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Today we will be talking of algorithms for clipping polygons. In the last class we had seen 
methods of clipping straight lines and curves as a sequence of straight lines. 
 
(Refer Slide Time: 00:01:15 min) 
 

 
 

We had seen that if we have a clipping window and a straight line crossing that window, how we 
can clip it at the clipping edge and get the portion which is inside the window? The line could be 
either like this or like this or totally inside or total invisible. We had seen different cases and we 
had seen methods of deciding what portion the lines lie inside the polygon and what portion lies 
outside. Today we will see a related problem that is how to clip a polygon. 
 
Now a polygon is a sequence of edges but we cannot directly use the same method because if we 
use the same method, this polygon will be clipped into a set of line segments which would be 
this line, this line segment, this portion, this portion and so on. It won’t be clipped into a closed 
region. Initially the polygon was a closed region once we do the clipping, we still want to retain 
that this is a polygon and we want to retain this as a closed region. the reason is simple that if we 
want to do any polygon filling or if this polygon is a solid area, by solid area I mean a region 
which is filled inside either by hatching or by all the pixels inside being (Refer Slide Time: 
00:02:40 min) by polygon filling algorithms. If it is solid area or we want to process this polygon 
later for further clipping or for other applications, we want to retain this as a closed area. If it 
needed to be a closed area then finally this polygon should be clipped into a sequence of edges 
including these edges only then it will become a closed polygon.  
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For a clipping a polygon and then finally getting a closed polygon from it, we will be, basic 
technique would be if this is a clipping window and we have a polygon crossing it like this. As I 
said finally we want this clipped polygon which is… to clip this polygon first with respect to one 
edge I think this is edge one then with respect to the second edge then with respect to the third 
edge and so on. We clip it with respect to each of these four edges separately. 
 
(Refer Slide Time: 00:03:25 min) 
 

 
 

When you clip it with respect to the first edge E1, we will get a polygon which would look like 
this. Then we will clip it with respect to the edge E2 and this would be clipped on to this portion 
and then we will clip with respect to edge E3 and E4 and when you are clipping with respect to 
any single edge, you have to keep in mind when initially we input a sequence of vertices like this 
and the output should also be a sequence of vertices something like this. So a sequence of 
vertices would represent that this is a closed region or a closed polygon. The input was a closed 
polygon, the output should also be a closed polygon that is a prime thing that has to be kept in 
mind. The way you way we do it is if you have any pair of points let’s say Pi and Pi+1 where one 
point is inside the clipping region, the other point is outside. Then the intersection of the line Pi 
Pi+1 with respect to the clipping edge has to be included in the output list. So this point which is 
the intersection I, this will be included in the output list. 
 
On the other hand if you have a case like this where this is let’s say Pj and this is Pj+1. Mind you 
right now I am clipping with respect to the clipping edge E1, so Pj is outside and Pj+1 is inside. In 
this case this intersection point I has to be included in the output list and Pj+1 has to be included 
in the output because Pj+1 will also be inside the clipping region because the clipping edge is 
they are even. While in this case Pi Pi+1 where Pi is inside and Pi+1 is outside, Pi+1 will not be 
included in the output list, only Pi and the intersection point I would be included. On the other 
hand if you have a case like this, this point and this point, both the points are outside. In that case 
we don’t have to bother, neither of these two points would be included in the output list. If we 
have both the points on the correct side or within the clipping region, for example in this case Pi 
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and this intersection point I when the clipping edge is via E2 then obviously both these points 
will be retained in the output list. Is that okay? So corresponding to that we will get four cases. 
    
(Refer Slide Time: 00:08:11 min) 
 

 
 

Let’s say this is the clipping edge and this let’s say the correct side of the clipping edge, this is 
the wrong side of the clipping edge. We have a Pi and Pi+1 this is one simple case. The second 
case is when both points are on the wrong side of the clipping edge. One case is a case like this 
and the fourth case is a case like this. In both the cases this is the intersection point and this is the 
intersection point. My input was P1 P2 till Pn and we will start from the point P1 and keep 
processing each of these points one by one. 
  
Let’s say we have already decided about the point Pi and we want to decide about the point Pi+1. 
In the first case Pi+1 would be included in the output list Q, the (Refer Slide Time: 00:10:04 min) 
number will be included as let’s say Qj. In this case Pi is already included in the output list, so 
the intersection point I would be included as Qj. In this case where Pi and Pi+1 both are on the 
wrong side, no action would be taken and point Pi+1 will be ignored and in this case we have 
already processed the point Pi which was on the wrong side so that time you have ignored the 
point Pi but now I as well as Pi+1 both these points have to be included in the output list. So I and 
Pi+1 would be included as Qj and Qj+1. So this is say, if you have a polygon we will start with the 
first point P1, go through all the points, clip this with respect to one clipping edge and get a list 
of points Q1 Q2 so on till Qm. then take this list, clip it with respect to second clipping edge, get 
another output then clip that with respect to the third clipping edge and then with respect to the 
fourth clipping edge. This process will be repeated four times once with respect to each edge and 
this algorithm is referred to as Sutherland Hodgman algorithm. Any question with respect to this 
Sutherland Hodgman algorithm?  
 
In all the clipping algorithms one very important thing is finding out this intersection point. It 
seems to be a very trivial exercise. you don’t want the intersection between this straight line but 
may be we can take it as an exercise and try to write a code which will find out the intersection 
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point between two straight lines (Refer Slide Time: 00:13:21 min)) as trivial as it sounds. Well 
you we have to take care of cases when the two lines are parallel. [Conversation between Student 
and Professor - Not audible (Refer Slide Time: 00:13:34 min))] Again. Yeah, we will draw. See 
the effect of that is not going to be critical as well. As I told this line is going to be displayed as a 
sequence of pixels, so you want to cut the line only at a pixel which is displayed. So whatever 
the intersection point you find out, you round it off that would be a point to be displayed, so 
there will be no problem. Yeah question from that side. Student: It is more being parallel because 
if it is parallel then one point cannot be inside and the other point outside. Think of a case like 
this. 
  
(Refer Slide Time: 00:14:22 min) 
 

 
 

This is your clipping window and your clipping polygon is something like this. What happens in 
a case like this? This is your clipping polygon. Yeah, but when you are trying to find out the 
intersection point at that time you shouldn’t get overflows. You shouldn’t get a division by zero, 
if you trying to find out the intersection point between these two lines. Between, this as the 
clipping edge and this as the edge. Sir, in this case also you couldn’t find the intersection. How 
do you decide that you will find the intersection or not, even at this point which is your point Pi. 
Now you got a point Pi+1. How do you decide whether you want to find the intersection or not 
find the intersection? One is inside one is outside. Pi you have already processed and you have 
included Pi in the output list, now you got a point Pi+1. 
  
You know the coordinates of Pi and you know the coordinates of Pi+1. Now you have to decide 
whether to find the intersection or not to find the intersection. So you look at Pi+1, Pi you have 
already included in the output list which is let’s say Qj. Now Pi+1 you have to decide whether 
this has to be included or not. Now this point what you are saying is it will be always treated as a 
point inside and you will not try to find the intersection at all. That might not happen. In some 
cases you might get at this point is just outside because of errors in deciding out, the difference is 
going to be very small. See in the worst case it is at the line you mean that case it will be decided 
as inside. If it is just outside the line. Student: it maybe integers the points are even in integers. 
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We can have simply a check for it or separate check for it. You have to have separate check for 
it. No. what kind of check that you can think of but you have to have some kind of a check so 
that such cases are taken care of. In fact in all these problems whether it is clipping or whether it 
is a even polygon filling or any algorithm, you will find that such cases always give a lot of 
problem. You have to take care of such let’s say seemingly trivial cases and that is what makes 
the code sometimes quite complex. In fact if you try to write a clipping algorithm, you will find 
situation in such cases come up and we have to explicitly take care of such situations.  
 
In fact even in the line clipping, simple line clipping case where with respect to this clipping 
window you want to clip this line. What happens if this line is like this and you want to clip it 
against let’s say this edge that’s our top edge. If you try to find out the intersection points, you 
will get (Refer Slide Time: 00:18:09 min)) results and mind you intersection point has to be 
found out efficiently. Efficiency is of time concern, so there are number of methods for finding 
out the intersection points which are available. What I suggest is you can go through the book, 
you will find some method for finding out the intersection points but in all those method, you 
have to be carefully about such cases. If you try to find out the intersection point of this edge or 
this line with a top clipping edge, as I said you can possibly get integer overflows division error. 
So all such cases have to be taken care of. Sir (Refer Slide Time: 00:18:58 min). I am just 
coming to that.  
 
So far we have been talking of rectangular windows. Now a window need not always be 
rectangular, whenever we have a rectangular clipping window it is referred to as a standard 
clipping window. A clipping window can be of any arbitrary shape. Let’s say my clipping 
window can be a polygon like this or it can be even a concave polygon like this. The algorithm 
that we have discussed so far, we have been talking of a standard clipping window. Sir, strictly 
speaking yes but that will make the clipping much more complex. Typically a curve edges can 
always be split up as a sequence of edges. So even if we have a curve edge in a clipping window 
like this, we can talk of it as a polygonal clipping window. Now this is a convex clipping 
window, this is a concave clipping window. The (Refer Slide Time: 00:20:20 min) algorithm 
which are suitable for convex boundaries only. 
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(Refer Slide Time: 00:20:30 min) 
 

 
 

For example Sutherland Hodgman algorithm, we are clipping this polygon first with respect to 
one edge then with respect to the second and so on. 
     
(Refer Slide Time: 00:20:43 min) 
 

 
 

If we follow this algorithm for a convex clipping polygon like this, the first case with respect to 
this edge then with respect to this edge then with respect to this edge and so on. We will still get 
the same result, we will still get the correct result but if we follow with respect to this concave 
clipping volume, clipping area we will not get correct results. The reason is quit straight forward. 
Let’s say if I have a polygon like this and I first clip with respect to this edge and I will take a 
portion which would look something like this, this way, this way.  
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Then we clip with respect to this edge. When I am clipping with respect to this edge, the polygon 
will get changed to this. Then I clip with respect to this edge and my polygon will get changed to 
this. Now obviously this one is the correct result. So if you have any concavity in a clipping 
region then we need different algorithms or different ways of handling this. So if we have a 
convex clipping algorithm oh sorry a convex clipping region, the Sutherland Hodgman algorithm 
is good enough but if we concave clipping areas then we need to modify this algorithm or we 
need some other ways of handling the (Refer Slide Time: 00:22:31 min). We don’t go into 
details of a concave clipping area, I will just very briefly tell you how it can be handled, the 
details maybe you can look up elsewhere. let’s say if we have a concave clipping area like this, 
what we have to do is we will have to split it up into a set of convex areas and set of convex 
areas would be something like this.  
 
So we will get one clipping area like this and the second clipping area like this. Then we will clip 
the polygon with respect to both the areas separately and the result of clipping this polygon will 
not be one polygon but two separate polygon, one which is inside this polygon and other which 
is inside this polygon. So if we have any concave clipping area, we will have to split that into a 
set of convex areas. Again you can think of algorithms for doing that. How do we decide this 
concave? How do decide whether it is concave? How do you define a concave area? Student: sir 
how do you decide it for a (Refer Slide Time: 00:23:51 min). What is the algo because for 
determining its concavity, for determining the concavity.   
 
(Refer Slide Time: 00:24:04 min) 
 

 
 

If you have any polygon like this or you have a polygon like this, you want to decide whether the 
particular polygon is convex or concave. How do you define a concavity, anyone? Student: 
always greater than… degree. One at a time, one at a time please. (Refer Slide Time: 00:24:27 
min))] A line joining at any two point will remain inside there totally then it is convex. How do 
you check it algorithmically? You draw line between all the vertices. So let’s say if you have n 
vertices, you have to draw lines between all the n vertices that means you have to draw an N 
square lines. Student: between two adjacent vertices, two adjacent vertices will always be inside, 
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alternate vertices even then you will have a N square edges, so you have to check for N square 
line where they are totally inside. Yeah ((np)) ((00:25:17 min)) 2 that is order of N square. Any 
other way? Anyone, it’s quite simple. Even then you will have about N square by 2 edges. 
Between alternate vertices. (Refer Slide Time: 00:26:07 min) I will explain to you this point.  
   
Let’s say I am taking this point, I will check it with all the other points if all the lines are inside 
but it’s still a concave polygon that won’t work. For alternate vertices see, let’s say I am taking 
this edge. I have to decide whether this edge is completely inside the polygon or not, how do I 
decide that? Student: sir one point within this, just you check one point within this. Not one 
point. I would decide whether the complete edge is inside the polygon or not. How much is the 
total time required to check that it is not order of n because each edge deciding whether even one 
point is inside or outside. Student: that would mean, that was a order of N type. So total time 
required for checking whether it is a concave polygon will become N square again. In this case N 
square is the number of edges, the time required would become N cube. This is still N square 
time we are using, even simpler than that. 
 
How do I decide whether this, whether any polygon is convex at a particular point or not? If the 
integer angle is less than 180, so we keep finding out the interior angle at all the end points. We 
have given a sequence of P1 P2 till Pn, we can find out the interior angle at each of these points. 
At any point you find out the interior angle is greater than 180 that mean it has to be a concave 
polygon. So this way we can decide whether a particular polygon is concave but then let’s say if 
we have clipping polygon which is shaped like this, we have to split it into a sequence of or into 
a set of convex polygons. We will have to do something like this and may be something like this 
1 2 3 4, we get 4 convex polygons for this case. How do we do that? You can again think of 
algorithms, we don’t go into that right now. 
 
Student: Sir how do you make sure that both are these are giving the (Refer Slide Time: 00:29:02 
min). Think of that, think of that. What he is basically saying is when you are finding out the 
angle here, you can find out the angle but how do you know which is interior which is exterior? 
You can find out the angle between two lines and how do we know which is angle is interior 
which angle is exterior? Give it some thought, its straight forward. The basic point is that if we 
have a concave clipping area then our clipping algorithm becomes much more complex. And 
other thing in related to clipping which will comeback to later on is what is referred to as 3 D 
clipping. A 3 dimensional clipping that means if you have 3 dimensional lines or 3 dimensional 
entities and you want to clip them with respect to a clipping volume not an area, how do we do 
that?  
 
So what are the situations when this comes and how it is tackled, we will come back to it later on 
when we talk of three dimensional three D graphics. But any question that you have on 2 D 
clipping either polygonal clipping or clipping of lines segments or curves, we will take it up right 
now. Then we introduce another topic and that is transformations. 
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(Refer Slide Time: 00:30:59 min) 
 

 
 

And right now again we will be talking of 2 D transformations, we will go onto 3 D very soon. 
Now what do you mean by transformations? We have already seen that if we have the world 
coordinate system, WCS I am using as a short form of a world coordinate system. In this world 
coordinate system we can take a finite window and then this portion of the world coordinates is 
transformed on to the screen coordinate and on this screen coordinates, we take a view port and 
this portion of the window is then mapped on to the view port, after necessary clipping and so 
on. If you have any point here, let’s say a point xy that will be transformed onto the point here, 
that would be let’s say xs ys. So a particular point here will get mapped on to a point xs ys. Now 
this is what is referred to as a viewing transformation. 
    
In viewing transformation the point in the world coordinate system is transformed on to the point 
on the view port in the screen coordinate system and the transformations involved in that are 
referred to as viewing transformations. Typically let’s say in the world coordinate system this is 
my 0 0 and this point is my x lower, y lower and this point is x upper and y upper. When you 
transform it on to the screen coordinate system, this plane xL yL should be transformed into a 0 
0. So this point will become a 0 0 and if this upper corner is xy then this will get transformed into 
xy. So this is one case where points in one coordinate system are transformed on to a second set 
of points.  
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(Refer Slide Time: 00:34:27 min) 
 

 
 

There can be other situations where let’s say if we have some entity, either a line segment or a 
rectangle or any such entity and you want to either rotate it or deflect it about a particular axis. If 
you reflect this about this axis, about this plane let’s say this line segment will get transformed 
into a line segment like this. A point on this let’s say a point here xy will get transformed on to a 
point x prime y prime. If I know the equation of this line let’s say y is equal to mx plus c, how do 
I find x prime y prime for a given xy? The point xy has been transformed on to the point x prime 
y prime. So this is another case where transformations are important. Transformation need not 
just be reflection, they can be either a reflection or a rotation or scaling or any such case. We will 
see each of these transformations one by one and see we will see how it can be done. Student: sir 
with the help of matrices? Yes, with the help of matrices. 
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(Refer Slide Time: 00:35:58 min) 
 

 
 

The first simple case is a translation. How do we define translation? A point xy will be 
transformed on to let’s say x plus Tx and y plus Ty. So if I write it say mathematically, this will 
become x prime will be equal x plus Tx, y prime will be equal to y plus Ty. This is simple 
translation. Any point is translated by a vector. If we have a line segment like this, this will be 
translated by a vector on to a location like this. This is translation by a vector given by Tx Ty and 
that can be captured simply be addition of Tx and Ty in the x and the y coordinates. Then we talk 
of rotation, we have a point xy and we want to rotate about origin, about the origin o and by an 
angle theta. This is my origin o and we have a point here, we want to rotate this point about the 
origin by an angle of theta. Theta is defined to be positive in the counterclockwise direction. This 
is a point xy, this is the point x prime y prime. What will be the value of x prime and y prime? 
Anyone? (Refer Slide Time: 00:38:44 min) be x prime x cos theta minus y sin theta. X cos theta 
minus y sin theta and y prime? Student: x sin theta plus y cos. x sin theta plus y cos theta. Is that 
okay? Anyone having any doubt about this? 
  
Now this can be written in the matrix form like this. I am writing x prime y prime as a row vector 
x prime y prime, this is equal to the row vector xy multiplied by this 2 by 2 matrix. So xy 
multiplied by cos theta minus sin theta will give us this first equation, xy multiplied by sin theta 
cos theta will give us the second equation. So these two equations can be written in the matrix 
form like this and this transformation will capture a rotation about the origin by an angle of theta.  
The third case is scaling and how do you define scaling? If you have a point xy and we want to 
scale it by let’s say sx in the x direction and sy in the y direction. this xy will get transformed to a 
point which will be given as sx multiplied by x comma sy multiplied by y. the x coordinate will 
get multiplied by sx, the y coordinates will get multiplied by sy and in terms of matrix rotation, 
we will say x prime y prime will be equal to xy multiplied by sx 0 0 sy. 
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(Refer Slide Time: 00:42:00 min) 
 

 
 

So what would happen in a case like this is if we have a rectangle and we scale it then this will 
may be get modified to something like this. The scaling of it by a factor of 2 in the x direction 
and a factor of 2 in the y direction, this rectangle will get modified to a location like this. This is 
basically magnifying by a factor of sx and sy in the x and y directions. So this is how scaling can 
be captured. Now by using a combination of these three transformations, we can get any other 
type of (Refer 00:42:48 min) by using combination of translation rotation and scaling, we will 
will be able to get deflection, we will be able to get rotation about an arbitrary point, we can 
rotate we need not always rotate about origin, we can rotate it about an arbitrary point here. But 
using a combination of these three, you will be able to get any arbitrary transformation. We will 
see how we can combine the transformation and how by combining different transformations, we 
can get arbitrarily transformation. We will see that in the next class. 
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