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Today will continue with the 2 D finite element problems and in the last class we have 
derived this relationship. 
 
(Refer Slide Time: 00:01:08 min) 
 

 
 
That is the total potential energy is given by half of Q transpose KQ minus Q transpose F, 
when we are using 3 noded constant strain triangular elements. And for deriving this we 
had said that if we have an element 1 2 3 and there are some tractive forces acting at the 
edge 2 3 then the total tractive force acting on this edge can be split equally between the 
nodes 2 and 3. We get the total tractive force acting in the x direction will be split equally 
between these two that is between the nodes 2 and 3. 
  
And similarly the total tractive force in the y direction will also be split equally between 
the nodes 2 and 3 and similarly that body forces that are there, they will also be split 
equally between the 3 nodes. So, we will have some body forces acting effectively at 
these 3 nodes. That is the total body force acting will be split equally between the 3 
nodes. And this way we can compute the global force matrix by including the forces on 
each of these 3 nodes plus all the point nodes at each node that way we can compute the 
total or the global force matrix.  
 
And the stiffness matrix that can be computed by finding the local stiffness matrices for 
each of the elements which will be 6 cross 6 matrices and then we can compute a global 
stiffness matrix. Let’s take a small example of how we can compute the matrices in this 
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case. The process is going to be absolutely similar to the process for one dimensional 
element. 
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So if you take two elements like this that means this is node 1 2 let’s say I call this 3 and 
this is 4 and let’s say I call this as element number 1 and this as element number 2. I just 
have a plate with 2 triangular elements, it’s a very simple situation and let’s say I 
consider that and here and there is some load acting at let’s say at node 2. So this is my 
node number 1. So my element 1 is defined between nodes 1 2 and 4 and element 2 is 
defined between nodes 2 3 and 4 or I can take any sequence 2 3 4 or 3 4 2 that doesn’t 
make any difference. If I consider first element and I write the B matrix for the first 
element that is B for the first element that will be equal to 1 by the determinant of the 
Jacobian multiplied by y 23 0 y 31 0 y 12 0 0 x 32 0 x 13 0 x 21 and x 32 y 23 x 13 y 31 x 21 and 
y 12, this is the B matrix for the first element. And I mentioned earlier that the 
determinant of a Jacobian will be 2 times the area of the element.  
 
So let’s say if I take the sides, let’s say this is 2 inches and this is 3 inches and thickness 
of, if I say the thickness t is equal to 0.5 inches then the determinant of the Jacobian will 
be 6 and these values y 23, I can get these values like this y 23, the y 2 minus y 3. For this 
node y2 node number 2 is node 2, node number 3 is node 4. So y2 minus y3 will be 2 and 
similarly y1 minus y2 that is y1 minus y2 will be minus 2 and here I will get 0 minus 3 0 
3 0 0 and then here I will get minus 3 2 3 0 0 minus 2, this will be the B matrix for the 
first element. 
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And similarly for the second element would come out to be B for the second element 
would be 1 by 6 multiplied by minus 2 0 0 0 2 0 0 3 0 minus 3 0 0 and 3 minus 2 minus 3 
0 0 2. And once I have the B matrices I can combine, I can get the stiffness matrices by 
saying that let’s say the stiffness matrix for the first element that should be given by 
thickness multiplied by area multiplied by B transpose DB where B transpose will be a 
transpose of this matrix that will give me a 6 by 3 matrix, D will be a 3 by 3 matrix and D 
is again a 3 by 6 matrix. So this whole thing is going to give me a 6 by 6 matrix. And so 
this should be a 6 by 6 matrix and these are the local node numbers. 
 
And if I look up my element 1 that is defined between nodes 1 2 and 4, so the nodes are, 
global node numbers will be 1 2 and 4. So this way in the global matrix these locations 
will occupy the locations 1 2 3 4 and 7 8. That is because corresponding to node number 
1, the global locations will be 1 and 2, corresponding to node number 2 the global 
locations would be 3 and 4 and corresponding to node number 4 the global locations will 
be 7 and 8. So when I make my global matrix, my global locations will be 1 2 3 4 7 and 8 
that is because I have numbered them as 1 2 and 4. 
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And similarly when I consider my second element that is the stiffness matrix for second 
element that will again be a 6 by 6 matrix. And that is the second element is defined 
between locations 2 3 and 4, so the global locations occupied will be 3 4 5 6 and 7 8. So 
this will go to the global locations 3 4 5 6 7 and 8. And if I look at the boundary 
conditions in this case I have taken nodes 4 and 3 to be fixed and node 1 is fixed in the y 
direction. Now corresponding to that my boundary conditions will be Q2 will be equal to 
0 because this is constant in the y direction, it can move freely in the x direction. 
Similarly if I take node 3 that will give me Q5 will be equal to Q6 will be equal to 0 and 
corresponding to the node 4, we will get Q7 equal to Q8 equal to 0. 
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And in my potential energy expression pi, this term Q is going to contain 8 terms and K 
will be an 8 by 8 matrix. So this term K be an 8 by 8 matrix and in this 8 by 8 matrix, my 
first element, the first element will occupy these locations 1 2 3 4 and 7 and 8. So 1 2 3 4 
and then 7 and 8. Similarly in this direction 1 2 3 4 and 7 and 8. So these locations will be 
occupied by elements of the first stiffness matrix and the second stiffness matrix as 3 4 5 
6 7 8 locations will be occupied by the second stiffness matrix. So that will take a 
locations so 3 4 5 6 7 8 4 5 6 7 8 and all these. 
  
So these are the locations of the second stiffness matrix, these are the locations of the first 
stiffness matrix and this way we will get the global stiffness matrix. And as I mentioned 
these are the boundary conditions we have. So to complete this potentially expression, 
this minus Q transpose F, F will again contain 6 8 terms. And if I use the method of 
elimination, my Q2 Q5 Q6 Q7 and Q8 all 5 are constraint. So by the method of 
elimination the equation arise that I finally get, they are of the form K prime Q prime 
equal to F prime. 
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And K prime is obtained from K by deleting locations of the constraint nodes. So in this 
case 2 5 6 7 8 are constraint. So that means 2 5 6 7 and 8 all these locations, all these 
columns will get deleted and similarly 2 5 6 7 and 8 all these columns will also get 
deleted, all these rows will get deleted, so 2 5 6 7 8 6 7 and 8. All these will get deleted 
and eventually we will get this 3 by 3 by matrix as the K prime matrix and Q prime will 
have the other 3 nodes which will be Q prime will be equal to Q3 sorry Q1 Q3 and Q4 
transpose that will be Q prime and K prime will be a 3 by 3 matrix. 
  
And similarly F prime will also contain only 3 elements which will be F1 F3 and F4 and 
this set of equations can be solved to find out the values of the Q’s. This will give us 3 
equations 3 variables, we can solve them to get Q1 Q3 and Q4. 
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And once we have that then we in order to compute the strains, we say epsilon which is 
the strain is equal to B times Q for each element. So for the first element it will look like 
this and similarly for the second element we will get where Q1 is the displacement matrix 
for the first element, Q2 is second element and so on. And for getting the stresses sigma 
we will get it, we will say it will be equal to D times Bq and we can get stress, the strain 
and stresses in both the elements. So the only thing that changes in the cases of 2 D 
elements is how this global matrix is combined because now we will have twice the 
number of twice as many locations in the stiffness matrix as there are the number of 
nodes. 
  
If you have 4 nodes, there will be 8 locations that is the only difference. Now this is as far 
as 3 noded triangular elements are concerned and as far as the potential energy approach 
is concerned. If you quickly look at how to you use the Galerkin’s approach for the same 
element that means if you have an element like, a triangular element like this and we 
have said that its displacement matrix is given by Q1 Q2 Q3 till Q6 that is for this 
element. 
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And I said the locations are given by x1 y1, x2 y2 and x3 y3. We have already mentioned 
that we will say x will be equal to N1 x1 plus N2 x2 plus N3 x3 and so on. And similarly y 
will be N1 y1 plus N2 y2 and so on that we have already seen. Now when you are using 
the Galerkin’s approach, we have to give a set of virtual displacement to this element. 
And let’s say the virtual displacements are given by psi1, psi2, psi3, psi4, psi5 and psi6 
and we will define a virtual displacement vector which will be given by let’s say psi 
which is psi1, psi2 till psi6 transpose. This is a virtual displacement vector for this 
element that gives a virtual displacement of the 6 degrees of freedom. 
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And if we have a general 2 D element like this consisting of a number of nodes, we will 
define a global vector which will be let’s say psi global which will consist of psi1 psi2 till 
psi2N where N is the number of nodes. This will be the global; this will be the global 
virtual displacement vector. Now coming back to this element, if you will take any 
arbitrary point here and we want to find out the virtual displacements at this point let’s 
say the virtual displacement at this point is given by phi,  phi x and phi y. So the virtual, if 
you look at the strain, the strain at that point or let’s say if you look at the u vector u first, 
we say u is equal to N times q, u is nothing but uv transpose and we said this is equal to 
N times q. Similarly if we look at the virtual displacement that is phi which is nothing but 
phi x phi y transpose and we will say that this will be equal to N times psi. 
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What that means is we will say phi x is equal to N1 psi1 plus N2 psi3 plus N3 psi5 and phi 
y will be equal to N1 psi2 plus N2 psi4 plus N3 psi6. This is similar to expression that we 
had for that this expression, u equal to Nq the expression we had for deformations. These 
are virtual deformations, so the expression will be going to be the same. And if you will 
look at the expression for the internal internal virtual work done, internal virtual work 
that is equal to the integral of sigma transpose multiplied by epsilon of phi multiplied by 
dv. Here epsilon of phi is the strain that would be caused due to the virtual displacement. 
So we have said if u is equal to Nq then we can differentiate u and get an expression for 
epsilon which is given by epsilon is equal to Bq. 
  
Similarly if I contrast this with my relationship of phi, phi is equal to N times psi. So 
epsilon of phi will be equal to B times psi. The process, the steps involved in getting this 
matrix B would be the same as what we did yesterday for getting this matrix B. So 
epsilon of phi will be equal to B times psi. So if you look at this expression now epsilon 
of phi will be B times psi and sigma. If I say sigma will be equal to DBq and the sigma 
transpose will be q transpose B transpose into D. So I can put those expressions over here 
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and the internal virtual work done, the internal virtual work I can get an expression for 
that which will be which is integral of sigma transpose epsilon phi dv is nothing but 
thickness of the element multiplied by dA.  
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So this will be equal to the integral of q transpose B transpose D B psi into thickness into 
dA and again qBD B and psi and te all these are constants. So this will be equal to 
integral of dA will given me the area of the element. So finally I will get this to be equal 
to q transpose multiplied by ke multiplied by psi where ke will be these three terms 
multiplied by te into the area of the element. This is same as what we had when we are 
using the potential energy approach, ke will be equal to te into Ae multiplied by B 
transpose DB. So this is the expression for the internal virtual work done for an element. 
If we consider the internal virtual work done by the complete body that would be equal to 
sigma q transpose ke psi and that will again assemble as global matrices and get Q 
transpose k psi global. 
  
Again the process of assembling the global matrices is the same as what we had earlier. 
And similarly if we look at the external virtual work, external virtual work that we said 
earlier or we have shown earlier has integral of phi transpose ftdA plus integral of phi 
transpose t into the thickness dl plus sigma phii transpose Pi and again we had shown that 
this will be equal to psi transpose global multiplied by F. The process will again be the 
same, we will put expression for phi we will put expression for f carry out the integral 
and will assemble these force matrices. So the Galerkin’s approach will gives us that 
internal virtual work done is equal to the external virtual work done. 
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So this will effectively give us an equation of the form Q transpose K psi global minus 
psi global transpose times F is equal to 0. This is the equation we will get by taking this 
and this together. The expressions for the stiffness matrix and for the force matrix and for 
Q will remain the same. And again when we look at this, we will say that this should be 
valid for all values of virtual, virtual work given virtual displacement. Since it has to 
valid for all values for the virtual displacements, we will finally get the equation will be 
similar Q transpose K minus F, Q transpose K will be equal to F or KQ will be equal to F. 
And again we will use the same boundary conditions and solve these systems of 
equations. 
  
So eventually whether we use the Galerkin’s approach or the potential energy approach 
we will finally comedown to the same expression for the stiffness matrix and force 
matrices and the displacement matrices. Again the final equations that we will get they 
will be the same and the method of solving will also remain the same. Any questions up 
to this point? And the next thing that we will take up in two dimensional problems is the 
case of 4 noded elements. 
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If you have 4 noded quadrilateral elements that means our element looks like this. So we 
have 1 2 3 and 4, so we have 4 nodes and deformations of these 4 nodes. So then the Q1 
to Q8 will be the 8 deformations at these nodes and the deformation vector for this 
element will be given by this 8 tuple. And look x1 y1, the coordinates are x1 y1, x2 y2, x3 
y3 and x4 y4. Now again just like the elements earlier, we have to give 4 straight 
functions in order to get the deformations at any arbitrary point. 
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So if we want to get the deformation in the x direction, we will say that the deformation 
in the x direction u will be equal to N1 Q1 plus N2 Q3 plus N3 Q5 plus N4 Q7. And v will 
be equal to N1 Q2 plus N2 Q4 plus N3 Q6 plus N4 Q8 where N1 N2 N3 N4 are the 4 shape 
functions. So, if we consider N1, we want N1 to be equal to, we want N1 to be equal to 1 
at node 1 and it should be 0 at all the other 3 nodes. Similarly N2 should be 1 at node 2, it 
should be 0 at all the other 3 nodes and so on. And so we will say N1 is equal to 1 at node 
1 and 0 at nodes 2 3 and 4, similarly for the other nodes. In order to formulate these shape 
functions, what we will do is we will define 2 parameters zeta and eta. And we will say 
that, let’s say along this direction from 1 to 2 zeta let’s say at this point zeta will be equal 
to minus 1 and here zeta will be equal to plus 1. 
 
Similarly in this direction, we will say eta will be equal to minus 1 and here will say eta 
will be equal to plus 1. So along this edge eta is minus 1 and along this edge eta is plus 1 
and similarly along this edge zeta is minus 1 and along this edge zeta is plus 1. Now this 
is in some sense a local coordinate system that we have defined. And if we look at this 
local coordinate system then N1 has to be 1 at node 1 that means at zeta and eta values of 
minus 1 and minus 1, N1 should be 1 and it should be 0 at all the other 3 nodes. If I 
consider this line and this line, this line has an equation given by zeta equal to 1 and this 
line has an equation given by eta equal to 1. 
  
So a term of the form 1 minus zeta into 1 minus eta will be 0 along this edge as well as 
along this edge that means it will be 0 here, here as well as here. So if we say N1 will be 
some constant multiplied by 1 minus zeta into 1 minus eta. Then N1 has to be 0 at all 
these 3 nodes, it has to be 0 along this edge as well as along this edge. And to get this 
value of C we will again use the fact that at node 1, N1 has to be equal to 1. If N1 has to 
be 1 at this node that means at this node zeta is equal to minus 1 and eta is equal to minus 
1. So we will put these values over here, we will get 1 will be equal to C multiplied by 2 
into 2 which is 4. So we will get C to be equal to 1 by 4 or we will get N1 to be equal to 
one fourth of 1 minus zeta multiplied by 1 minus eta. This is the shape function we will 
choose for N1. Is that okay? 
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Similarly if we take N2 and N2 has to be 1 at node 1 and has to be 0 at all these 3 nodes. 
So along this edge as well as along this edge, it has to be 0 and the equation of this edge 
is zeta equal to minus 1. So for N2 we will say it will be of the form some constant 
multiplied by 1 plus zeta into 1 minus eta and at zeta equal to 1 and eta equal to minus 1, 
N2 is equal to 1 we will use this condition now. And we will get N2 to be equal to one 
fourth of 1 plus zeta multiplied by 1 minus eta and similarly we can get N3 and N4. N3 
will be one fourth of 1 plus zeta into 1 plus eta and N4 will be one fourth of 1 minus zeta 
into 1 plus eta. 
  
We will get the 4 shape functions like this. And once we have the 4 shape functions, we 
can then write expression for u as N1 Q1 plus N2 Q3 and so on and similarly v will be 
equal to N1 Q2 plus N2 Q4 plus and so on, so where N1 N2 N3 and N4 are given by these 
expression and similarly for N1 or we can write this in a matrix form as u equal to Nq 
where N will be N1 0 N2 0 N3 0 N4 0 and 0 N1 0 N2 and q is equal to Q1 Q2 till Q8. 
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And again we will choose a isoparametric representation, we will say x will be equal to 
N1 x1 plus N2 x2 plus N3 x3 plus N4 x4 and y will be equal to N1 y1 plus N2 y2 plus N3 
y3 plus N4 y where N1 N2 N3 N4 are the 4 shape functions in terms of zeta and eta and x 
and y are given by these relations, u and v are given by this relation. So this way we have 
to formulate the basic equations for relating the deformations and the position vectors. 
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And now again to get the strains that is the epsilons, we need the expressions for del u by 
del x and del u by del y and this we derived last time that this is equal to Jacobian inverse 
multiplied by del u by del zeta and del u by del x I am sorry del u by del eta where the 
Jacobian is J, the Jacobian is given by del x by del zeta, del y by del zeta, del x by del eta 
and del y by del eta. And in order to find expressions for del u by del x, I now need to 
find out del u by del zeta, del u by del eta and these four terms. 
  
If I try to get del x by del zeta, that is this first term I will have to take this equation and 
differentiate it with respect to zeta and all N1 N2 N3 N4 we have terms of zeta in it. So 
del x by del zeta will come out to be minus of 1 minus eta times x1 plus 1 minus eta times 
x2 plus 1 plus eta times x3 minus 1 minus eta times x4. This will be the expression for del 
x by del zeta. 
  
Similarly del x by del eta will also be an expression like this and so on. And after getting 
all these expressions here, I can finally come up with an expression for epsilon which is 
equal to B times q but now B, this matrix B will contain expressions of zeta and eta. B is 
not going to be a constant matrix, so B will contain expressions of zeta as well as eta. 
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And if I use this expression and try to get the expression for the strain energy that is ue 
which is given by integral of half sigma transpose epsilon dv. This will be equal to te by 2 
te into dA will be dv and sigma transpose will give me q transpose B transpose D, epsilon 
is B times q so B times q. And again in this expression, q transpose is a constant, q is a 
constant but B transpose and D they are not constants, they are functions of zeta and eta. 
  
So in order to evaluate this integral, this will become te by 2 into q transpose into integral 
of B transpose D B dA, this whole thing multiplied by q. So let’s say I will take te inside 
and what we will do is we call this matrix, this thing multiplied by te as a stiffness matrix.   
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So this will be equal to half of q transpose ke multiplied by q where ke will be equal to te 
sorry te into the integral of B transpose D B dA. And for finding out this stiffness matrix, 
one has to carry out this integral because B consists of terms of zeta and eta and dA, a 
differential area which will also consists of terms of zeta and eta. In fact we can show that 
dA will be equal to mod J multiplied by d zeta d eta, this determinant of J will again have 
terms of zeta and eta. So this integral will contain terms of zeta and eta and this stiffness 
matrix can only be computed by carrying out this integral using numerical techniques. 
   
So for finding out the stiffness matrix in the case of a 4 noded element, one has to 
carryout this integral using numerical techniques and only then we can get the values of 
the stiffness matrix but the final equation that we get will remain the same. We have got 
this stiffness matrix for the element and then when we consider the total strain energy in 
the body that will be equal to sigma of half q transpose ke q which will again be equal to 
half of q transpose kQ. So final equation will remain the same but for finding out the 
stiffness matrix, one will have to use a process of integration. Without using this, without 
carrying out this integral, one cannot find out the stiffness matrix. 
  
So unlike a 3 noded elements and all the one dimensional elements, in this case for 
finding out the stiffness matrix we have to carry out this integration. This integral is 
going to be so quite complex because we will have the term of Jacobian which also 
contains zeta and eta and B and B transpose they also contain terms of zeta and eta. So, 
whole thing going to be should be quite complex. Any questions up to this point? The 
programmer is supposed to do it, whichever finite element program you are using, the 
movement we use a 4 noded quadrilateral element it will solve this integral to get the 
stiffness matrices, it cannot be solved by hand. 
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And similarly when we combine the force terms, the body force terms that is the potential 
energy contribution due to the body forces, u transpose is N cube. So we have u equal to 
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N cube, the u transpose will be q transpose N and q transpose into N transpose. So this 
will be equal to integral of q transpose N transpose f into the thickness into dA, q 
transpose is of course a constant but N transpose is not a constant that has terms of zeta 
and eta in it. So this is equal to q transpose into te into integral of N transpose fdA. So 
this is equal to we will say q transpose into fe where fe is the body force vector for the 
element, element body force vector but again fe is computed after computing this, 
carrying out this integral. Unless you can carry unless we carry out this integral we can 
compute fe. 
   
So in the case of a four noded element we have to compute this integral to find out the 
body forces, the effective body force acting at the four nodes. Similarly, the tractive force 
that will also have to be split into 4 nodes by carrying out an integral. Eventually we will 
combine all these to get a equation of the form of half of Q transpose KQ minus Q 
transpose F. The process of finding of this F and this K will involve numerical 
techniques. We will have to solve complex integrals. Any questions up to this point? 
 
Essentially this equation remains the same. The process of solving this, this is the 
expression for pi. This equation is, this expression remain the same and the process of 
solving it will also remain the same and what changes is your straight functions and the 
process of computing k and F. We will see as the elements become more and more 
complex, finding out these k and F matrices, the process of finding that out also becomes 
more and more complex. Any questions up to this point? And that way we will stop here 
and the next time we will see some more elements and then we will go onto three 
dimensional problems.  
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