’s lecture we are going to be talking about development of the project network 
especially with regard to consistency and redundancy in the project network. As I had 
indicated in my last lecture it’s necessary that the network should be consistent and also it 
is desirable that there should be no redundancies in the project network. In today’s lecture 
we are going to talk about procedures that are used for checking consistency and 
removing redundancy in the project network. Let us recall what we mean by consistency. 
Consistency check broadly means that any project network should not contain any cycles. 
This small network is an example of a consistent network because it does not contain any 
loops.  
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All the arrows are so directed that they go and define various paths without defining any 
loop. You would recall that the presence of a loop in a project network indicates an 
inconsistency because it implies that the activity should be completed before it has started 
and that is the logical inconsistency which comes up and therefore we must not have any 
inconsistencies in the project network. If you look at this network it looks very similar to 
the previous network. But this particular network is a network which contains a logical 
inconsistency because of this loop A C B. There is something wrong in the direction of 
the arrow here. But in a large network detecting these kinds of inconsistencies could be 
quite a formidable task but they must be detected. These errors must be detected because 



they are logical errors and they would produce a wrong analysis if we rely on that. In fact 
a proper network analysis would not be possible on an inconsistent network. 
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What are the various methods for checking inconsistency in project networks? We will 
briefly examine some of the commonly used methods for checking consistency. The first 
method of checking consistency in project networks is the process of ordering the 
activities in topological order as they say. Topological ordering of activities is a method 
which is perhaps the most popular method for checking consistency and in essence this 
method tries to make sure that the activities are ordered in a list such that no activity 
appears until all its predecessors have appeared. That is the essence of the procedure.  
 
The second method for checking consistency of project networks is Fulkerson’s 
numbering rule. Fulkerson’s numbering rule is actually a procedure by which we take a 
network and number the nodes of the network in such a manner that for every activity 
going from node i to node j, the node number i is strictly less than node number j. If you 
can accomplish this numbering it shows that there is no inconsistency in the network. 
This is again a very effective and a very simple procedure for checking consistency of 
project networks. The third procedure which we are going to be talking about today is the 
procedure of squaring the adjacency matrix. The adjacency matrix for a project is a 
matrix representation of the project. Rather than representing the project as a network it 
can also be represented as various matrices. The adjacency matrix is one representation of 
the project network and by performing certain operation on the adjacency matrix we can 
check whether the matrix or the project network is consistent or not. 
 
We will examine these procedures in detail and the fourth procedure that we might talk 
about is Marimont’s procedure which can be applied equally effectively on either the 
adjacency matrix or the network itself and this method can also reveal any 
inconsistencies which are present in the project network.  
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Different methods have their different range of applications. Topological ordering is done 
when you are dealing with activity lists and you are trying to topologically order the jobs. 
Fulkerson’s numbering rule is most suitable when you have drawn the network in an A-
O-A mode or an A-O-N mode and you are trying to number the jobs or number the nodes 
in such a manner that this is satisfied. So that stage it’s useful. If you are not dealing with 
either the list or the project network but you are dealing with the adjacency matrix of the 
graph then this third method is very useful and the fourth method can be used on both the 
adjacency matrix as well as the network as we have seen. 
 
The procedure of topological ordering of activities can be summarized as follows. The 
first step in the procedure is to select a job which has no predecessors and place it on the 
top of the list. Such a job is a source which has no predecessors. It’s a source in the 
network or otherwise it’s a job which has no predecessors. You identify such a job and 
place it first on top of the list. Step 2 is delete the job just placed from the predecessor list 
of all remaining jobs. The job which has just been placed is deleted from the predecessor 
list of all the remaining jobs. In this process you can hopefully generate some new 
sources because that job has been deleted from the predecessor list of the jobs. In step 3 
what you try to do is you identify any new sources, that is jobs without predecessors so 
generated for placement on the list and then go back to step 2. You keep on applying 
these steps in an iterative fashion till one of the two things happens.  
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You continue till there are no sources on the list of the remaining jobs. There are no 
sources but the list is not yet empty. There is a list of remaining jobs but there are no 
sources. If this happens this shows the presence of an inconsistency. On the other hand if 
all the jobs are placed on the list which are now topologically ordered showing there are 
no inconsistencies. 
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If there are no jobs remaining you are able to place all the jobs on the list, it clearly shows 
that you have been able to topologically order these various jobs. Let’s take a couple of 
examples to illustrate this procedure. Take for instance a very small example of this 



nature in which we are given the jobs and the predecessor list and in this list a1 is the job 
without any predecessors. a2 is a job without any predecessors. Then a3 comes on the 
scene and its predecessor has already appeared on the list. a4 comes on the scene; its 
predecessor has already appeared on the list and then a5 comes with a2 and a3. We have 
been able to topologically order the jobs. This is a topologically ordered list. 
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It shows that the network is consistent and you can see that the project network is actually 
a network which is something like this. It has no loops.  
 
Let us now take an example of an inconsistent project network. Look at this example. 
Look at the list first. We are talking only about the list to begin with. Job a1 has no 
predecessors; a2 has no predecessors. So this is on the list. Then a3 is placed. It has 
predecessor’s a2 and a5 but a5 has not been placed on the list. It cannot be topologically 
ordered. Similarly a4 has a1 and a3. Both a1 and a3 have been placed. This is in the 
correct order. You can find that there is no way that you can topologically order this list. 
You cannot place this list in topological order and if you draw the graph of this you find 
that in this case there is a well defined loop here. This is an inconsistency. 
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The inconsistency can be revealed by the simple fact that we are not able to topologically 
order the list by means of the procedure which we just identified and therefore this is an 
inconsistent network. 
           
Let us now examine Fulkerson’s numbering rule. Fulkerson’s numbering rule is as I 
indicated to you essentially a procedure by which we are going to number the nodes of 
the network. It’s a very convenient procedure and the essence of the procedure is that 
each arc (i j) of the project network is numbered such that i is strictly less than j. When 
you are referring to a particular job you will always be going from a lower numbered arc 
to a higher numbered arc and not vice versa and the procedure that is adopted for doing 
this numbering is as follows. The first step of the procedure is to identify the source node 
or nodes in the project network and number them sequentially from 1 onwards. If there 
are 3 nodes in the network which are sources you can call them 1, 2 and 3 arbitrarily in 
any order. It doesn’t matter.   
 
Having identified these sources what you do next is for each numbered node you delete 
the outgoing arcs and identify new sources.  
 
 
 
 
 
 
 
 
 
 
 



(Refer Slide Time: 12:43) 
 

 
 
From the arc, from that particular node which has just been numbered delete the arcs 
which are going out and in the process identify new sources which are generated by this 
particular procedure. What you do next is you number the newly discovered sources 
sequentially again. Whatever numbering you go ahead and number the newly discovered 
sources sequentially and continue until one of the following things happens: all the nodes 
are numbered indicating a consistent network. So consistency in the network is indicated 
by the ability to complete the numbering of all the nodes in this particular manner. The 
absence of sources in the unnumbered nodes; if there are some nodes which are not yet 
numbered and you were not able to find a source among them then it indicates an 
inconsistency.   
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We cannot really number the nodes in that fashion. This is the inconsistency. To illustrate 
the procedure let’s look at an example. Here we have a network and in this network the 
nodes are not yet numbered. We want to find out whether this is a consistent network or it 
is not a consistent network and we would like to see whether we can number the nodes 
according to Fulkerson’s numbering rule. We look at the network and identify the source.  
This node is the only source in the network because it has both arcs which are going out. 
There is no other node in the network which has this property. We can call this as node 
number 1 and once this node is numbered as 1 we can delete the two arcs which emanate 
from this particular node and once we delete these two arcs which emanate from this 
node we can identify whether any new sources have been generated.  
 
Have they been generated? This node is not a source yet. But this particular node is a 
source because this node arc has been deleted and these 3 arcs are there. These are the 
only 3 arcs which are coming out of this node. I can number this arc and I can give it the 
next number. I can call this as node number 2 and once I number this node as node 
number 2 I can by the same process, delete these 3 arcs which emanate from node 
number 2. The second node which is numbered I can delete these 3 arcs now which 
emanate from node number 2. Once I do that I try to identify if there are any new nodes 
which are generated, new sources which are generated. This node is not a source. This 
node is not a source because it has arcs coming in and going out but this one is a source. 
So I can number this as node 3 and once I number this node as number 3 I can delete the 
arc which emanates from this particular node and having deleted this arc now let us try to 
find out if there are any sources. 
  
What do you find? This is not a source. This node is not a source. Why because this arc 
has been deleted. This arc but one incoming arc is there and one outgoing arc is there so 
this not a source. This is also not a source. Is this a source? It has 1 incoming arc, 2 
outgoing arcs. It is not a source. We have reached a stage where we are not able to 



number any of the remaining nodes the simple reason that there are no sources among 
them. We have been able to number only 3 nodes in this network and the remaining 
nodes are not numbered and you can see actually that the numbering rules stops here 
because we cannot number and this shows that the network is actually inconsistent. A 
closer look at the network actually shows that there is a presence of a loop here; this, this 
and this is a loop. That portion of the network which has this loop did not allow the 
numbering procedure to proceed any further and therefore we have been able to detect the 
inconsistency in the network. Had the network been consistent we could have continued 
with the process and would have been able to number all the nodes.  
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This is an application of Fulkerson’s numbering rule. Let us now look at the matrix 
representation of projects. In many computer applications and in other applications it’s 
not the project network which can be stored as such in the computer but it is stored 
conveniently as a matrix. Quite often we have to work on matrices of the project. We 
look at some of the common matrix representations of projects. Probably one of the most 
convenient matrices to represent a project is known as an adjacency matrix. For instance 
for this particular network what we notice is that we can number this network according 
to Fulkerson’s rule.  
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Each arch is now numbered such that i is less than j. This is not necessary when we have 
to draw up an adjacency matrix. The adjacency matrix of this particular network is 
defined as follows. It’s a square matrix whose size is n by n where n is the number of 
nodes. In this graph there are 4 nodes; 4 by 4 matrix. It is very much like a, from to chart. 
From 1 there are 2 arcs to 2 and 3. Other elements are zero. From 2 there are 2 arcs to 3 
and 4. These are shown here. From 3 there is only 1 arc to 4 and from 4 there are no arcs. 
It’s a matrix of zeros and ones in which you find that the ones indicate arcs. In fact the 
number of ones is equal to the number of arcs in the network. There are in this case 5 
ones. These correspond to the 5 arcs which exist in this network. 
  
If you take the row sum or the column sum, the row sum for instance shows you that 
from node 1 there are 2 outgoing arcs. From node 1 there are two outgoing arcs. If you 
take the column sum for instance, it shows that onto node 3 there are 2 incoming arcs. 
Onto node 3 there are 2 incoming arcs. Rather than dealing with the network you can deal 
with the matrix only and it gives you the entire structural information about the project 
network. This is the adjacency matrix. The adjacency matrix has certain very interesting 
properties. Some of the properties of the adjacency matrix are summarized here. It’s a 
square matrix of size n by n consisting of zeros and ones; that we have seen. There is no 
entry on the diagonal of the matrix. Why is that so? Because there is no self loop; that is 
there is no arc which goes from the node to itself. That is why there is no entry on the 
diagonal. The matrix is upper triangular if nodes are numbered according to Fulkerson’s 
rule. This is what happened in the example that we considered. Each entry of 1 indicates 
an arc in the network. The row sum indicates the number of arcs emanating from the 
node and similarly the column sum indicates the number of arcs converging into the node 
as we just saw. 
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Another interesting thing about the adjacency matrix is that it’s very easy to identify the 
source and sinks. How? A vacant column will indicate a source node. A vacant row will 
indicate a sink node. The rank of the adjacency matrix is n-1 as defined by any tree on the 
graph. Any tree on a graph of n nodes will have n-1 arcs just as this particular tree is 
there. Take a tree of 1, 2, 3, 4, 5, 6, 7, 8 nodes. A tree is defined as a structure which will 
connect the entire network but will have only 7 arcs. This is one example of a tree on the 
network. The rank of the adjacency matrix is actually equal to n-1. That’s what we have 
seen. 
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Another matrix which is often used in defining a project network is called a node arc 
incidence matrix. Let’s look at a node arc incidence matrix. A node arc incidence matrix 
is a matrix of size n by m where n is the number of nodes and m is the number of arcs in 
the network and it has entries of -1 0 and 1. 
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If we now take the same network for illustrative purposes we can develop the node arc 
incidence matrix. It has 4 nodes and 5 arcs a1, a2, a3, a4, a5. This matrix will be a 4 by 5 
matrix as shown here. How it is constructed is that arc a1 starts from 1 and ends at 2. You 
put a -1 from where it starts and a +1 to where it finishes. Similarly arc 2 starts from 1 
and ends at 3; arc 2 starts from 1 and ends at 3; so -1 and +1 here. Similarly arc a3 starts 
from 2 and ends at 3. In this manner the node arc incidence matrix will have exactly a -1 
and a +1 in each column and nothing else. The sum of every column will be zero and a 
row which has all minus ones shows a source. A row which has all plus ones shows a 
sink. Node 1 is a source because it has all minus ones. All arcs are emanating from it and 
node 4 is a sink because all arcs are culminating into it. These are some of the properties 
of the node arc incidence matrix. In some applications the node arc incidence matrix for 
projects is useful especially when one is talking about project crashing, LP procedures 
and so on.  
 
A third matrix associated with project networks is called a circuit matrix and it is a matrix 
of circuits versus the arcs in the network. What are circuits? Let’s look at the same 
example; 1, 2, 3 and 4. In this project, find out all the loops. This is one loop. This one, 
a1, a3 and like this. This is another loop L2 and the whole thing is a third loop L3. If we 
put down L1, L2, L3 as the 3 loops here and we identify the 5 arcs a1, a2, a3, a4 and a5 
we can have a matrix of this kind. For instance when you look at loop L1 you see the 
direction of the loop. In the loop a1 and a3 are traversed in the same direction as the loop 
but a2 is traversed in the opposite direction. So a1 and a3 are traversed in the same 



direction but a2 has a -1. So 1, -1 and 1; basically this defines the loop 1. Similarly this 
defines loop 2, this defines loop 3.  
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This is a matrix of again zeros, ones and minus ones which defines the structure of the 
circuits which are there in the matrix. This is another alternative way of representing the 
project network. However for purposes of checking consistency it is the adjacency matrix 
which is of great concern. We will be talking about procedures for looking at the 
adjacency matrix in some detail. The method for checking consistency of adjacency 
matrices is a matrix squaring procedure. The matrix squaring procedure works something 
like this. What it says is multiply the adjacency matrix with itself at most n-1 times. You 
multiply it once you get M square; you multiply it M to the power n-1 times you get M n 
maximum and what should happen is that if the matrix is consistent it must be nilpotent 
of index n or less, since in the absence of loops the maximum spacing between any two 
nodes is n-1. A matrix M is said to be nilpotent of index k if M to the power k is equal to 
zero but M to the power k-1 is not equal to zero. That’s the definition of nilpotency of a 
matrix. 
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We will apply this procedure and check whether a particular matrix is consistent or it is 
not consistent. If the matrix is not consistent what really happens is that in the process of 
squaring the matrix 1 will appear on the diagonal of the matrix. That’s what will happen 
immediately. For instance let’s take an example of an inconsistent matrix for that matter. 
Take an example of this matrix, 1, 2 3, 4. It has a loop which is shown here. It has a loop. 
How this procedure works is that we develop the adjacency matrix of this particular 
graph. The adjacency matrix for this graph is shown here as M. It’s a 4 by 4 matrix. It’s 
like this. If we take the product of M with itself we will generate M square and M square 
is shown here in this particular matrix. In M square all the elements on the diagonal are 
still zero but if we multiply it with M again we generate this particular matrix here which 
is M cube and what you find in M cube is that ones have appeared on the diagonal. Here 
is an interesting thing which has happened. You have 1 here, 1 here and 1 here and 0 
here. You see the appearance of a one in this particular situation for M is equal to M cube 
here shows that this is an inconsistent matrix and in fact this identifies that the second, 
third and the fourth node which are there on the network. Second, third and fourth nodes 
are involved in the circle, in this particular path. We have been able to identify the 
second, third and the fourth nodes. These are the nodes which are involved in the cycle. 
This squaring procedure automatically identifies the cycle as well and tells you that there 
is a problem here in the network here. The interpretation of M cube shows that from node 
2 to itself there is a third order path. From node 2 itself, there is a first order, second order 
and third order. There is a path with 3 links. This is the interpretation of 1 which appears 
in this particular matrix here. By squaring the matrix in this particular procedure if you 
get ones it shows that there is an inconsistency. 
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However what would happen if you have a consistent network? Let’s work a small 
example and let’s see what happens. If you get 1 in M4 on a network which has only 4 
nodes actually it should be all zeros because in a consistent matrix the maximum distance 
between n nodes can be n-1. There can be at most n-1 arcs in a consistent network. 
Inconsistency would arise only when there is a loop. You would have a situation like this 
emerging only when there is an inconsistency. If there is an inconsistency you could still 
have M4 having something other than zero but if it’s a consistent network M4 must be all 
zeros. That is the test for consistency.  
 
Take for instance this matrix. It’s a small matrix. It’s a consistent matrix. In this 
consistent matrix let us try to identify what is going to be the adjacency matrix for this 
particular graph? From 1 there is no arc to 1 itself. There is an arc to 2 and there is an arc 
to 3 and there is no arc to 4. That’s the first row. This is node 1, this is node 2, this is 
node 3 and this is node 4 and we are going to node 1, to node 2, to node 3 and to node 4. 
From 2 there are two arcs to 3 and 4. There is an arc to 3 and there is an arc to 4 and these 
are the two zeros and from 3 there is only 1 arc to 4 and all others are zeros and from 4 
there is no arc. This is basically all zeros. This is the adjacency matrix for this particular 
graph. This is M. Suppose I was to multiply this matrix with itself what would you be 
getting here? That is M into M would give us actually M square. What is that value of M 
square? Let us find out what that value of M square is? The first element here you would 
be multiplying the first row with the first column. The first column is zero. This will be 
all zeros. The first row with the second column will actually generate all zeros. The first 
row with the third column will actually generate 1. The first row with the fourth column 
what is it going to generate? It is going to generate 1+1 which is 2. Let’s look at the 
second row with the first column. It’s going to be zero. The second row with the second 
column it’s going to be zero. The second row with the third column is zero. The second 
row with the fourth column will be 1. Let’s look at the third row. Third row with first 
column will generate zeros. The third row with the second column will generate zeros. 



The third row with the third column will be all zeros and the third row with the fourth 
column will be all zeros and let’s talk about the fourth row. Because it is zeros everything 
will become zeros here. So M square value is actually this. Let’s talk about the 
interpretation of these numbers because that’s important for us. 
 
M square shows actually second order links. It shows that from node 1 to node 3 there is 
one second order link. From node 1 to node 3 which is the second order link? The second 
order link is this and this. (1 2) (2 3) is a second order link from node 1 to 3 and that is 
actually being shown in this matrix M square. It shows that there are 2 second order links 
between node 1 to node 4. From node 1 to node 4 there are 2 second order links. Which 
ones are these? 2 second order links means 1 2 4 is one such path. This one and 13 4 is 
another path. 1 2 4 and 1 3 4; these are two paths and therefore they are second order. 
They both are involving 2 arcs. The interpretation of M square is the number of second 
order links that exist between node i and j in this particular network. This is in fact M 
square.  
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Let us utilize this information to generate the value. Let's generate M cube for this and for 
instance we found that M square for this example is 0 0 1 2, 0 0 0 1, 0 0 0 0 and 0 0 0 0. 
This was actually nothing but M square. Let’s multiply this with M. The value of M is 0 1 
1 0, 0 0 1 1, 0 0 0 1 and 0 0 0 0. This was the value of M. On multiplication I would be 
getting the value of M cube. Let us try to generate the values of M cube. You can see 
here first row into first column will be zero. First row into second column will be zero. 
First row into third column will be zero. First row into fourth column will be 1. Second 
row into first column is zero. Second row into second column is zero. Second row into 
third column is zero. Second row into fourth column is also zero. Third row will be all 
zeros and the fourth row will also be all zeros. When you discover the matrix M cube it 
shows that there is 1 third order link from node 1 to node 4. Which is that third order 



link? It is this one; this, this and this. It involves 3 arcs. It’s a third order link from this to 
this.  
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Let us complete this procedure by calculating M to the power 4 and try to find out 
whether the matrix is consistent or not. What we can do is we can generate the value for 
M4 simply by multiplying the matrix and cube with M itself. M cube we had just 
determined just now. M cube is this particular matrix. This is the matrix M cube. I 
multiply this with the matrix M. The matrix M you will recall is nothing but 0 1 1 0, 0 0 1 
1, 0 0 0 1 and 0 0 0 0. This is nothing but the matrix M and by this product I would get M 
to the power 4 and in this case what do I get? You find that this matrix is actually 
nilpotent of index 4. This matrix is nilpotent of index 4. 
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What does it show? It shows that the matrix is consistent. That is if there are 4 nodes then 
M4 must necessarily be all zero. There should be no fourth order parts in this particular 
network. M cube can exist. If a matrix is nilpotent of order M to the power n or less it is 
consistent. If by multiplying up to M n you still find that there are ones here or 
somewhere it shows that there is an inconsistency and the appearance of ones on the 
diagonal at any stage shows you or reveals the various kinds of paths which exist at that 
particular point in time. This was the matrix squaring procedure which can be utilized for 
determining the consistency of project networks. 
  
Finally let’s look at Marimont’s procedure. In fact Marimont’s procedure is best 
illustrated on a network. We can take any network and try to illustrate Marimont’s 
procedure on the network itself. Let us say for instance that we have a project network 
which is nodes. Let’s take a network of this kind and try to find out whether it is 
consistent or not consistent by applying Marimont’s procedure. In the procedure of 
Marimont’s it is not necessary that the nodes be numbered. We can number them. Let’s 
suppose we number these nodes arbitrarily 1, 2, 3, 4, 5, 6 and 7. Let’s suppose that there 
are 7 nodes. In this case the number of arcs is a1, a2, a3, a4, a5, a6, a7, a8 and a9. There 
are 9 arcs and 7 nodes in this network and you want to apply Marimont’s procedure. By 
looking at the network you identify the sources and the sinks.  
 
It’s a very simple procedure. Node 1 is actually a source and node 7 is a sink. This is a 
source and this is a sink. You delete the arcs which are emanating from the sources and 
you sort of delete this particular node as well. This is disconnected from the network and 
you similarly try to disconnect node 7 and the arc which is connecting it. We delete this. 
In this process what happens? These two becomes sources again; node 2 and node 3 have 
become sources again. What does that show? It shows that we can continue this 
procedure. We can then delete these arcs which go from these sources. These arcs which 
go from these sources along with nodes 2 and 3 and similarly here when we delete this 



sink this does not become a sink or it does not become a source. At this stage are we left 
with any other sources and sinks? This arc is deleted, this arc is deleted. But this node 
still has an arc. This particular node still has an arc coming in and this node has. We have 
been able to delete nodes 1 2 3 and these arcs and this node and what is left, that we are 
not able to delete; this particular portion of the network at all. We are not able to delete 
either node 4 or 5 or 6 whereas we have been able to delete the other nodes 1 2 3 and 7. 
This is what we call a residual sub network. The presence of the residual sub network 
actually shows that there is an inconsistency and actually you will find that in this 
particular example there is a cycle present in these particular nodes. That means in the 
Marimont’s procedure if you had been able to continue this procedure right through, you 
would not be left with any residual network. You would have been able to delete 
everything. That is what it would have been possible to do.  
 
(Refer Slide Time: 45:44) 
 

 
 
This very procedure could be applied on the adjacency matrix also rather than on the 
graph. How can it be applied on the adjacency matrix? I will just give you a hint. If you 
take the same example the network that we considered had 7 nodes. If we construct a 7 
by 7 matrix you find that in the original network we had from 1 there was an arc to 2 and 
there was an arc to 3. Similarly from node 2 there were 2 arcs to 4 and 5 and there were 
no other arcs. From node 3 there was only 1 arc to 4 and there is no other arc here. From 
node 4 there was 1 arc to 5. From node 5 there was 1 arc to 6. That was all. From node 6 
there were 2 arcs to 4 and 7 and from node 7 there was no arc. If you take a vacant row 
this shows that the node 7 is a sink. A vacant column that is node 1 is a source. Look at 
the adjacency matrix and identify the sources and the sinks and then you are supposed to 
delete the arcs which are emanating from the sources and the sinks. How do you do that?  
 
For instance node 1 is a source. What I do is I delete column 1 and the corresponding row 
1 and the corresponding row 1 will automatically delete these two arcs which was a1 and 
a2 in the original network. I am left with a 6 by 6 sub matrix after deleting node 1. 



Similarly if I try to delete node 7, I would delete node 7 and I would also delete the row 
and column corresponding to that particular node. After deleting nodes 1 and 7 I would 
have this particular representation. In this remaining representation I try to find if there 
are any sources. You find that 2 and 3 are in fact the sources which are left here. I delete 
2 and the corresponding column 2 and similarly I delete node 3 and the corresponding 
column 3 in this process. I have been able to delete nodes 1 2 3 and 7, the corresponding 
rows and columns and I am left with this residual sub matrix. This sub matrix does not 
contain any sources. This is a residual sub matrix. It shows an inconsistency. 
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The Marimont’s procedure can be applied on the adjacency matrix as well in the same 
manner that it can be applied for the whole thing here. So far we had been talking about 
consistency checks. Let us now talk about redundancy. What is redundancy? Redundancy 
is the presence of unnecessary information or additional information in the predecessor 
set. Let’s take an example of jobs like this A to G and with the corresponding 
predecessors as they are shown here. 
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Once these jobs are shown here we would like to check whether there is any redundancy 
in this set of jobs. A simple redundancy check can be carried out on a table and the 
tabular procedure is something like this. The information that was given about the 
network A has no predecessors B was shown to have a predecessor A. C was shown to 
have a predecessor A, D has predecessors B and C and E had predecessors B and D. F 
had predecessors C and D and G had predecessors B, D, E and F.  
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This is the information; the same information which is given to us which you would like 
to check for redundancy. Mind you this list must be in topological order before you start 



implementing the procedure. This list is in topological order in this particular situation. 
Then what you do is B has nothing. C has only A and it is taken care of. Look at D. D has 
B and C. So look up B and C. We can use a different colour here may be. We can 
identify. B has A as a predecessor. This circle shows that A is an implied predecessor of 
D; similarly C has A. This is A. Look at E. E has B and D. Just transfer this information 
down and for D all the three; so you transfer this information down for all the three and 
this is already there and then you go down to F. When you go down to F you find C and 
D. Look up the rows corresponding to C and D and you find that these three become the 
implied predecessors of F. Then you look up these, B D E and F. For B there is only one. 
For D there are these three, all these three. For E there are these four and for F there are 
these four which is already taken down.  
 
This is a procedure, where corresponding to each of these crosses you check up that 
particular job and transfer its predecessors down below. That’s all. For G if I look up for 
E, these four. So I transfer the four downwards. It’s like trying to say that these are now 
the distant predecessors of this particular job or the implied predecessors. In this process 
you find that we have crossed. These 4 crosses have been circled. This shows that there 
are four redundancies in this particular example. We have been able to identify the 
redundancies. 
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These are the four redundancies which are crosses and which are circled. On a network 
the same information, the four redundancies which are crossed out are shown here. These 
are the ones which are crossed out. That means these are the unnecessary arcs which you 
don’t have to specify. This has been discovered through redundancy. For F we have 
shown C as a predecessor. It need not be shown because D is a predecessor of F and C is 
an implied predecessor. So we don’t have to say that C is a predecessor of F. This is a 
redundancy. In some cases redundancies might be easy to spot. Otherwise you will have 



to look for a systematic procedure by which it can be done in this particular manner. This 
is a procedure that you can adopt for removing redundancies. 
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Let us see what have tried to do in this particular lecture. By and large we have looked at 
the problem of consistency in a network and we have seen that consistency in a network 
implies the absence of loops and this can be tested by a variety of methods.  
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The four methods that we adopted or which we have studied in today’s lecture are 
topological ordering of jobs, Fulkerson’s numbering rule, squaring of the adjacency 



matrix and the Marimont’s procedure for reducing this. Then we have looked at 
procedures for redundancy and we have seen that redundancy in project networks is the 
presence of unnecessary additional precedence information that tends to clutter the 
network.  
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These can be removed by either inspection for small networks or by the tabular method to 
generate the predecessor successor matrix which is what we had done for this example 
and finally we have seen that consistency checks and redundancy removal are basically a 
part of what we call preliminary network manipulations which yield a valid, well pruned 
network for further analysis and these are generally a part of a good computer package. 
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They would be necessary for developing a good project network for subsequent analysis. 
Thank you!  
 
 


