
Project and Production Management 
Prof. Arun Kanda 

Department of Mechanical Engineering 
Indian Institute of Technology, Delhi 

 
Lecture - 35 

The Analysis of Time Series 
 
In the last lecture we had looked at the basic principles of forecasting. We have identified 
some of the major methods that are used for developing the demand forecast. In today’s 
lecture we are going to be talking about the analysis of time series. The development of 
forecast is based on the time series. Specifically we are going to be talking about methods 
of correlation, regression and time series, decomposition as they are applied to 
forecasting value of the demand. To begin with let us try to recall what we mean by this 
common term, generally known as correlation. We are all familiar with this term and we 
know that correlation to some extent measures the degree of association between two 
variables or two series. This is a central concept which is used in forecasting and 
therefore we must clearly understand the distinction between correlation and regression. 
Correlation examines if there is an association between two variables and if so, to what 
extent. 
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The correlation coefficient measures the degree of association, between two variables and 
regression on the contrary establishes a unique relationship between the variables. If there 
are two variables y and x and you find that they behave in a certain fashion, discovering 
the relationship between the variables is actually the business of regression. This 
distinction that should be kept in mind and more importantly correlation and regression 
are both used in the context of forecasting in various ways. So we will see in a short 
while how they are used. For instance if the relationship between two variables x and y is 



plotted on a diagram known as the scatter diagram, you would find for instance in the 
first graph here. Generally as the one variable increases the other variable also tends to 
increase, so this is said to be a situation where the correlation is positive. The correlation 
coefficient between the two variables would be positive when it shows a trend of this 
nature. On the other hand when the relationship of this nature, i.e., if one particular 
variable increases and the other variable decreases then the correlation coefficient is set 
to be negative.  Negative correlation therefore really means that as one variable increases, 
the other decreases. That is the physical significance of the correlation coefficient. These 
variables are sort of randomly distributed the way we have in this third diagram 
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The implication is that there is no correlation between them, they are totally uncorrelated 
and this would mean that the correlation coefficient is zero. What can also happen is that 
the variables would establish some kind of non linear association which would essentially 
mean that the different points, the correlation coefficient would vary from positive to 
negative depending up on how the situation is. The most commonly used correlation 
coefficient is the Pearson’s correlation coefficient r which is measured by this particular 
formulae which says if there are n data points and you have the series x and y defined on 
this end points, then one up on n sum of x – x bar into y – y bar the summation of this 
expression. Over all the end points divided by sigma x and sigma y is actually defined as 
the correlation coefficient.  
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This is needed in a number of applications where we are expected to calculate the 
correlation coefficient. The numerator which is this expression 1/n sum of x – x bar into   
y – y bar is generally defined as the co variance between x and y. So covariance divided 
by the sigma x and sigma y will actually give you the correlation coefficient and this is 
how it is. There are various ways of computing the correlation coefficient between the 
two series, one of the methods is the direct computation using the formula we had just 
defined. This is generally a cumbersome and lengthy method for the purposes of 
computations. 
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One can also use the short cut or the UV method which is basically like shifting the 
origin. It involves any conveniently assumed mean and then suitable scaling of variables. 
This is generally pretty easy for purposes of computation. For instance if you have these 
two series, let us say x is the advertisement expenditure in 10 years that a company port 
sale and the sales figure over 10 years is in lakhs of rupees which are shown here. We are 
trying to find out whether there is any relationship between the advertisement expenditure 
and the sales. We want to find out the correlation coefficient between these two variables. 
What you can easily do is if you want to use the simpler procedure you can take for 
instance any value corresponding to the x – x bar y – y bar and then get these particular 
values for instance what we have done here is if you assume that this is 1, then these 
values will be –9. This value would be eleven in terms of x – x bar these particular values 
and similar values would be there for y – y bar having computed this small x and small y 
you can calculate the series x square y square in the form of a table.  
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Compute the value of x, y and get the totals of the bottom of these particular things and 
once you do that you know for instance that x bar is simply 290 by 10 which comes from 
the values that we had computed at the bottom similarly value for y bar. 
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This particular coefficient which is the correlation coefficient is defined as summation x 
y divided by summation x square into summation y square under the root. These values 
are now available at the bottom of the table very conveniently, you can get 0.976. 
Therefore the coefficient is a determination which is the square of the correlation 
coefficient will be 0.953. This was just to illustrate that the computation for the 



correlation coefficient and the coefficient determination can in fact be done in a very 
simple way. After this let us come to regression. Regression is the methodology that is 
quiet often used for instance in trend extrapolation and casual models for defining a 
function which can be used for purposes of making forecast of demand. So essentially if 
we try to ask ourselves this question as to what is regression basically the purpose of 
regression is discovering how a dependent variable y is related to one or more 
independent variables x or x1, x2, x3 and so on up to xn  
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Essentially from the demand history, demand is the function of time that might be 
available with us or with y as the function of x in general. We are trying to determine a 
relationship of the dependent variable y as the function of the independent variable x. I 
think it is important to know how you define your dependent and independent variables. 
The dependent variable is generally the variable that you are interested in, that is the 
demand and the independent variables are the inputs that you have available at based up 
on whatever data is available, generally that is how it is. In fitting a function the question 
that arises very naturally is what is the criterion for best fit?  
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In fact a number of criteria have been suggested for fitting this particular function. You 
see whenever you fit a function y is equal to f of x what would happen is this is the plot 
of the function, some points will be above the functions, some points will be below the 
function in variable. This is the positive error; this is the negative error in the sense, so 
you would like to ensure that there are no errors. In fact if you could develop a function 
which passes through all these points without any errors that would in fact be error less 
regression function. What happens is that normally since that is not possible, we try to 
develop a criterion which is based on these error functions.  
 
One of the criterion that has been used is the mean error that means you calculate the 
error here, some positive error, some negative error and ultimately we calculate the mean 
and you are interested in minimizing the mean error. Clearly this is not a very good 
criterion because if there are two points on opposite sides, no matter whether the error is 
20 +/ – 20 or whether the error is +/ – 100, both of them could be rated equally by this 
criterion. Therefore you would like to have a criterion which measures the degree of fit to 
a better extent. Another criterion is the mean absolute error or the mean absolute 
deviation sometimes knows as MAD, the mean absolute deviation. Your objective 
function is take the modulus of this, modulus of this, the modulus of this, so every where 
you get a positive contribution from each point, and then you take the sum so that is the 
mean absolute error which is the sum of the modulus values of all the errors and you treat 
that as a criterion. The major defect with this criterion is what the major defect with this 
criterion is.  
 
What do you think would be the major defect with this criterion? Obviously the major 
defect with this criterion is that first you are dealing with the modulus function, now the 
modulus function is not a mathematically well behaved function. You can integrate it. It 
has the cusp at that particular point and therefore you cannot perform all the 
mathematical operations of taking the derivative and equating the derivative to zero or 



things at that type therefore this is not popular. The third criterion which is most 
commonly used in fact is to try to minimize the sum of the squares of the errors. So if it is 
negative it becomes positive. The sum of the squares is the well defined mathematical 
function which can be utilized for you can use the methods of classical calculus to 
determine the maximum or the minimum in such situations therefore this is done. 
Moreover squaring the error is like magnifying the error to some extent, if the error is 
two, by squaring it you have four. So you are focusing on the error and your objective 
function is now the sum of the squares of the error and it is this sum of the squares that 
you try to minimize. It is for this reason that this is generally the most commonly used 
criterion for determining the correlation coefficient. As we said the least squares criterion 
that is minimizing the sum of the squares of errors is the generally preferred criterion for 
reasons that we have just discussed.  
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Let us start with the simplest possible situation. Suppose you are interested in fitting a 
straight line, that is the forecast at time t = a + bt is the equation of the line to be fitted,  
Ft is the fitted function of the forecast for time t, Dt is the actual demand. For period t 
which is available, past data is available let us say for n periods and parameters a and b 
have to be estimated from the data using least squares criterion. That is in fact the 
problem, so what can be done in such a situation simply is to develop our objective 
function, which is the sum of the squares of the errors. The sum of the squares of the 
errors is nothing but the actual demand Dt – forecast Ft whole square and sum of over all 
the data points.  
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Since our forecasting function Ft is a + bt when you substitute it here, you will get this 
value. Now the sum of the squares of the error is our objective function which we want to 
minimize and the two unknown in this particular equation or the two unknown 
parameters a and b. So you take the partial derivatives of the sum of the squares of the 
errors with respect to a with respect to b and you get in fact two into Dt – a – bt into – 1=  
0 and 2 into Dt – a into bt into – t which is the coefficient of bt is equal to 0. What do you 
find if we rearrange this equations, such that the coefficients of a and b are here. A 
coefficient is simply in this particular situation it will be simply n, because this is 
summed of over n and two cancels out and the coefficient of b is simply going to be 
summation t and summation Dt would come up on this particular side here that we are 
trying to talk about and similarly a into summation t + b into summation t square is equal 
to summation t into summation Dt. Now the big this is an important equation that is why 
it is boxed.  
 
What do you notice in this equation? There are two unknown parameters a and b, so it 
gives the relationship between these two unknown parameters, everything else is 
available from the data. We have got two linear equations in two unknowns. The two 
unknowns being a and b, so you can solve them by Cramer’s rule or any other method for 
solving linear equations. Sum of squares of errors taking derivates, put it equal to zero, 
these equations are generally called the least squares normal equations and the point to 
notice is that the least squares normal equations are all linear equations here. 
In fact when we use regression as a method for forecasting, the type of regression is 
generally characterized by the type of least squares normal equations. If the least squares 
normal equations are linear, the way they are here the method is called linear regression. 
Even if I had a function like a + bt + ct square which will be a quadratic equation, when 
you develop the least squares normal equations, we would again get three equations 
between a b and c and those equations will still be linear.  



Of course these terms summation tq etc will appear but it would still be linear therefore 
even fitting a function of the type a + bt + ct square is also a problem of linear regression 
although the function is non linear this in fact is something that beginners find difficult to 
digest, because they say that if you are dealing with the non linear function, how can it be 
linear regression? It is linear regression primarily because of the linearity of the least 
squares normal equations and this point must be understood. That is your choice, you 
have to make a choice judiciously and making the choice judiciously simply means that 
you can look at the data and see which would be the kind of function will appear you can 
try different guesses. Once you made different guesses we will have an objective function 
or the sum of squares of errors which will tell us which fit is better. That is the normal 
way, so a characteristic about the least squares normal equations, they are two linear 
simultaneous equations in two unknown parameters a and b which can be solved by any 
of the well known methods such as Cramer’s rule equations are called least squares 
normal equations. If you look at the structure of this equation, you will find that there is a 
very easy way of determining the solution for practical purposes.  
 
These are the equations, these are the coefficient, these are a and b which are variables, 
the unknown parameters and we had these coefficients and so on. What happens is if we 
use Cramer’s rule for instance, we would have nothing but in the denominator we will 
have this determinant and summation t, summation t, summation t square. This would 
appear in the values of both a and b and as for as the numerator is concerned, you will 
simply substitute this column in this equation.    
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You substitute for this summation Dt summation t Dt and similarly for b you simply 
substitute this value in the second column here and you get the values of a and b after a 
bit of simplification. If you want to fit a straight line in general what you notice from this 
expression is that you would require the values of this particular thing, that is you would 
require summation Dt, you would require n, you would require summation t, you would 



require summation t square and you would require summation tDt and then by plugging 
in these values you can easily get the values of a and b.  
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What you can easily do is based up on this requirements you can for instance organize 
your computations and the organizing of the computations means make a table, which 
means this is ti, which is your time. This is the demand which is the data available du in 
general, so this is just multiply these two columns you will get tiDi and then square this 
column you will get ti square. Then at the end you can sum them up so you get these four 
totals which you are interested in. This is summation ti, summation Di, summation tiDi 
and summation ti square. Once you have these computation available you can directly 
obtain the values of a and b by using the formulas which we just derived.  
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There are some computational simplifications in these calculations, one, by choosing an 
origin and a scale of data such that summation t is zero. The values of the parameter 
become very simple a is equal to summation Dt/n which is the average demand and b, the 
other parameter a summation tDt divided by summation t square. So this is useful for 
equally spaced data with even or odd number of data points because you can always 
choose an origin, if you have for instance and even number of points, what would you 
do? You can take one point as – 1, the next one can be + 1. Then since the difference of 
2, subsequent points can be – 3 – 5 – 7, this condition is satisfied. On the other hand if 
you have an odd number of points the middle value would be taken as zero and + – 1, so 
one is the scale factor and then this ensures this condition and therefore is very easy to 
find out. Let us take an example. Suppose we have the demand of a company from 
January to December and this is the actual demand in units sold for the company during 
January to December, and we want to fit a regression equation. Let us say, to begin with a 
straight line on this particular function, by using the methods that we have just indicated 
you would find that the regression equation is a straight line whose equation in this case 
is Ft is = 193 + 3t and the actual demand data is actually fluctuating above and below this 
particular line has shown here.  
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Then you can use this particular equation to forecast, let us say the demand, for next 
January. How do you forecast the demand for next January? You will take t is equal to 13 
because this is the thirteenth period, plug it into this formula and the value that you get is 
232. You make a forecast for next January as 232. What we can do is from the errors we 
can also estimate the standard error of estimate and find out the range in which the 
forecast will lie. The standard error of estimate for this example demand minus forecast is 
the error. So sum of the squares of the error divided by n – f where f is the number of 
degrees of freedom lost which is equal to 2 because two parameters a and b is estimated. 
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This comes out to be approximately 7, so if you want the 95 percent confidence limits of 
the forecast for the next January, it will be 232 + (– 14) which is two sigma limits and 
therefore the interesting thing is that you can get from regression not only the expected 
demand for next January, but also make a statement that there are 95 percent chances. 
The demand for next January will lie between 218 and 246 and the demand is 232 that is 
the interpretation.  
 
(Refer Slide Time: 26:04)  
 

 
 
Regression could be applied to a variety of function and we have just seen the application 
of regression to a straight line situation. For a straight line let us say if d dash t is the 



forecast and Dt is the actual demand, basically our equation d dash t is equal to a + bt and 
there were two parameters a and b which we estimated the way we did using least square 
regression and you will be able to get a straight line. We might on the other hand look at 
cyclic demand or seasonal demand. The demand for woolen garments, the demand for air 
conditioner, and the demand for all seasonal products would be something of a sinusoidal 
way like this. If the periodicity of this particular cycle is capital N or small n as we have 
shown here, the equation of this line is d dash t is = a + u Cos 2 pi/n into t + v sin 2 pi/n 
into t. If we use this equation in the same manner and compute the least squares normal 
equation, we can estimate the three parameters a, u and v. This will be determined again 
by linear equations.  
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This is also linear regression although the function that we are estimating is cyclic. You 
might have a situation where the demand is cyclic with growth that means it has a cycle 
but the peak in January 2002 is lower than the peak in January 2003. So there is a pattern 
of growth. What we do is a + bt is the component of growth and this is the periodicity, 
that is, this is the cyclic component, the sinusoidal component.  
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So u Cos 2 pi/n into t + v sin 2pi/n into t, if you were going to use this, you would need to 
estimate a, b, u and v, these are the four parameters. In this case you would have four 
equations which will determine the parameters. The least squares normal equation for this 
particular place and the procedure would be similar.  
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We might have a situation where the demand is to be represented as a quadratic function 
that is d dash t is equal to a + bt + ct square. What would happen is that if c is positive 
then the demand will take this form if c is negative, the demand will take this form 
physically. Therefore depending upon the data available, you can determine the 



parameters by minimizing the sum of the squares of errors in the usual fashion. These are 
some instances of commonly used regression functions which you can now utilize for 
purposes of determining the appropriate forecasting function. Now every common 
method of forecasting demand is time series analysis using decomposition, so we are next 
going to be talking about time series analysis using decomposition and see how this 
particular method of forecasting is actually applied in practice. The basic idea behind this 
particular method is that you know, what is a time series? A time series is a function 
which varies with time. When you talking about the demand history in a certain period, 
the sales are 20, next is 25 then it could be 18 and then could be 50. The time series are 
something that changes with time. It is a general term. What is actually assumed in a time 
series decomposition method is that every time, series that you encounter has these 
components. It has a trend.  
 
What is the trend generally? It is trying to go up or go down, so that is the trend 
component. Secondly it might have seasonality. That means the values might tend to go 
down and then go up and then go down and up. So that is the seasonality component of 
the demand. Seasonality is generally in over a year, over the seasons. You might have a 
cyclic component. A cyclic component means that there would be a general period of 
growth and then a depression and so on. So basically here we are talking about large 
business cycles. There might be a business cycle and therefore this could be imposed on 
the demand that is another cyclic component.  
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Apart from these there is always some randomness, which means something goes up and 
down randomly along these cases. So the basic philosophy in time series decomposition 
is that we try to doubt these components. Once we know the components we then try to 
utilize these components to forecast the demand that is what it is. The time series is 
decomposed into these various components and then these components are put together 
and you can forecast the trend separately. You can forecast these. Then from that forecast 



you can try to build the demand for the time series, that is the basic idea. The most 
commonly used method for determining these components is the use of a multiplicative 
model, although the additive model is also used in some situations but this is the most 
popularly used model in time series decomposition. What it says is that the forecast for 
time period t will be the trend for time period t multiplied with the seasonality 
component, for time period t multiplied with the cyclic component, time period t 
multiplied with the random component for time period t. 
 
(Refer Slide Time: 32:49)  
 

 
 
You have to actually get these components and these components will also be the 
functions of time and you can put them together. The basic philosophy is that if this is the 
time series which is generally going at a particular time t, if you want to find out, you 
have identify the trend, the seasonality, the cycle and the randomness. Having obtained 
these components, you can put them together and use this (Refer Slide Time: 33:18) 
formula and obtain Xt, that is what it is in the multiplicative model. A very important 
concept in the development of the time series decomposition is the notion of what they 
called de-seasonalizing the time series. The basic concept is that if the time series 
represents a seasonal pattern of L periods, then by taking moving average Mt of L 
periods, we would get the mean value for the year. I think this is obvious, for instance if 
there are four seasons, each season is of three months duration. If we take that demand 
average for three successive periods that would in fact be the average demand over these 
various periods.  
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What it means in general is if you recant that the periodicity or the moving of the 
seasonal pattern is of L seasonality pattern, then you take a moving average of L periods 
and you would get the mean value of the year. This would be free of seasonality and 
contain little randomness. Why? because of averaging. Averaging always trends to 
reduce the randomness and therefore the moving average at time t will be the product of 
the trend and the cyclic component, because we have taken care of the others factors then 
de-seasonalizing the demand means getting rid of the seasonal effect. How do you get rid 
of the seasonal effect? By taking a moving average of the recusant number of periods, so 
you get rid of that. If you want to now determine the trend, how will you determine the 
trend? You take the deseasonalized series which we have just determined. A suitable 
trend line could be fitted using regression. So you use regression again and the choices 
could be very simple. It would be linear, quadratic, exponential or other function which 
ever function that you want to use it. Once you have a deseasonalized series which is like 
the average, how is it behaving?  
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You try to find out what would be the best function to fit this. This can be determined by 
regression or it can be determined by inspection depending up on the degree of accuracy 
you want. That function will be the trend line Dt that we are talking about. Then how do 
you determine the cycle component after the trend Tt has been estimated? One can use Ct 

= Mt /Tt.  
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This is the moving average, the moving average was the product of the trend and the 
cyclic component and therefore to determine the cyclic component you can simply divide 
the moving average by the trend and this will give you the cyclic component, this is the 



idea. What remains now is we talked about the three major elements here. What remains 
is how exactly do you determine the so called seasonality factor or the seasonality indices 
in this particular situation? To isolate seasonality, one could simply divide the original 
series by the moving average, because the moving average is an average and everything 
will be above or below it. This ratio Xt/ Mt will be nothing but this is Xt, the whole thing 
Tt St Ct Rt divided by Mt which is Tt Ct and basically what you find here is that by 
dividing this original value by the moving average, you get the seasonality multiplied 
with the random factor.  
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Averaging over same months eliminates randomness to some extent. This way we get the 
seasonality factor only that means dividing the series by the moving average. We in fact 
get the seasonality factors and these are generally known as seasonality indices. So we 
had basically seen the procedure that will be applied to determine seasonality and then 
this can be done through dividing the original series by the moving average or the 
moving average of L periods and then identifying the underlined trend which can be 
through regression and the seasonality indices. Now that we have got these components 
we can put them together and get the entire forecast. The basic procedure for time series 
decomposition can we summarize as these two steps.  
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One is that you decompose the time series into the components i.e., first find seasonal 
component, then deseasonalized the demand and then find the trend because once you de-
seasonalize, it is the series for which you find out the trend, then utilizing this 
information you forecast the future values of each component which are these 
components and then you project the trend component into the future, multiply the trend 
component by the seasonality component and this will basically give you the forecast for 
the next period. This is essentially time series decomposition which holds in this 
particular fashion. This was basically an over view of the procedure. What we will do 
now is to take three progressive examples to illustrate how the procedure will be applied. 
These examples will start from a relatively simple example to a more complicated 
example to a relatively real life example of how the procedure for decomposition is going 
to be applied so that you get an appreciation of this particular method. What we can do is 
let us take the first example, the first example is suppose demand is available to us for the 
last year and the past sales for different quarters are, during the spring quarter it was 200 
during the summer quarter, it was 350 during the fall quarter, it was 300 and during the 
winter it was 155. Suppose this demand is available, this is data is available and from this 
data, let us see how we can compute the seasonality factor in this particular situation. We 
can see that the total demand over the year is the sum of all these values which is 1000. 
So now the average demand for each of these quarters divided by four, 1000 divided by 4 
because there are 4 quarters. Average demand for each of these four quarters is 250 each. 
The basic idea is that the average demand was 250 in each quarter. Yet in each quarter 
demand was actually fluctuating. So what you can do is actual demand divided by the 
average 200 divided by 250 is actually 0.8. This becomes the seasonality factor for 
spring. What it shows is that on the average, the demand during spring was 80 percent of 
the average demand, that is what it shows and nothing else. Similarly during summer the 
seasonality factor was 350 divided by 250 which is 1.4 and this is 1.2 and this is 0.6. 
These are now our seasonality factors which show that in different seasons like in spring 



it is 80 percent of the average during summer the sales are 140 percent of the average 
during fall 120 percent of the average and during winter just 60percent of the average  
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These are the factors and you have now identified the seasonality factor for this particular 
example. Let us say we want to make a forecast using this seasonal factor. How do we do 
it? What we can say is that last year our demand was 1000 we expect that next year it will 
go up by 10 percent. So let us say that the expected next year demand is the total of the 
1100. This could actually be developed by regression or any other technique but we are 
just trying to identify how exactly we will put the components together. So we say that 
the total demand for next year is likely to be 1100 which means that that the average sales 
during the period for the next year is likely to be 1100 divided by 4, so 275. This is the 
average for next year. What we now do is we assume that the seasonality factor that you 
have computed in the last year will continue to operate in the next year. For the spring 
season it was 0.8, 1.4, 1.2 and 6. We utilize the seasonal factors there, multiply this and 
you get the next year’s forecast. This is the intension. The intension was to obtain a 
forecast for next year. So we know that the demand for spring is likely to be 220. The 
demand for summer is likely to be 385. This is likely to be 330 and this is likely to be 
165. This was a very simple example to basically give you an understanding of the use of 
seasonal factors. The average demand which is the basic trend is that we assume rows by 
10 percent. Let us take a slightly more complicated example. Let us say that we want to 
compute the trend and the seasonal factor on a two year demand history. 
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This means we have data for two years. This is the first quarter of the year, 2000 so 
demand is 300, 200, 220, 530 and then 520, 420, 400 and 700. This is actually the 
demand data available to us for the past two years. So how do we get the factors from this 
particular situation? What we do is we have these four data points for 2000. These four 
data points of these four seasons for 2001 and the demand is 300, 200, 220, and 530 and 
so on. To this data we fit a regression line. To these 8 points we fit a regression line and 
the fitted regression line is trend of these points which is 170 + 55t.  
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We establish the trend equation to these 2 points and we get this and from this trend 
equation, we can actually calculate what the demand would be. For instance if you take t 
=1, this would be 225 t is = 2, it will be 280 etc. These are the values that you get from 
the underlined trend from the regression line. Then what we can do is we are interested in 
finding out the seasonality factors. What you do is you take the actual to the trend. This is 
the actual that you have, which is 300 divided by 225. It is 1.33 and 0.71, .661, 0.36 that 
is for the first year. When you do this analysis for the second year, this will be 520 by 
445 which is 1.17, 0.84, 0.72, and 1.15. Now these are different. What you do is to 
calculate the seasonality factor for the two year arisen; we take the average of this that 
means 1.33 and this particular value 1.17. The average of this is 1.25 and then this is 
0.78, this is 0.69, this is 1.25. What we have ultimately established is the seasonality 
factors for each of the quarters, so the first quarter, second quarter, third quarter, fourth 
quarter and also the supplies in each year. Now we can use this information to develop a 
forecast. Forecast for 2002 i.e., the next year using trend and seasonality factors would be 
we use the trend line 170 + 55 into the 9th period, the 10th period, 11th period, and 12th 
period. Whatever it is multiplied with the seasonality factors which would just computed. 
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1.25, 0.78, 0.69, 1.25 and this becomes therefore your forecast for the next four quarters 
of 2002 which takes into consideration trend and seasonality. This is the method that you 
would adopt for I mean understanding both. We talk in the first example mainly about 
seasonality here; we talked about both trend and seasonality. Let us take a third example 
in which let us say we have a given demand history, we want to prepare a forecast using 
decomposition.  
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How do we do it, in general these are the eight periods, 1, 2, 3, 4 like first year and 
second year this is the actual demand which is available to us. What we do in this 
particular situation is we again have the actual demand over eight periods. So the total 
demand is this, so 679 is the average demand here.  
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Then what we do is we can calculate the period average. What is the period average? The 
first period in the first year and the corresponding first period in the second year, so take 
the average of 300 and 416, this becomes the period average which is 358, 650, 1038 and 
so on and this is just for four periods, so the total will be half, i.e., 2716 and the overall 



average for this is 679, we have constructed this. Then you can find out exactly the 
seasonality factors. What would be the seasonality factors? The seasonality factor would 
in fact in this particular situation be, this particular value divided by the average. So 358 
divided by 679, 650 divided by 679 is 0.957. This value divided by 679 is more than 1 
which is 1.529 and then 670 by this is 0.987. That way we have defined it because you 
calculated this period averages. These factors will repeat themselves for the next year and 
therefore having got these seasonality factor, we can get the deseasonalized demand. 
How do you get the deseasonalized demand? You have to actually demand, take out the 
actual divided by the seasonality factor that you have. So 300 divided by 0.527, you get 
this particular value and similarly you get these values which are now deseasonalized 
demands. Then we from the deseasonalized demand have to identify the trend so to the 
deseasonalized demand, you fit the regression equation. These are the values, this is the 
deseasonalized demand, sums average is y, and this is y, x square xy and so on.  
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You follow the routine procedure of fitting a straight line and ultimately for this straight 
line you get the two coefficients a and b and the values of a and b are b is 39.64 which is 
the slope of the straight line, a is 500.6. This is the equation of the deseasonalized 
regression line 500.6 + 39.64 that is what we will do. Using this information now you can 
build a forecast. How will you build a forecast? Suppose you are interested in the forecast 
for the next four quarters of the following year that is period number 9, 10, 11 and 12. 
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This is the trend forecast which you get from the regression equation which you have 
determined 857, 897 etc. The seasonality factors are the ones that you computed earlier 
so you multiply this and this becomes your final forecast. You get the forecast for the 9, 
10, 11, 12th period. Finally the important thing to notice that to identify random data or to 
identify a trend or to identify a seasonal data, especially if you are using box Jenkins 
models, you need procedures to identify what kind of a trend it is.  
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What can be done is that we make use what is known as auto correlation that means you 
take the correlation of that particular series. If you displace the series by one period and 



you find out the correlation between the two series, you have auto correlation of one lakh, 
auto correlation of two lakh and so on. So this is the auto correlation, which is nothing 
but the correlation coefficient computed by displacing the series by 1 or 2 or 3, so if it is 
random data what is shown is that the correlation coefficient generally trends to be small 
and going randomly up and down in the line. If there is a trend between operating within 
the forecast within the time series then it is generally found that the auto correlation 
coefficient trends to have this lakh. If it is seasonal the auto correlations also determines 
some kind of seasonality. The auto correlation are in the range of – 121 which are plotted 
on the x axis, so this kind of a plot is generally very useful to identify the kind of 
relationship that exists within the time series as to whether it is random or trend or 
seasonal. It is more like trying to say that you examine a patient’s blood and identify 
different tests on it. Different test will actually show you the presence of different kinds 
of diseases. In the same way if you take that example if you look at a time series and 
calculate the auto correlation, the nature of the correlation will tell you whether it is this 
or this or this. This becomes the systematic approach to basically handle some of these 
essential questions. So let us try to see some of the major conclusion that we can derive, 
from what we have talked about today, the first thing that must be kept in mind is that we 
talked about a number of different forecasting procedures. We talked about regression; 
we have talked about time series, decomposition and so on. So the question that is 
Paramount is how do you choose the forecasting technique? The forecasting technique is 
dependent to a large extent on the problem context on the accuracy, you desire on the 
Cost that you are willing to inquire and on the planning horizon which exist freely.  
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Regression would be an appropriate technique if you are assured that the kind of chance 
caused which operated in the past will continue to operate in the future. Under that 
system whatever happened, could be extended into the future, so it would be a good 
technique but if this is not happening and the time series is behaving in some erotic 
fashion then time series decomposition for an arbitrary time series would be a good way 



because you determine the seasonality coefficient. You determine the underline trend; 
you determine the underline cycle and utilize this information for making a forecast. The 
importance of correlation and regression in the analysis of time series was emphasized 
the least squares normal equations with examples where illustrated so that you know how 
to estimate the parameters which is the basic operation required in regression. Then we 
talked about time series decomposition where the various components of the time series 
like the trend, the seasonality, the cycle and the randomness where identified and 
considered separately. Then from this you could build the whole thing. This building was 
done by first deseasonalizing demand that means getting the ripping the demand of any 
seasonality and it was to that deseasonalized demand that you actually fit in some 
regression data or some straight line so that you can construct the time series and then 
you went about to the process of reconstructing the time series by putting the coefficient 
or the components together. We also saw three illustrated examples of time series 
decomposition. 
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They were designed basically to add progressive stages of difficulty so that you could get 
an appreciation of the concept of seasonality, trend cycle and so on. Finally we say that 
auto correlation could be used to identify the kind of time series and depending upon the 
behavior of the auto correlation, you could have a random or a trend or a seasonality 
factor into which we are looking at. So with this we conclude our discussion on 
forecasting. We have looked at forecasting from the point of view of its importance in 
planning decision, and then we have seen various methods of forecasting subjective and 
objective and in today’s lecture we have looked at some of the procedures like regression, 
time series, decomposition which are essentially used which are objective procedures to 
develop a time series forecast. Now based upon this analysis you will try to use 
forecasting for the various planning decisions in a company. When we start the next 
lecture we shall be talking about aggregate production planning where the forecast of 



demand is available and we see how to plan the operations of a company over the next 
six months or one year as the casement.  
 
Thank you!         
 
 
     
 
 
 
   
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


