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Today we will be continuing with what we were doing last time and that I was essentially saying 
different kinds of line drawing algorithms. 
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Yesterday, I had introduced this Bresenhem’s algorithm and we had said that if we have to draw 
a line between a point one and a point two, in this exact straight line between the two can be 
referred to as a true line. But in a Raster graphics display, the true line will never be displayed. 
What would be displayed would be a set of pixels which in this particular case might be pixels 
chosen something like this and so on. So this set of pixels that are displayed will refer to these as 
a displayed line and this Bresenhem’s line drawing algorithm works on minimizing the error 
between the true line and the displayed line and the error between the two is defined as the gap 
between the two. So if this particular pixel is being displayed, this pixel is actually let’s say at the 
central here. And the line at the corner is supposed to pass through this point, so the error is at 
this error e. So we will go through this algorithm. The basic principle is that you have to 
minimize the error between the true line and the displayed line. 
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If we have a set of pixels like this, this is the true line. One pixel that has been displayed is this 
pixel that I have shown here in dark. You have already seen the previous line drawing algorithm, 
we display pixels let’s say in a loop. The first pixel is this one, let’s say the second pixel that is 
displayed is this pixel. So this is the first pixel, this is the second pixel to be displayed. We will 
number them. So if initially pixel number one is displayed and then the pixel number two is 
displayed, we will just see how the error would be defined in the two cases. If we look at this 
point, this pixel will actually correspond to the pixel something like this. The center of this pixel 
here will be at this level. So the gap between the two let’s say this term, this much which is the 
error initially. At this point, the center for this pixel is that this level and the actual line is through 
this point. So the error here is this error e. So initially this is the error, finally this is the error. 
 
So what we say is as we move from this pixel to this pixel, the error is changing from this 
magnitude to this magnitude. And how much will be the difference in the two errors? The 
difference between these two errors will be equal to the slope of the line because the line has 
moved up by this much. Initially line is here then the line is here, so the line has moved up by 
this amount and this amount would be equal to the slope of the line, slope of the line multiplied 
by unit pixel distance. Is that okay? So we will say that as we move from one pixel to the second 
pixel, the error term e would change by an amount equal to dy by dx. Yeah what’s that? 
[Conversation between Student and Professor - Not audible ((00:06:06 min))] 
 
I have we had covered it earlier. If this is the array of pixels, if you are addressing this particular 
pixel, it’s actually this pixel, you are addressing it at this location. So if let’s say for sake of 
argument I treat this as my 0 0, I have already said normally we treat the top left as 0 0. Now this 
is my origin, when I refer to a pixel 0 0, I am actually referring to this pixel. I am referring to 
pixel 1 1, I am referring to pixel which is this one. So we are actually referring to a pixel as the 
square entity and we are addressing it by the corner. And the center is the center of this point; 
and the center is the center of this point. And when you write point two, point, this point to? 
Yeah. Yes sir, where does it lie on the square?    
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Where does it lie on the square? Yes sir. This is the corner of the pixel. [Conversation between 
Student and Professor – Not audible ((00:07:16 min))]. This actually would be a pixel like this. 
So the center is the center of the square. Yeah, actually the pixel is at the center but we are 
looking at the line at the beginning of that pixel, the position of the line at the beginning of that 
pixel. So as we move from one pixel to the second pixel in this orientation, the error term would 
change by an amount equal to dy by dx. Is that okay? But in another way in which the pixels can 
be displayed, I have right now assumed that this was the first pixel and second pixel was this 
one, there is no reason for that to be true. The second pixel can actually be this pixel. You just 
see what happens in that case. 
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The first pixel that is displayed is the pixel number one which is like this and the next pixel that 
we decide to display is this pixel number four which is... At this point my error term will be this 
much, at this point my error term would be this much. And by how much has my error term 
changed as I have moved one pixel in x the direction and say e will be equal to e plus, my line 
has moved up by an amount equal to, this amount is dy by dx. So this line has moved up by an 
amount equal to dy by dx and if you look at this pixel, earlier to this pixel now the pixel being 
displayed is this one.  
 
So the pixel to be displayed has also moved up by an amount of one unit. So the error term 
because of the line moving up would increase by an amount of dy by dx and since the pixel 
being displayed has also shifted up, the error term will come down by one. Is that okay? So if the 
next pixel to be displayed is a diagonal pixel like this then the error term would change in this 
manner. Is that all right? Right now we have not considered the case when the first pixel to be 
displayed is this one and the second pixel to be displayed is pixel number three, that can also 
happen. We are not taking that into account because what you will say right now is at this line 
has got a greater inclination towards the x axis. So this line has a maximum movement in x 
direction or the direction of maximum motion is the x direction or the slope of this line is less 
than 45 degrees.  
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If you consider octants like this, this particular case is for the first octant. And in the first octant 
my direction of maximum motion is the x direction and the error data measuring is in a direction 
perpendicular to that, so this error term is measured in the y direction. So the line of maximum 
moment in the x direction and error is measured in direction perpendicular to let’s say the line of 
maximum motion or direction of maximum motion. So the error is measured in the direction 
perpendicular to the direction of maximum motion. Is this all right? 
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So now we have a scenario in which this particular pixel has already been displayed. The error 
here is this amount e, this is already displayed. Now I have to decide whether next pixel should 
be this one or this one. What should be the criteria for deciding that? [Conversation between 
Student and Professor - Not audible ((00:14:21 min))] the one which gives the lower error. If this 
is displayed, the error will be e plus dy by dx. If this is displayed, the error will be e plus dy by 
dx minus 1 and we can compare the magnitude of the two errors and find out which is lower.  
 
Alternatively at a previous level whichever pixel was displayed whether this one or this one, I 
could have computed the error at the end of the line. And if this line is passing below this 
midpoint then I will display this pixel. If it is passing above the midpoint like let’s say 
somewhere from here then I will display this point. If this true line is passing above the midpoint 
then this pixel will give a lower error compared to this pixel. 
 
Now I am looking at one step before I am not looking at these two pixels, I am looking at these 
two pixels. If the line is passing exactly through the center how much is the error? The error is 
zero. If the line is passing below that then how much is the error? Whatever amount it is passing. 
Positive or negative? Negative. The error will be negative. If the line is above that the error is 
positive. So if my line is above this I will display this pixel, if my line is below this I will display 
this pixel or in other words we will say that if e is greater than 0 then we will display the upper 
pixel. So let’s say this is number two and this is number three. If e is greater than zero then pixel 
number three and if e is less than zero then pixel number two. 
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So what we will basically do is that we will find out the error at this line. If the error is positive 
we will display this pixel, if the error is negative we will display the lower pixel and depending 
on which pixel is being displayed, the error in the next term will be computed either according to 
this or according to this. If I am considering these two, the previous pixel has to be this one. 
Pixel number one has been displayed, if at the end of that pixel the error is positive then we will 
display the pixel number three. If at the end of that the error is negative I will display pixel 
number two. If pixel number two is being displayed, my error will be computed according to this 
formula, this is for pixel number two. If pixel number three is being displayed, I will use this 
formula. So according to this method, we will write down the Bresenhem’s algorithm. 
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Again we are taking the case where this is the screen and we have to a draw line from a point one 
to a point two. The point one let’s say is x1 y1 and the point two is let’s say x2 y2. The first point 
that we displayed that will be the pixel x y which will be initialized to x1 y1. And this start of the 
algorithm we will compute the error term which initially when we display the pixel x y that is the 
starting pixel. The x y is the starting pixel that is being displayed. At the end of this pixel how 
much is the error term? The line has moved up by an amount of dy by dx and the center of this 
pixel is at 0.5. So at this location the error will be dy by dx minus 0.5. This amount of the error 
that I have shown in this part of the figure is dy by dx minus 0.5. Is that okay? So the initial error 
that will be there at the end of the first pixel will be dy by dx minus 0.5. So when I have to 
decide, I will draw the figure clearly here. 
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This is the initial error at the end of this pixel. So at this level, at this position I have to decide, 
whether this is my pixel number one, whether the pixel number two is to be displayed or the 
pixel number three is to be displayed. In order to decide that I will look at whether this e is 
positive or negative. If this e is positive I will display this, if e is negative I will display this. So 
accordingly we will write the algorithm. 
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We initialize e that is the error term to be dy by dx minus 0.5 and then we have a loop. So we 
have initialized the error term to be delta y by delta x minus 0.5 and this as I said would be the 

6 
 



error term or would be the error at the end of the first pixel that is at this location. Then we are 
repeating this part in a loop, we will first plot the first pixel, we will plot the pixel x y. 
  
(Refer Slide Time: 00:23:58 min) 
  

 
 

Then we will say if e is greater than zero. If e is greater than zero then the next pixel to be 
displayed is the pixel number three. If pixel number one is x y, pixel number three is x plus 1 y 
plus 1 and pixel number two would be x plus 1 and y. So we have plotted the first pixel x y, if e 
is greater than zero then you are saying y is equal to y plus 1 and e is equal to e minus 1 that 
means we are changing the value of y to y plus 1 and the error term e, you are saying will be 
equal to e minus 1 and then immediately out of this if statement we are saying x is equal to x 
plus 1. So x is also being made x plus 1 and error term is being changed to e is equal to e plus 
delta y by delta x. We have already said e is equal to e minus 1 and after that we are saying e is 
equal to e plus dy by dx. So effectively e will be equal to e plus dy by dx minus 1. So if my error 
term is greater than 0 then we are changing x to x plus 1 and y to y plus 1 and e to e plus dy by 
dx minus 1.  
 
So if the error is positive now y is becoming y plus 1, x is becoming x plus 1 and e is becoming e 
plus dy by dx minus 1 which is effectively what we want to do if the pixel number three is to be 
displayed. If the pixel or if the error term is less than zero in that case if e is less than zero, these 
two steps will not be done, we will just say x is equal to x plus 1 and e will be equal to e plus dy 
by dx which is what we want to do for pixel number 2. The x will change to x plus 1 and y will 
remain as y and e will change to e plus dy by dx. So effectively if e is less than zero then pixel 2, 
if e is greater than zero then pixel three and mind you all this we are doing when our line is in the 
first octant in this part. If we have to draw line from x1 y1 to x2 y2, when we say that the line is 
in the first octant, we are saying y2 is greater than y1, x2 is greater than x1 and x2 minus x1 is 
greater than y2 minus y1. So this algorithm that you have written right now is for the condition 
when these conditions are satisfied. 
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If our line is in some other quadrant instead of the line being here, if our line is to be drawn in 
this octant if we have to draw line starting from this point with the slope like this and the 
direction of maximum motion is the y direction. So if the direction of maximum motion is the y 
direction then my algorithm will change accordingly. What will be the changes? Interchange x 
and y. Again? Interchange x and y. We will essentially interchange x and y, so we will have to 
rewrite the algorithm with x and y interchanged. Similarly we have to make similar changes if 
my line is like this or like this or in any other octant.  
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So the algorithm, the way I have written right now is only for drawing lines in the first octant and 
in this delta y is nothing but y2 minus y1, delta x is nothing but x2 minus x1 and of course e is the 
error term, x and y are the coordinates of the current pixel being displayed. Of all these x1 x2 y1 
y2 they have to be integers because we are talking of drawing a line from one pixel to a second 
pixel. Pixels will always be addressed by integers, so x1 x2 y1 y2 they are all integers. Therefore 
delta x and delta y they are also integers, x and y will also be integers. The only thing that is not 
a integer here is this error term e, e has to be a real number. Similarly all these are the places 
where e is being used, e has to be a real number because we are dividing two integers and we 
have a real number 0.5 coming in the picture, so e has to be a real number. And if you notice in 
this complete algorithm e is important only for finding out the sign of e, we are only bothered 
about whether e is positive or whether e is negative, we are not bothered about the actual 
magnitude of e. 
 
Since we are not bothered about the actual magnitude of e, we will say that instead of coding the 
algorithm on the basis of e, we will code it in terms of e multiplied by delta x multiplied by 2. 
What I mean is if I consider, if I take this statement and multiply it by 2 times delta x, if I 
multiply by two times delta x, my statement will become e will be equal to delta y times 2 minus 
delta x sorry. Now my error term e is not the error term which we had shown in the figure earlier 
but is that error term multiplied by two times delta x. So error is equal to or e is equal to delta y 
times 2 minus delta x. Though other places where I am changing e or this line and this line, these 
statements also I will multiply it by the same amount 2 times delta x. So this statement will 
become, e will be equal to e minus 2 times delta x and this statement will become e will be equal 
to e plus 2 times delta y.  
 
If I make these changes, my program will still be valid because I am only bothered about the sign 
of e. So wherever I am using e I have multiplied it by a constant amount, so sign of e will still 
remain the same. Mind you delta x is a positive number because in this case I have taken x2 to be 
greater than x1 so delta x is a positive number, so I have multiplied my term e by a positive 
number, by a positive constant. So the sign would remain the same throughout which effectively 
means this statement will be replaced by this one, this will be replaced by this one and this 
statement will be replaced by this one. [Conversation between Student and Professor - Not 
audible ((00:33:15 min))] pardon; now e will also become an integer. Now e will also become an 
integer. The reason why I am doing this is after this all my variables will become integers.  
 
I don’t I will not deal with any real numbers and in addition to that I will not have any division in 
my algorithm. There will be no integers and no divisions which means the algorithm can be very 
easily implemented on hardware and the algorithm will be very fast because integer numbers will 
take less memory and integer addition and multiplication are easier to carry out, there is no 
division involved. And this version of the algorithm is referred to as integer Bresenhem’s 
algorithm integer Bresenhem’s algorithm, on the integer version of the Bresenhem’s algorithm. 
Any question on the integer version of the Bresenhem’s algorithm? This algorithm is superior to 
the previous algorithms primarily because you are dealing only with the integers and we don’t 
have any division in the algorithm. If we don’t have divisions, the computations are faster, 
divisions are very expensive. So this is the integer version of the Bresenhem’s algorithm. 
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Now the next thing that we will take up is how to draw curves, how to start with drawing of 
circles. For drawing circles we will again use what is referred to as a DDA algorithm, digital 
differential analyzer based algorithm. In this DDA algorithm when we are drawing a straight 
line, we had said that the slope was equal to a constant which was y2 minus y1 divided by x2 
minus x1. If we have to draw a circle then let’s say this is the origin which is 0 0, at any point x y 
what is the slope? For a circle how much is dy by dx? [Conversation between Student and 
Professor - Not audible ((00:36:51 min))] it will be minus x by y. You can verify it very easily, 
you know the equation of a circle is x squared plus y squared is equal to r square. The circle is 
passing through the origin, differentiated with respect to x we will get 2x plus 2y times dy by dx 
will be equal to zero and this will give us this, dy by dx will be equal to minus x by y. So 
basically we were using this fact that dy by dx will be minus x by y.  
 
If you remember the line drawing DDA algorithm, we had said that if x y is a pixel that has been 
drawn at a particular stage, the next pixel to be drawn will be x plus epsilon times delta x comma 
y plus epsilon times delta y. So this increment was proportional to dy by dx. We will do the same 
thing now, we will say that from x y the next pixel to be drawn will be by an increment 
proportional to this dy by dx. So if you are taking increment proportional to this dy by dx, my x 
will change to x minus epsilon times sorry plus epsilon times y and y will become y minus 
epsilon times x where dy by dx is equal to minus x by y. My increment in the y direction is 
minus epsilon x, my increment in the x direction is epsilon y, so the ratio is minus x by y. So we 
are taking an increment in both x and y, a very small amounts so that the next pixel to be drawn 
will be in the direction of the tangent, will be in the direction of the slope at that point. So you 
just look at this figure. 
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This is the pixel x y, we are talking in a… this is the initial pixel being drawn. The next pixel to 
be drawn is along the slope of the curve, the slope of the circle at that point. That will be a pixel 
let’s say somewhere on this tangent at a point like this. So if I call this pixel, this particulate pixel 
as xn yn and the next pixel to be displayed as xn+1 yn+1, I can write xn+1 will be equal to xn plus 
epsilon times yn and yn+1 will be equal to yn minus epsilon time’s xn. Sir if we want to draw n 
plus 2 then ba ca xn+1 yn+1. The slope at that point will not be defined because it is not lying on 
the circle; I am just coming to that. 
  
Now if xn yn is a particular pixel that has been drawn, the next pixel to be drawn we are giving 
by xn+1 yn+1 or I can write it in the form of a matrix xn+1 yn+1 is equal to xn yn multiplied by, 
what will it be? xn and yn, so 1 epsilon minus epsilon 1. Is that okay? [Conversation between 
Student and Professor - Not audible ((00:41:48 min))] is that okay? Thanks. So xn+1 yn+1 can be 
found out by this system of linear equations. Is that all right? Now if I keep applying this relation 
consecutively this is the first pixel that has been drawn, next pixel is this. The next pixel to be 
drawn would again be found out by the same relation, so my xn+1 yn+1 will become xn yn and 
then at from this point I will take a tangent like this and I will continue in that process. But 
effectively what is happening is this point xn+1 yn+1 is slightly further off from the centre than the 
point xn yn. It is not exactly at the same radius. The difference will be very small but there will 
be a difference. This distance would be r and how much would this distance be? We can find out 
from here. If you want to find out the magnitude of or the radius of this point xn+1 yn+1, we will 
get xn+1 squared plus yn+1 squared will be equal to xn square plus yn square multiplied by 1 plus 
epsilon square that is the magnitude of this determinant.  
 
So the distance of this point xn+1 yn+1 from the origin will be, if this distance is r it will be r 
multiplied by under root of 1 plus epsilon square or the new r would be small r multiplied by 1 
plus epsilon square, even though epsilon will be a very small number. But even then as we keep 
repeating this process throughout the circle, by the time I come back here I will not close here 
but I will close slightly further off. Some error will creep in because the same process is being 
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repeated throughout. So effectively we will get a spiral and not a circle because the radius will 
keep increasing by an amount of square root of 1 plus epsilon square or by a factor of under root 
of 1 plus epsilon square every time. To avoid that instead of using this relationship, instead of 
using this relationship or this system of equations what we will do is instead of using it this way 
we will make a small change so xn we will make it xn+1. And if we represent this in a similar 
matrix notation like last time you will get… you can verify the relationships. 
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Essentially instead of xn+1 we put in this expression and then again we write it in the matrix 
form. Now if I look at the radius at this point I will get this multiplied by the value of this 
determinant. What is the value of this determinant? 1 into 1 minus epsilon square minus this, 
which is 1. So the radius here it is Rn+1 will be equal to the radius at Rn. So just by making this 
small change, we will be able to get a circle accurately. 
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So the next point instead of being here will be at the circle boundary and the circle instead of 
becoming a spiral and ending here will end at this location. So this is how we can draw a circle 
using the DDA algorithm. If we want to draw any other curve, if we know the equation of the 
curve you can again find out the slope. For any curve if you know about the value of dy by dx 
then we can draw that curve by taking increments proportional to dy and proportional to dx. 
Let’s say if I know the dy by dx equal to minus x squared, this is for the sake of argument. Then 
I will give an increment in the y direction which will be proportional to x square and we can 
continue that way. What will be the exact proportionality constant?  
  
Now in the case of drawing the circle, I am multiplying epsilon by yn. Here I am multiplying 
epsilon by xn plus 1. Instead of both yn and xn will be in the range of minus r to plus r. If you are 
drawing a circle xn and yn will always vary from minus r to plus r, so epsilon times xn or epsilon 
times x should be just less than 1 pixel that is our initial criteria. If it is very much less than one 
pixel then we do wasteful computation. If it is more than 1 pixel then we don’t draw all the 
pixels, so epsilon x should be just less than 1 pixel. So again one criteria we can use is we will 
take epsilon to be equal to 1 over 2 to the power n such that 2 to the power n will just be greater 
than r. If 2 to the power n is just greater than r and r should be greater than 2 to the power n 
minus 1. So let’s say if the radius is 50 then our n will be 6, epsilon will be 2 to the power minus 
6. 
 
So if you are drawing a circle with a radius of 50 pixels then our epsilon is 1 by 64. So every 
time we give an increment that increment will be of 50 by 64 or minus 50 by 64 that’s the 
maximum increment will be given. Why can’t we put epsilon straight away 50? Because then at 
this point in the y direction my increment will become one pixel, it won’t be and in the x 
direction of course at this point the increment would be zero. So here the increment in the y 
direction will be one complete pixel, we might not want that. We will have to do that if that is the 
case sometimes the circle at the end of the circle, we get a straight line sort of four quadrants.   
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Even in this case we would, even in this case you would get that because I don’t know whether I 
have figured for that. Probably no. Anyway the pixels that would be displayed will look like this. 
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I mean a few straight then here like this, at the end will almost look vertical. Sir? Yeah. 
[Conversation between Student and Professor - Not audible ((00:51:22 min))] division by power 
of two being easier. Yes sir. that is one because I am dividing by 2 every time, so if you have any 
number dividing it by 2 means 6 right shifts, I mean in this case 6 right shifts or n right shifts but 
as if you are going to divide it by 50 every time at this point the value of x and y is lets say 30 
and 30. We have to divide 30 and 30 by 50 which is you are going to take more time than just 
doing n right shifts, so that won’t be there. So for finding out the value of epsilon this is one way 
of doing it. 
 
The algorithm will work equally well if you just take a random value of epsilon as choosing 1 by 
50 or something like that. We will still get a circle, algorithm would work. Sir what would 
happen if epsilon x is equal to 0.5, epsilon into x. It can become 0.5 so which pixel would we 
choose or next pixel or would we still remain on the same. We are rounding it off. If you 
remember in the DDA algorithm earlier we were rounding off whatever value we were 
computing, so whatever value for xn+1 and yn+1 we get, we will round off that value. If you want 
to change it to truncation you will have to add 0.5 every time and so on, you will add 0.5 once in 
the beginning and take care of that but nevertheless effect is of rounding it out. 
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So if xn+1 comes out to be 50.5, we will take it to be 51. Any other question on this? In that case I 
think we will end today, we will end here today and in the next class we will go onto some other 
algorithms for display purposes specifically algorithms with respect to may be clipping and 
windowing and transformation and so on. That’s all. 
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