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Today we will be talking of the one dimensional finite element problems and in the last class we 
had seen how to get this potential energy expression. 
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We have shown that the potential energy of a set of one dimensional finite elements is given by 
this expression where q is a deformation vector given by q1 q2 and we had shown that Ke that is 
element stiffness matrix is given by the expression EA by l multiplied by 1 minus 1 minus 1 1 
and the force matrix for the element, this was obtained by summing of the body forces, attractive 
forces and the point loads. Now what we will see is this expression, the summation of a product 
of matrix terms. We will try to simplify this and get it directly as a product of matrices. For 
doing that what we will do is let’s say if we take any object and this object has been divided into 
a set of finite elements like this. 
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Let’s say this is an element 1 2 3 and 4 and these are the load numbers 1 2 3 4 and 5. The 
deformations let’s say we call them q1 q2 q3 q4 and the deformation of this node is q5. If you 
write down the deformation matrix for the first element that will be the matrix q1 q2 transpose. 
Similarly the deformation matrix of the second element will be q2 q3 transpose and so on. So if 
you have an element ei which is defined between nodes j and k then the deformation matrix for 
this element would be given by qj and qk. So what we will do is instead of having these 
individual matrices, we will write down one global matrix and that will be the matrix like this q1 
q2 q3 so on till qn where n is the total number of nodes. Let’s say this is my node number n. So it 
will have one vector or one matrix which we call as the global deformation matrix. This matrix 
we will call as the global deformation matrix. 
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So if we have a set of elements like this that is e1 e2 e3 e4 so on and let’s say if we have m 
elements and n nodes, our global deformation matrix would be given by q1 q2 so on till qn, this is 
our global deformation matrix. Now for this matrix for this set of finite elements, we can say that 
the element e1 is connected between nodes 1 and 2, the element e2 is connected between nodes 2 
and 3, e3 is between 3 and 4 and so on. So this let’s say table is defining the adjacency 
relationship between elements and nodes, is defining the position of different elements and that 
of the different nodes, we will be making use of this table later on. 
 
If we take of the first element and we write down the stiffness matrix for this, the stiffness matrix 
for the first element is E1 A1 by l1 multiplied by 1 minus 1 minus 1 1. Similarly the stiffness 
matrix for the second one would be E2 A2 by l2 multiplied by 1 minus 1 minus 1 1 where E1 is 
the Young's modulus for element 1, A1 is the area for the cross section for the first element, l1 is 
the length of the first element. Similarly if I take the second element E2 A2 and l2 are the 
Young's modulus, area of cross section and lengths for the second element and so on. Let’s say 
we can write down the elemental stiffness matrices for each of these elements. And if you look 
up this term, the first term q transpose Ke q, this term if I expand it out that is I multiply this 
matrix by q transpose and q, if I multiply this by q transpose that is q1 q2, the terms q1 and q2 
will be multiplying these two terms and then these two terms where this will become a row 
matrix multiplied by this column and then multiplied by this column. 
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The product of these two will give me a row vector and that row vector when multiplied by this 
column vector q is going to give me a single potential energy term or the strain energy term. 
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So now what we will do is instead of writing the individual matrices like this, I will write a 
global matrix which will look something like this. What I have done is if I look at this table, the 
element e1 is defined between nodes 1 and 2 and I have a total of n nodes. So I will take n by n, I 
will take an n by n matrix and in a locations 1 and 2 both in the rows as well as in the columns 
that mean the first column and the second column and the first row and the second row. I will put 
the four terms, these four terms are the terms that correspond to this. That is the stiffness matrix 
for element number 1, I have taken first and the second rows and the columns and placed the 
four terms corresponding to this stiffness matrix. I have got four terms here, that is E1 A1 by l1 
multiplied by 1 minus 1, there is a minus sign over here, so 1 minus 1 minus 1 and 1. So the four 
terms of the elements stiffness matrix for the first element comes or come in these four locations. 
  
Similarly I will take the second element. The second element is defined between nodes 2 and 3. 
So I will take up row number 2 and row number 3 and column number 2 and column number 3 
and corresponding to those 4 locations, I will put these four terms. These four terms are obtained 
from this matrix that is E2 A2 by l2 1 minus 1 minus 1 1. So these four terms I will put in these 
locations and so on. I will take out the third element, the third element is defined between nodes 
3 and 4. So I will take locations 3 and 4 of this matrix, locations 3 and 4 of this matrix and place 
the four terms for the elements stiffness matrix for the element number 3. This way I will fill up 
all these elements. The remaining places will get a 0 and this matrix is what we will call as the 
global stiffness matrix. Any question up to this point, how I have made this global stiffness 
matrix?  
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So, now if I look at the global displacement matrix which is this one and the global stiffness 
matrix which is this one and if I write down the expression half of Q transpose KQ where Q 
transpose is the global displacement matrix, K is the global stiffness matrix. Basically what I am 
doing is I am taking this matrix and I am pre multiplying it by Q transpose and post multiplying 
it by Q. What is Q transpose? It is a row vector containing q1 q2 q3 till qn. So this is going to be 
a row vector which looks like q1 q2 till qn. This is multiplied by this huge matrix that I have 
written. In this place I will get this complete matrix, the global stiffness matrix and this is 
multiplied by a column q1 q2 till qn. 
 
Now if I look at this, my first two terms here contain E1 A1 by l1 and minus E1 A1 by l1, these 
two terms and all the other terms are zeros. So when I multiply this row by this column, I will get 
terms corresponding only to these two. Similarly if I take up the next column, I will get terms 
corresponding to this, this, this and this. Q1 will be multiplied by this, q2 will be multiplied by 
this as well as by this and q3 will be multiplied by this and then the product of this row with this 
column that is going to be multiplied by q1.  
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You have to look at this operation slightly carefully. And if I compare this with this expression 
that I had, half of q transpose into Ke into q. That means half of this row vector multiplied by 
this, multiplied by this column vector. I will again get q1 q2 multiplied by these two terms, again 
that term will be multiplied by q1. You can look up the q1 q2, this would be multiplied by E1 A1 
by l1 minus E1 A1 by l1 and we have another couple of some terms over here and this will be 
multiplied by q1 q2 as the column vector. So these two terms multiplied by these two again 
multiplied by q1 that is what will be my first term and we will get the same term when I multiply 
this row by this column and then multiply that by q1. Are you able to visualize that? And then 
what we are doing is I am summing it up over all the elements.  
 
So effect of this summation, I am able to get directly by getting this global matrix because if I 
take this row and multiply it by any column, let’s say I multiply it by the i th column. In the i th 
node will be a part of some particular element. I will get the corresponding terms from this 
summation. Let’s say if I take the element i which is defined between nodes j and k then the j th 
row over here and the k th row and so if the j th column and k th column and the j th row and the 
k th row, these four terms will give me the terms corresponding to the j th element matrices. So 
what I am saying is this thing will be equal to sigma half q transpose Ke q. Again this ei, the 
element ei? The element ei is defined between nodes j and the node k.  
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If you look up this table, the element e1 is between nodes 1 and 2, e2 is between 2 and 3 and so 
on. If I take ei that is between nodes j and k. Is that okay? So this way if I assemble my global 
stiffness matrix and I define by global deformation matrix, I will get this expression instead of 
this summation. This summation is equivalent to saying half of Q transpose K Q where K and Q 
are the global matrices. So if I take any finite element formulation, any problem which I have 
defined as a set of finite elements, I can take each of these individual elements, get their 
elemental matrices, the element stiffness matrices and the deformations and from these I can 
assemble my global equations or I can assemble my global expression by writing this term. 
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And this is equal to the total strain energy in the system, u is equal to half of Q transpose K Q. 
This is the total strain energy in the system. Is that all right? Now the potential energy term 
consisted of another expression which is this q transpose into Fe. 
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What we will do is just like we have defined the global deformation matrix, we will define 
another which is a global force matrix. 
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So if we have a set of finite elements like this let’s say this is my element ei between nodes j and 
k. The deformation of this is qj, the deformation of this is qk. We have written expressions for 
the Fe matrix that is the element forced matrix. What we said essentially was this element force 
matrix, it consists of two forces acting at the two nodes. So this is let’s say some force F1 or let 
me say F i1 and this is F i2. So the element force matrix for this would look like this F i1 and F 
i2. This is going to be the element force matrix for the i th element. So what we will do is we will 
define a global matrix in which again if I take the first element e1 that is let’s say defined 
between nodes 1 and 2. I will take the corresponding force terms for the first element and place 
them in locations 1 and 2. So, F11 and F12, this is my element number 1, this is my node 1 and 
this is my node 2. 
 
This force is what I am calling as F11 and this force is what I am calling as F12. F12 is the force 
on the second node of element number 1, F11 is the force on the first node of element number 1. 
F i1 is the force on the first node of element number i and F i2 is the force on the second node of 
element number i. So if my element 1 is between nodes 1 and 2 and element 2 is between nodes 
2 and 3, my second term here I will add F21 and third term here we will have F22. This is location 
number 1, this is location number 2 and this is location number 3. Forces are also 1 D. In the 1 D 
formulation we have assumed everything to be one dimensional. If you have a two dimensional 
element we will see how to formulate that later on. We have always been doing that, the first 
node here is node number j and the second node is node number k.  
  
If my first node is node number j, what I will do is I will take up the j th term over here and in 
the j th term, I will add F i1 and in the k th term I will add F i2. See the first and the second node, 
whereas this is my first node and this is my second node. This is my first node and this is my 
second node, this is what we referred to as elemental numbering. Element have a local 
numbering which is nodes 1 and 2, these are the global node numbers. This 1 2 j k and so on, 
these are the global node numbers but this global node number j corresponds to element node 
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number 1 for element number i. That means that this element, this node number locally is 1 and 
this is local load number 2 but global number is j and k.  
 
So when I look at the local matrices, in the local matrix this is my first force element, this is the 
second forced element. In the global numbering this will go in to the j th location, this will go in 
to the k th location. This way what I will do is I will take up all my elements and the force is 
coming on each of the nodes. The forces which are a part of the elements force matrix, those 
forces I will place at these global locations. So at each of these n nodes, I will get a force which 
will look something like this. So if I have a set of forces like this, this matrix is what I call as my 
global force matrix. What I have basically done is that I have taken up the force elements on 
each of the, forces on that two nodes of each of the elements, I place them on global locations 
and this matrix is what I call as the global force matrix.  
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And now if I look at this term that is sigma q transpose Fe. You will find that this will be equal to 
Q transpose multiplied by F. 
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How do we get that? This Q transpose is nothing but q1 q2 till qn transpose and this F would 
consist of F11 F12 plus F21 F22 plus F31 and so on. What I have taken is I have element e1 defined 
between nodes 1 and 2 and element e2 is defined between nodes 2 and 3 and so on. So if I take 
this row sorry if I take this row and multiplied by this column, q1 is multiplied by F11, q2 is 
multiplied by F12 and these two terms are what I will get if I take the matrix q1 F1 that means the 
q matrix for the first element and F matrix for the first element. If I take these two and multiply 
them, I will get q1 F11 multiplied by q2 F12. 

 
Similarly if I take up the second element, I will get q2 and q3 multiplied by F21 and F22. 
Similarly if I take the third element q3 and q4 will be multiplied by F31 and F32 and so on. 
Summation of all these terms is nothing but the Q transpose multiplied by F. So this way by 
writing the global equation in this manner, the potential energy expression that I had earlier that 
is this expression I can simplify that to, at pi equal to sigma half of q transpose Ke multiplied by 
q minus sigma q transpose Fe. 
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This is nothing but half of Q transpose K Q minus Q transpose F. This is the expression for the 
total potential energy in the system and this has been obtained by writing the global deformation 
equation, global stiffness matrix and the global force matrix. Any questions up to this point? A 
couple of observations about this global stiffness matrix. If you look at these elements stiffness 
matrices, the first thing that we notice that these elements stiffness matrices they are all 
symmetric 11 minus 1 minus, 11 minus 1 minus 1. 
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So all the elements stiffness matrices are symmetric and if you see the method by which we have 
assembled the global stiffness matrix, we have retained the symmetry because the elements 
stiffness matrices I mean, I have placed both the row as well as column terms. 
 
(Refer Slide Time: 00:31:24 min)  
 

 
 

So if I take up the i th column and the j th column and the i th row and the j th row and the 
element define between nodes i and j will come on the four symmetric terms. So the global 
stiffness matrix is also a symmetric matrix. The first thing that we say is this k is a symmetric 
matrix.  
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The other thing that we say is that if I have element 1, this is defined between nodes 1 and 2, 
element 2 which is defined between nodes 2 and 3, element 3 is defined between nodes 3 and 4 
and so on. That means the element i will be defined between nodes i and i plus 1. If I follow this 
sequence then I will get terms only three terms in any row, the three consecutive terms next to 
the diagonal. If you notice here element 1 is between 1 and 2, 2 is between 2 and 3. So between 2 
and 3 I have element 2, between 3 and 4 I have element 3. If I take up the third row, I will find 
non zero terms only in locations 2 3 and 4. So this global stiffness matrix will be a banded matrix 
with the bandwidth of 3. So this is a banded matrix. So if I take numbering like this, I will get a 
banded matrix. The bandwidth will be 3 in this case, the width of the band.  
 
However if I don’t do a numbering like this, I will say that my element number 1 is defined 
between node number 1 and 10 that means I am taking the set of elements like this. This is my 
element number 1 and instead of saying that this is between nodes 1 and 2, I say this is 1 and this 
is 10 and this is may be some other number 15 and this is node number 2 and so on. Then what 
would happen is the terms for the stiffness matrix of element 1 will go in location 1 and 10. 
These 4 terms won’t come like 1 2 and 1 minus 1 and minus 1 1. 1 will come here and this term 
will go in the tenth column and similarly this term will go in the tenth row and this term will go 
in the location 10, 10.  
 
If that happens this will no longer be a banded matrix. This matrix will then become non-banded 
but it will still be symmetric but this will become a sparse matrix. There will be a term here, a 
term in the tenth row in the tenth column that is, but all the term in between will be 0. So the 
global matrix that I have, this k either it is banded or it is sparse. And whether it is banded or 
sparse that depends on the numbering that we have done, how we have numbered the nodes. So 
the numbering becomes very critical whether it is a banded matrix or sparse matrix. Basically 
critical because for banded matrices, we can get very efficient methods for solving banded 
matrices. While if it is not a banded matrix and we have a very large system of equation; the 
system can become complex.  
 
So the numbering that we do, this numbering, the numbering of the nodes that is very critical. 
Student: Sir midterms is zero. What do you mean by midterms? Student: I mean between 2 to 9. 
Between 2 to 9 let’s say this is my node 2 and this is my node number 9. Student: No, E1 is 
defined between nodes 1 and 10. So corresponding to E1 for the nodes 2 and 9, 2 to 9 all the 
elements will be 0 that’s why it’s sparse. Corresponding to e1 and to me. So if I look at this 
stiffness matrix, I will get a term in this location and I will get a term in the tenth location but I 
won’t get any term in any of these locations because this element 1 between node 1 is defined 
between nodes 1and node 10 between nodes and between node number 1 and let’s say node 
number 2 there is no element. If there is an element between node 1 and node 2 then I will get a 
term in this location. Is that okay? No. 
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See if I have an element i between nodes j and k, in that case I will take the j th row, k th row, j 
th column and the k th column. In a one dimensional case like this, one node can appear only 
between two elements. If this is my let’s say node number j, it can either appear with this 
element or with this element. So, one node can appear only in two elements. 
 
(Refer Slide Time: 00:38:03 min)  
 

 
 
If I take the first node and let’s say if I am calling this a node number 1 and this is connected to 
let’s say node number 10, it cannot be connected to any of the other nodes, since this is the first 
node I am taking. If 1 cannot be connected to any of the other nodes, all these locations will have 
to zeros. 
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When will this term being nonzero? Only when there is an element between node 1 and node 3, 
only then this term can become nonzero. That is why between locations between 2 and 9, all of 
them will become 0 because I have taken the first element between 1 and 10. This I have taken to 
be my element number 1. That is why all the other terms will become zero. Is that okay? j equal 
to 2 and k equal to? Student: Somewhere in between I will get 10 also. So what’s the difference 
between that and this? I didn’t get this. I have taken some element which is between nodes 2 and 
some other number let’s say 9. Terms with this element will be defined between locations 2 and 
9. So if you take up second row and the ninth row and second row and the second column and 
the ninth column, I will get a term here and I will get a term in the ninth column. I will not get a 
term here, I will get a term here only when I have an element between 2 and 1. Is that okay?  
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That is why we say that this global matrix is always symmetric and is either banded or sparse 
depending on the numbering that we have done. If a numbering system is efficient then it will be 
banded matrix with the small bandwidth otherwise it will be a sparse matrix. In fact when you 
work on let’s say a system like patron or any of the finite element package, you will find that the 
system first assembles the global matrices and then it tries to optimize on the numbering because 
the numbering that you might do might be very inefficient. So you try to optimize the numbering 
and aim at getting the minimum bandwidth. So at some stage you will find a message saying that 
minimizing bandwidth or optimizing bandwidth that is basically done with the idea of making it 
a banded matrix with the small bandwidth. So this is how the global matrices are assembled. 
Let’s take a small example for this.  
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Last time we have taken an example where we said that, we have taken a body like this and then 
we have modeled this by a two finite elements and for this first element we said we will take the 
area of cross section to be 5.25 square inches, for the second element we said it will be 3.75. We 
basically at this point it is 4.5, this 5.25 is a mean of 6 and 4.5, 3.75 is the mean of 4.5 and 3. 
And I think we have taken E to be 3 into 10 to the power 7 psi. This is also in pounds and we had 
taken rho density to be 0.28 pounds per cubic inch.  
 
(Refer Slide Time: 00:44:05 min) 
  

 
 

And for these we have written down the elemental matrices that is k1 is equal to E1 A1 by l1 
multiplied by 1 minus 1 minus 1 1 and k2 will be equal to E2 A2 by l2 multiplied by 1 minus 1 
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minus 1 1 and this will be equal to E2 A2 by l2, so we had derived these matrices. Now if we 
take the element first matrices, the total body force is the total weight acting which is rho1 A1 l1 
that is A1 l1 is the volume, rho1 is the density multiplied by 1 1. This will be a first matrix on the 
first element and the second element will give us rho2 A2 l2 by 2 multiplied by 11. Rho2 A2 l2 
these are the total weight of the second element divided by 2, so we will have half the total 
weight acting at each of the two nodes. Here also half the total weight acting at each of the two 
nodes and we put in the values. We will get this to be 0.28 multiplied by 5.25 multiplied by 12 
by 211. This would be 0.28 multiplied by 3.75 multiplied by 12 divided by 2 and this will be 1 1.  
  
Now from these matrices let’s derive the global matrices. If we take this, I will call this node 
number 1, this is my node number 2 and this is my node number 3. This is my element number 1 
and this is my element number 2. So I have element 1 defined between nodes 1 and 2, element 2 
is defined between nodes 2 and 3. So now since I have got 3 nodes, my global stiffness matrix 
will have 3 terms in it. It will be a 3 by 3 matrix. 
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So if I write down a 3 by 3 matrix 1 2 3, 1 2 3, the stiffness matrix for the first element.  For this 
first element we will take locations 1 and 2. So locations 1 and 2 would mean this location, this 
location, this and this. So these 4 terms, these 4 terms will come in these 4 locations. If I see both 
these terms, this part is common. So I will just take, leave this outside 3 into 10 to the power 7 by 
12. I will get a term of 5.25 minus 5.25 minus 5.25 and 5.25. So if I take the second element that 
is defined between nodes 2 and 3, so the second element will take locations 2 and 3 in the second 
row and the third row and the second column and the third column and these 4 locations I will 
put these 4 terms. So I will get this plus 3.75, here I will get a minus 3.75, minus 3.75 and a plus 
3.75. So this matrix will be my global stiffness matrix.  
 
My global force matrix will also consist of 3 terms in locations 1 2 and 3. Between locations 1 
and 2, I will get the forced terms coming from first element that is this and again between these 
two, I will take this as common and I will multiply it by 0.28 into 12 by 2, between 1 and 2 I will 
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get 5.25 and 5.25 and for the second element between nodes 2 and 3, I will get this term of 3.75. 
So it will become this plus 3.75, 3.75. And in addition to this, we have a point load of 100 
pounds acting at node number 2. So this point force will also be added here, it will become this 
plus 100. Student: I will take the factor inside fine. This term will come inside that, change you 
can make. So this will be our global force matrix and this will be our global stiffness matrix. So 
this is how we assemble the global matrices. Once you assemble the global matrices then how to 
solve them that we will see in one of the subsequent classes.   
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