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Earlier we are talking of two noded that is linear elements and for two noded elements are 
elements, since we were talking of one dimensional element we had a uniform area of cross 
section. And there are 2 nodes are the two extremes, they are the nodes 1 and 2. And then we 
defined a local coordinate system given by zeta, we say zeta will be minus 1 here and zeta will 
be plus 1 over here.  
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Similarly we decided that if the deformation here is q1, the deformation here is q2 then u which is 
the deformation in any arbitrary point here will be given by N1 q1 plus N2 q2 or it will be given 
by N time’s q where N and q are matrices. This is what you had for the two noded elements. 
When we talk of a quadratic shape quadratic shape functions between two points it is not 
possible to define a unique quadratic curve, so we will need a three noded element. 
  
If you remember the shape functions in this case were linear shape functions which looked like 
this, this is point 1 and this is point 2. And if I draw N1 that looked something like this and let’s 
say N2 will be like this. This is N2 and this is N1. We said N1 will be 1 at node 1 and 0 at node 2 
and N2 will be 1 at node 2 and 0 at node 1 where N1 and N2 are the shape functions which are 
basically the weightages we are assigning to q1 and q2 to find out the deformation at any 
arbitrary point within the element. Now what we will do? Here instead of a since we are talking 
of quadratic shape functions, we cannot define a quadratic curve two between two points. 
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So now we will have a three noded element which looks something this. One node is at one end, 
the second node is as usual at this end and the third node will take somewhere in the center. So 
now we have 3 nodes. The positions are x1, x2 and x3 and the deformations will be q1, q2 and q3. 
And again if I want to find out u at any arbitrary point, that u will be a function of q1, q2 and q3 
but now we will do a quadratic interpolation instead of doing a linear interpolation. And we will 
again define the local coordinate system which will be let’s say zeta and zeta at this point is 
minus 1, zeta here will be 0 and zeta here will be equal to 1. Again, it is something similar to 
that. So we will define a local coordinate system given by this description and we will define u to 
be equal to N1 q1 plus N2 q2 plus N3 q3 where N1 N2 and N3 are the shape function associated 
with the three points 1 2 and 3. 
   
And the way we will take the shape functions, this is my point node 1, node 2 and I say this is 
my node 3. N1 is the weightage associated with the point 1. So a criteria that we will choose will 
be that N1 will be 1 at this point and will be 0 at both the other points only then this will be a 
valid statement. If N1 is 1 and N2 and N3 are 0, u at point 1 will be equal to q1 and that is what 
we want. So the curve in this case would look something like this, that is 1 here, 0 here and 0 
here. And it’s a quadratic curve, so it would look something like this. 
 
Similarly if I talk of N2 this is N1, if I talk of N2 it has to be 1 here and 0 at both these points. It 
will be symmetrical to this curve, it will look something like this and this is N2 and N3 it has to 
be 1 here and 0 at both these locations. So N3 would look something like this. And since at this 
point we have zeta equal to minus 1, zeta equal to 0 and zeta equal to 1. We will define N1, N2 
and N3 in terms of these zeta. And again N1 is 1 at this point and 0 at both the other points and it 
is a quadratic function. So N1 would have a term of zeta and 1 minus zeta in it. If it is zeta into 1 
minus zeta multiplied by let’s say some constant C then add zeta equal to 0, this whole term will 
be 0, add zeta equal to 1 also this whole term will be 0. So we will say N1 will be equal to this, C 
is a constant and this gives us a quadratic function for N1.  
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And then we know that N1 at node 1 is equal to 1, at node 1 zeta is equal to minus 1 so we can 
put that value over here, we will get N1 which is equal to 1 will be 1 into sorry, this will be 
minus 1 into 1 minus minus 1 which is 2 into C. So we will get C to be equal to minus half. So 
this way we will get N1. 
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If you look at this expression, you will get N1 to be equal to minus half into zeta into 1 minus 
zeta. This will ensure that this N1 is a quadratic function of this shape is equal to 1 at this point, 0 
at this point and 0 at this point. Similarly if we look at N2, we will say N2 will have some 
constant C. Let’s say C2 multiplied by multiplied by zeta and multiplied by 1 plus zeta. That is 
because at zeta equal to minus 1, it has to be 0 and at zeta equal to 0, it has to be 0. So we will 
have these two terms, zeta and 1 plus zeta in it. And again we will have at zeta equal to 1, N2 is 
equal to 1. If I put this back over here, I will get C2 to be equal to half or we will get N2 to be 
equal to half of zeta into 1 plus zeta. Student: sir, excuse me. Yeah. Is there any purpose of 
naming the nodes in the linear element as 1 3 2, should because in while assembling so it will be 
in better when 3 or 4 will get completed of. 
  
No, that doesn’t happen that way because what will happen is this is 1, this is 2. From the next 
element you will get, this will be the first node of that, this will be a first node of that, the second 
node will be at that end. So the second location as it is we will see that the stiffness matrix of this 
will be larger, it won’t be a 2 by 2 matrix, it will be a 3 by 3 matrix. So when you assemble a 3 
by 3 matrix, you will see that this number will be more convenient. We will see that in the end 
because if I give 1, 2 and 3 I mean strictly speaking you can always do that. But this numbering 
will be more convenient as far as the assembling the matrix is concerned. Now we have got N1 
and N2, similarly if you look at N3, N3 will be some constant C3 multiplied by 1 minus zeta into 
1 plus zeta and at zeta equal to 0, N3 is equal to 1. 
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At zeta equal to 0 that is 1 and both these end points, it has to be 0. So we will have a term of 1 
plus zeta and 1 minus zeta in it. If we put this, we will get C3 will be equal to 1. Therefore N3 is 
equal to 1 minus zeta into 1 plus zeta. So the three shape functions you will have, they will be 
this then this and this. 
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And we have mentioned u is equal to N1 q1 plus N2 q2 plus N3 q3 which we will write that as N 
times q where q is equal to q1, q2, q3 transpose which is the element displacement vector. N is 
N1, N2, N3 which is a set of shape functions. Any question up to this point? The next thing is in 
one dimensional element, the strain epsilon this is given by du by dx. So du by dx, if we take up 
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this expression, it will be d by dx of N1 q1 plus d by dx of N2 q2 plus d by dx of N3 q3. Of these 
q1, q2 and q3 are constants and N1, N2 and N3 these are function of zeta and zeta in turn depends 
on x. So if you look up this formulation, we found out the expression for N1, N2 and N3, this is 
N3 in terms of zeta and zeta in terms of x. Zeta in terms of x is given by zeta will be equal to 2 
times x minus x3 divided by x2 minus x1. So if you use this, we can evaluate this derivative. If 
you notice the steps that we are going to follow will be the same as the steps we had for the two 
noded elements.   
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In the first two noded elements that we had taken, linear elements there also we defined u equal 
to Nq from that we found out epsilon. Once we found out epsilon that we got epsilon to be equal 
to B times q, here B is nothing but the derivative of N. Once you got epsilon then we put that in 
the potential energy expression and got expressions for the stiffness matrix and the force 
matrices and we are going to follow exactly the same sequence in this case also. So if we carry 
out this differentiation, the derivative of N1 with respect to x will be nothing but derivative of N1 
with respect to zeta multiplied by derivative of zeta with respect to x multiplied by q1 and so on. 
So again derivative of zeta with respect to x will be there in all the three terms. So what we need 
is the derivative of N1, N2 and N3 with respect to zeta. 
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That we can get from our definitions of N1, N2 and N3 from these terms. So here, so derivative 
of N1 with respect to zeta that will give us, this will be minus half plus this zeta so it will be plus 
zeta which is zeta minus half. Is that right? 2 zeta minus 1 by 2. Yeah. N2 this will give us half 
plus 2 half plus zeta and this df N3 with respect to zeta, this will give us minus 2 zeta. So these 
are the 3 derivatives which we will have and we put them in this expression.  
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So what we will get will be, from this we will get epsilon to be and we write it again in a matrix 
notation multiplied by q and of course multiplied by d zeta by dx. d N1 by d zeta, we will take 
from there will be 2 zeta minus 1 by 2, d into by d zeta is 2 zeta plus 1 by 2 and d N3 will be 
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minus 2 zeta. This multiplied by q and d zeta by dx will come out to be 2 divided by x2 minus 
x1. So this again we will write that this will be equal to B times q because B is this matrix 
multiplied by this constant. The x2 minus x1 is nothing but the length of the element. So this will 
be nothing but 2 divided by le. So we will get B will be equal to 2 divided by le multiplied by 2 
zeta minus 1 by 2, 2 zeta plus 1 by 2 and minus 2 zeta. Any questions up to this point? If you 
notice, in this case the strain epsilon will be varying within the element because it depends on 
zeta. Zeta is basically, if this is my element zeta is changing along the length of the element. At 
this point zeta is minus 1, here it is 0 and here it is 1. So this strain is going to vary within this 
element and will vary as a linear combination of q1, q2 and q3, the linear combination of the 
three parameters here. While in the previous case when we were taking the linear shape 
functions, the strain within the element was constant, so those were the constant strain elements. 
  
In this case the strain is not constant but is going to vary linearly as a linear combination of these 
three. Then once you have an expression for epsilon, we can immediately get the expression for 
sigma which is nothing but E times B times q where sigma is a stress which is Young’s modulus 
multiplied by the strain. Now let’s look at the expression for the potential energy. 
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We will carry out the same steps again. Potential energy is given by summation over all the 
elements of half integral of sigma transpose epsilon dv minus summation over all the elements of 
integral u transpose f dv, again volume integrals minus summation over all the elements of 
integral u transpose TdA minus summation of Qi Pi. So let’s look at the first term, this term 
which is the strain energy term. So because strain energy of the element is equal to half integral 
of sigma transpose epsilon dv, again we are talking of one dimensional element. So we replace 
this by Adx, A into dx because within the element area is going be constant. So this will be equal 
to half of A sigma. Sigma is equal to E times B times q. So sigma transpose will be equal to q 
transpose B transpose multiplied by E, E is of course a constant it’s not a matrix, so E can come 
out.   
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So this will, I will take E out integral of q transpose B transpose multiplied by epsilon where 
epsilon is equal to B times q. So for instead of epsilon, I will put B times q multiplied by dx and 
earlier also we have used the fact that dx by d zeta is going to be equal to le by 2 because my B 
matrix is in terms of zeta. So I prefer to do the integration with respect to zeta rather than with 
respect to x and that I can convert by using this relationship. So dx is equal to d zeta into le by 2. 
I can put that over here; q transpose is of course a constant. So I will get this to be equal to half 
of AE q transpose le by 2 is again a constant, so I will get le by 2 into integral of B transpose into 
B into d zeta and this whole thing is multiplied by q. Can we just draw a line. 
   
Now B is the matrix which is given over here, this is my matrix B. If I do a B transpose into B, B 
is a rho matrix of size 3. So if I do a B transpose, it will be a column matrix of size 3 and that is 
being multiplied by B. So the product of the two will be a 3 by 3 matrix, a 3 by 3 matrix 
consisting of terms in zeta and zeta is changing from minus 1 to 1. So I can carry out this integral 
because it only has terms in zeta nothing beyond that. I can expand this integral and evaluate it. 
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What we will get or rather what we will do now? This step let’s say is equal to half of q 
transpose into we will have terms inside which will contain E into A into le by 2 into integral of 
B transpose B d zeta and this whole is multiplied by q. And this we will say is equal to half of q 
transpose ke into q where ke is the element stiffness matrix, ke is called the element stiffness 
matrix. And if you carry out this integral we will get ke to be given by, so ke will be given by 
this matrix and the strain energy in the element is given by this expression. Is that okay? Any 
question up to this point? Then we will now take up the next term in the potential energy 
expression that is the term of these body forces.  
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If you want to evaluate this integral, this is integral of u transpose fdv. This is nothing but 
integral of u transpose f Adx. This will again be u transpose is N times q, so this will be integral 
of q transpose N transpose fA dx. Again I will convert that into terms of d zeta so I will get this 
to be le by 2 times d zeta. Of these f is a constant, A is constant, length is a constant all these 
terms I will take them out and of course q transpose is also a constant. So if I take these terms 
out, I will get this will be equal to fA le by 2 into q transpose into integral of N transpose d zeta. 
This I will write that as fA le by 2 into q transpose into this will be integral of N1 d zeta integral 
of N2 d zeta and integral of N3 d zeta.  
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And again we can carry out the same integrals and this whole expression, we will find that this 
will be equal to, this whole expression will be equal to... Now f into A into le, f is the unit body 
force acting on the element force per unit volume, A into le is the volume of the element. So this 
thing will come out to be equal to q transpose multiplied by this term that is f into A into le and 
then inside we get three terms which will be 1 by 6, 1 by 6 and 2 by 3. Now this is the total body 
force acting on the element and this is this gives a proportion in which this force is effectively 
divided into the three nodes. We have three nodes this is 1, this is 2 and this is 3. So what we can 
say effectively one sixth of the body force is acting here, one sixth is acting here and two third is 
acting over here. The total body force acting is this which is divided in this ratio at the three 
nodes. And this we will say, this will be your q transpose multiplied by let’s say the body force 
vector for the element. 
  
So the total body force is acting on the element are divided into three nodes in this proportion. In 
earlier case when you are taking a linear element, we had two nodes one here and one at the 
other end and the total body force was acted was divided equally in the two nodes. Now it is 
divided in the ratio of 1:1:2 or rather 1:1: 4. One sixth is acting here, one sixth is acting here, two 
third is acting here. This is as far as the body forces are concerned. 
 
Similarly if you consider tractive forces, the term for the tractive forces that we have is integral 
of u transpose into T into da, in this case it will be dx if we tractive force to be per unit length. 
And this again I will leave it up to you, you can carryout the integral. This will be equal to q 
transpose into the tractive into force on the element multiplied by 1 by 6, 1 by 6, 2 by 3. In this 
again we will write that as q transpose multiplied by let’s say the tractive force vector for the 
element, this T and this T are different. This integral is just the same as the previous integral, you 
can try it out yourself. 
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So now if you look at the potential energy expression expression, I will rewrite the expression 
here which is potential energy pi is equal to summation over all the elements of half of integral 
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sigma transpose epsilon dv minus summation over all the elements of integral u transpose fdv 
minus summation over all the elements u transpose TdA minus sigma Qi Pi. This first term will 
now become summation over all the elements for half of q transpose ke into q minus the 
summation over all the elements of q transpose multiplied by Fe minus summation over all the 
elements of q transpose multiplied by Te minus sigma Qi Pi. Now this expression is the same as 
the expression we had earlier. So this is equal to summation over all the elements of half q 
transpose keq minus summation over all the elements of q transpose multiplied by Fe plus Te, Fe 
plus Te will give us the element force vector and minus summation of Qi Pi. So this again I will 
write that as summation over all the elements half of q transpose keq minus summation over all 
the elements of q transpose multiplied by the element body force vectors. The point loads can be 
taken incorporated into this and then again the next step is also the same as what we had earlier. 
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This summation of these matrix multiplications, we replace them by global matrices which will 
be of the type Q transpose kQ minus will become Q transpose F where this F is a global force 
vector force vector. So this is again the expression for the total potential energy in the system. 
The method for assembling the stiffness matrix, the basic method will still remain the same. If 
we have let’s say elements of this type where I will say this is and so on. These numbers are the 
global node numbers. For each element let’s say this is my element number 1, this is element 
number 2 and this is my element number 3. We will say that element 1 is defined between nodes 
1 3 and 2. This is the first node, this is the second node, this is the third node. Element 2 is 
defined between 3 5 and 4. So this will be 3, this will be 5 and this will be 4. Element 3 is 
defined between 5 7 and 6. So my global stiffness matrix is going to have 7 locations in this case 
where there are 7 nodes. 
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So if I take all those seven nodes, my first element is defined between nodes 1 3 and 2. So, first 
element will be defined between 1 3 and 2 at these locations. My second element is defined 
between 3 5 and 4. So, second element will be defined between 3 5 and 4. Mind you the 
sequence is important. I am writing this as 1 3 2 and not as 1 2 3 because the second node for this 
element e1 is node number 3. I can’t interchange these numbers here. If I interchange them, all 
my forces will straight away go wrong. So, element 2 is between 3 5 and 4, so 3 5 and 4. 
Stiffness matrix for the first element will take these 9 locations, second elements will take these 
9 locations and third is 5 7 and 6. So this is, I will take 5 7 and 6 so 5 7 and 6 and so on and the 
properties of the stiffness matrix are still retained. 
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That means earlier we had said that a stiffness matrix for the two noded elements was a 
symmetric matrix. This matrix is also symmetric and if we do the numbering properly, we will 
still get a banded matrix. That means we have only diagonal elements and elements at a fixed 
distance from the diagonal, all other elements will be 0 and so on. But if my numbering is not 
correct that means in this case let’s say if I do my numbering like 1 2 3 4 5 6 and 7 then my 
matrix will not remain a banded matrix because the first element will be defined between 1 2 and 
5. So it will become 1 2 and 5, this element will become non-zero. So it will not remain a banded 
matrix but it will be a sparse matrix. So this global matrix should be either symmetric or it will 
be sparse. Student: sir what is that local numbering 1 2 3, make a difference here. This 
numbering? 
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See here in this table what I am basically saying is that for each element, the local numbers 1 2 
and 3 correspond to global numbers 1 3 and 2. The local number 1 for this node is global number 
1, global node number 1. Student: I said what difference will it make had the local node 
numbering been 1 2 3. Has a local numbering been in a sequence? That means if I had taken my 
local numbering like this 1 2 and 3. What is eventually more important is this global numbering  
but then my global numbering will not be straight like this because if I am doing the numbering 
like this, my node numbers will become this is my local number 1, this is my local number 2, this 
is my local number 3, this will become 2, this will become 3. 
  
My element 2 is defined between 3 4 and 5, 3 4 and 5. Element 3 we defined between 5 6 and 7. 
So in this case you will still get the same patterns, your matrices will remain the same but what 
happens is if you have a if your see this quadratic element that we have taken, right now it is 
only for a one dimensional element. Later on we will see if we have a triangular element, even 
there we will take a 6 noded triangular element. There also we will do numbering like this. 
Student: I am asking, I don’t see any advantage. There is no specific advantage as far as, there is 
no specific advantage that you will gain from this numbering because eventually if you can 
always change your global numbering to suit this particular pattern.   

13 
 



But typically when an element is defined, you will find that eventually it basically comes on to 
the fact that it is by tradition, that you always define. Student: See the other way round if we 
number 1 2 3 4 5 6. Again? Student: I think the number is a sequence 1 2 3 4 5 6 this element. In 
this, anyway this will come to when we come to two dimensional elements but in this if you, 
even if you number the elements 1 2 3 directly. As far as your formulation is concerned, you 
won’t lose anything but typically you will always find the numbering be 1 2 and then 3. Possibly 
because you are extending it from linear elements, possibly because of that reason but as far as 
the technical numbering is concerned, it will probably not make a difference. Any other question 
on this particular thing? So the potential energy expression is given by this formula. 
   
Now if you notice the potential energy expression is the same as what we had earlier. Our 
boundary condition is also going to be same as what we had earlier. So our method of solving is 
also going to remain the same. Eventually any type of element or any type of finite element 
formulation we choose, we will try to get the same formulation and then use the same method 
that we have discussed already, whether it is two dimensional elements or three dimensional 
elements, our potential energy expression will be the same, the method of solving it will remain 
the same. The only thing that will change will be this matrix. That means the elements will have 
different number of nodes and a different numbering, different kind of local numbering and a 
global numbering. So the potential energy expression will always remain the same. What we will 
do from now onwards is that for different types of problems for two dimensional as well as three 
dimensional problems, we will just see how to define elements, how to define shape functions 
and how to get this potential energy expression. Any questions on this?   
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