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Today we will be continuing with the Galerkin’s method and after that we will go on to one 
dimensional finite element problems. 
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We will see how the one dimensional finite element problems are solved using both the 
Rayleigh-Ritz method and the Galerkins’s approach. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 
 



(Refer Slide Time: 00:01:19 min) 
 

 
 

If you remember yesterday I had introduced this expression and I said that when we are talking 
of this weighted integral, the integral of the or the weighted integral of the error term this in the 
case of a elastic three dimensional problem will come to this equation. That is this first part of 
the, this part is the equilibrium equation in the x direction, this is the equilibrium equation in the 
y direction and this is the equation in the z direction and each of these terms multiplied by the 
corresponding weights in the x y and z direction and then integrated over the volume and this is 
the volume integral and this we said it should be equal to zero.  
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Now in order to simplify this integral we will be using what is call the Divergence theorem and I 
had mentioned the divergence theorem is this theorem. That is if you have a term alpha and a 
term theta and you want to evaluate the volume integral of del alpha by del x times theta dv, that 
will be equal minus of the volume integral of alpha times del theta by del x that is this term 
derivative of that with respect to x into dv. That is the volume integral of this term plus the 
normal in the direction of alpha or n alpha multiplied by alpha that is this term into theta into ds 
that is surface integral of this. So this is what we call as the Divergence theorem. 
  
Now if we apply this Divergence theorem to the terms coming in this equation, this first term this 
one, del sigmax by del x multiplied by phix multiplied by dv that is this term is I will just repeat it 
here, del sigmax by del x multiplied by phix multiplied by dv. If you compare this with the term 
that you have here, your alpha is the same as sigmax, the theta is the same as phix and if I put 
these two over here, this first term would become something like this. In this expression instead 
of alpha I have put sigmax, so I get integral of sigmax instead of theta I am putting phix. So del 
phix by del x times dv, the volume integral of that with a minus sign plus the surface integral of n 
alpha alpha theta ds. So n alpha in this case will become nx, alpha is the same as sigmax, theta is 
the same as phix. So nx sigmax phix multiplied by the surface term ds and the surface integral of 
that. So the first term in the expression that is this term or this term can be simplified to this term, 
this expression. Similarly the next term that is there that is this del tauxy by del y multiplied by 
phix multiplied by dy.  
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The second term, the del tauxy by del y that term we will simplify to an expression of this type, 
tauxy will come here tauxy into del phix by del y because here we have got the derivative with 
respect to y, so tauxy into del phix by dely multiplied by dv and the volume integral of that and the 
second term that we will get will be ny tauxy phix ds and the surface integral of that. This way for 
all these terms, for three into three for these nine terms we will be able to get 9 expressions of 
this type and plus we have got this term fx phix so this I will write here separately plus integral of 
fx phix dv volume integral plus volume integral of fy phiy dv and the third term is this that is plus 
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the volume integral of fz phiz dv. So I will have a set of like terms like this plus I will have three 
terms like this. Now if you look at, if you look at these terms, these three terms I can just write 
them as integral of f transpose into phi dv. Your phi or just I will write it as integral of phi 
transpose times fdv where phi is nothing but phix phiy phiz column vector and f is nothing but fx 
fy fz transpose, so these three terms can be written like this. 
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Now if I look at these terms if you remember the definition of epsilon, if you have any 
deformation u the corresponding epsilon this u is a vector u v w, the corresponding epsilon or the 
strain vector, this we said would be epsilonx epsilony epsilonz lambdayz and so on transpose. 
Again epsilonx we said is del u by del x, epsilony is del v by del y, epsilonz is del w del z. 
Similarly we had terms for lambdayz and so on. 
  
Now here we have got a term on phix that is del phix by del x and we also said that the phi that is 
the weights that we are giving are consistent with the boundary conditions that is one of the 
constraint that we had in the Galerkin’s approach. So we can effectively say that we can take this 
phi to be equivalent to a displacement and del phix by del x is the strain in the x direction that 
will be there in the object, if this phi was given as a displacement. So if I write down expression 
for epsilon of phi, this would be equal to del phix by del x, epsilony term that will become del 
phiy by del y, epsilonz term will be del phiz by del z. The lambdayz term here what we would have 
got would have been del v by del z plus del w by del y. This term would have been lambdayz 
corresponding to that we will get here del phiy by del z plus del phiz by del y and another two 
terms like this. So this vector is the strain that would be there in object, if phi was the 
displacement that was given or the phi was the displacement field that was there in the object. So 
epsilon of phi that is not the actual strain in the object but the strain that would be there if this 
displacement phi was given and if you look at these terms first second, this term is nothing but 
the component of epsilon phi, epsilon phi is the vector so the first component of that, that is the 
component in the x direction.   
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this is nothing but, this is nothing but a part of the term that we will have in the end that is 
corresponding to, the last term is lambdaxy that a term that we will have in end that will have this 
term of del phix by del y. So if you look at all these terms that we will have, we can collect all 
these terms together and we can say that this would be equal to minus of the integral of sigma 
transpose multiplied by epsilon of phi multiplied by dv. Now this epsilon of phi as I said is the 
strain that would be there if phi was the displacement that was given to the object and we have 
already said that this displacement has to be consistent with the boundary conditions. And this 
sigma transpose is the actual stress in the object, actual stress distribution in the body. 
  
Now from this again, the first term of sigma transpose is sigmax. The first term of epsilon phi is 
del phix by del x. If I multiply these two, I get the first term here. The second term of sigma 
transpose will be sigmay and the second term of epsilon phi will be del phiy by del y and that will 
be the next term that we will have over here minus integral of the volume and so on. So all the 
term that one gets from this will be the term that we will be getting from this column. So this, all 
these terms can be compiled into one single term and that is this term. And as I said this phi, this 
is possibly a displacement field that we are giving to the object and if you familiar with the 
principle of virtual work, this phi is actually the virtual displacement that we are giving to the 
body. What we are calling as weights earlier that is actually a virtual displacement that we are 
giving to the body. 
 
If you give it a virtual displacement then the strain due to that virtual displacement is the strain 
epsilon phi and this sigma transpose is the or this sigma is the actual stress in the body because 
of the existing loads. This sigma and epsilon are because of two different factors, epsilon of phi 
is because of the virtual displacement, sigma is because of the actual loads. This is how we get 
this one term and then we will collect all these terms together and what will finally get will be an 
expression of this type minus integral of sigma transpose epsilon of phi dv, the volume integral 
plus volume integral of phi transpose fdv.  
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This is the term that we just, I just mentioned, this is this term. This has been collected by taking 
these three terms together. If I take these three terms together, I will get this term and if I collect 
all these columns, the term in this column together I will get this term. The remaining terms I 
will just write them down them as they were and what I will get will be plus the surface integral 
of nx sigmax plus ny tauxy plus nz tauxz multiplied by phix plus nx tauxy plus ny sigmay plus nz tauyz 
multiplied by phiy plus nx tauxz plus ny tauyz plus nz sigmaz multiplied by phiz, this whole thing 
multiplied by ds. These are the terms I will get by collecting these terms and these terms are nx 
sigmax phix, the other term are nx sigmax phix. This term is ny tauxy phix, this is ny tauxy phix. This 
is I have collected all these terms together to give me the surface integral and then we are saying 
that all this will be equal to 0. Now let’s again look at the equation that I had given in the 
beginning for the first lecture on finite elements that is we had given a set of equations like this 
nx sigmax plus ny tauxy plus nz tauxz is equal to Tx. This is for any element on the surface.   
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We had said that if we have an element like this and if we write down the equilibrium equation 
for this element, we will get this equation in the x direction, we will get a similar equation nx 
tauxy plus ny sigmax plus nz tauyz is equal to Ty. So ny sigmay plus nz tauyz will be equal to Ty and 
a similar equation for the direction. This is for the tractive loads acting on the surface that is 
forces per unit area, these are the tractive forces acting on the surface but if there any point loads 
on the surface then our equations will be different. If in addition to the tractive force, we have 
point load acting like this. In addition to these equations, we will have to write nx sigmax plus ny 
tauxy plus nz tauxz all this multiplied with ds will be equal to a point load in the x direction. If you 
don’t give any point load then if I integrate over the complete surface over this surface, I will be 
getting a term like this, it will be equal to the total tractive force in the x direction. But if I have a 
point load then effectively I will have to multiply this by the surface area and that will be equal 
to the point load in x direction. Similarly I will get another two equation like this. 
  
So now if I look at these terms, if I look at these terms for all the tractive forces, I can say that 
this term is nothing, this term and that will be equal to dx. This term is nothing but this term and 
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that is equal to Ty and similarly this term is equal to Tz but in addition to that for the point loads 
since I am calculating the complete surface integral over the surface, the point loads will give me 
additional terms of Px multiplied by phix and so on. So this surface integral will be equal to, I get 
surface integral of Tx phix plus Ty phiy plus Tz phiz multiplied by ds plus for the point loads I will 
get Px multiplied by phix plus Py multiplied by phiy plus Pz multiplied by Phiz and since the point 
loads are discrete I will have to carryout a summation over all the point loads. If I have a number 
of point loads over the complete surface, if I have a surface like this, a body like this I have a 
number of point loads. For each of these point loads I will get a term like this. So I will carry out 
a summation over all the point loads and these phii’s will be the phi at each point. 
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So if I make these substitutions my integral this integral term, these two terms will become… 
Now this is nothing but the integral of, I can write this as phi transpose T ds because I am using, 
the T will be nothing but Tx Ty Tz transpose and this would be this plus sigma Pi phii i going 
from 1 to n if I have n point loads. So this expression will give us these two terms and this 
complete expression that will become minus of volume integral of sigma transpose epsilon of phi 
times dv plus volume integral of phi transpose fdv plus surface integral of phi transpose Tds plus 
sigma i going from 1 to n Pi phii and this term should be equal to 0. So this would be the 
expression that we will get by evaluating the integral that we had in the beginning that is integral 
of Wedv should be equal to 0. Any questions up to this point, this derivation?  
 
Now if we look at this I said that if we give this object a virtual displacement as phi, if I have an 
object like this and this has some boundary conditions and let’s say this part is fixed maybe this 
part is fixed or some such thing and we give it a virtual displacement consistent with these 
boundary conditions and that virtual displacement is phi. This strain is the strain caused by this 
virtual displacement. Again this is also the virtual displacement, this is also the virtual 
displacement and this is also the virtual displacement. So if I look at this term, the first term that 
is, this first term this is nothing but the internal work done by the virtual displacement.  
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When you give the object some virtual displacement then this is the internal work done that is 
the work done against the internal stresses and these three terms give us the work done against 
the external forces. Let’s say if I have some point load over here or if I have some body forces 
acting like this and I try to give this object a virtual displacement then the work done against 
these forces, against these body forces will be given by this, force multiplied by the distance. 
These are body forces multiplied by the virtual displacement we are giving and we will integrate 
that over the volume. So this is the work done against the body forces. If you look at this, you 
have a question there?  
 
Student: Can we really separate the external work and the internal work because as soon as there 
is an external body force acting, it’s really you know give rise to internal stresses in the body. So 
how can we really do? I will just comeback to your point in a minute. 
  
Now if you look at this term, this is the work done by the virtual displacement against the 
tractive forces that means there are any forces are acting on a surface that is the pressure or force 
acting on per unit area basis then this term will give us the work done against that and this will 
be your work done against the point loads. So this complete, these three terms will give us the 
external work done, this one, this is for the body forces that means let’s say gravity, work done 
against gravity or there might be some magnetic forces acting on the body which will again give 
on a per unit volume basis. So all those forces are the forces coming under this f that is the body 
forces. This T are the tractive forces that is forces are acting on the surface and these P’s are the 
point loads, point loads acting on the body.  
 
So these three terms will give us the external work done. If I look at this I get the internal work 
done or minus internal work done plus external work done is equal to 0 or the internal work done 
will be equal to the external work done and in fact this is basically a principle of virtual work, a 
principle of virtual work, whenever we give any virtual displacement the total work done will be 
equal to 0. So what we are saying is the total work done that is basically equal to 0. A part of that 
is what we are calling as the internal, done against the internal forces and a part of that is what 
we had, the work done against the external forces and that will give the answer to your question. 
The total work done by the virtual displacement will be equal to 0. So essentially this Galerkin’s 
approach for elastic bodies boils down to the principle of virtual work for the elastic bodies. Any 
question on this Galerkin’s approach? So now we have seen two methods, one is the Rayleigh-
Ritz method and the second is the Galerkin’s approach. 
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Just to recapitulate in the Rayleigh-Ritz method, the final equation that we got that was the 
equation for the potential energy term and we said that the potential energy of the object, the 
potential energy of the object P E or pi that is equal to U plus the work potential, in the term U is 
half of integral of sigma transpose epsilon dv volume of volume integral of that minus the work 
potential is given by the volume integral of u transpose fdv minus the surface integral of u 
transpose Tds minus sigma ui transpose Pi. This is the expression for pi for potential energy and 
this we are using in the Rayleigh-Ritz method and in the Galerkin’s approach, we just got that 
minus of the volume integral of sigma transpose epsilon of phi dv plus the volume integral of phi 
transpose fdv plus the surface integral of phi transpose Tds plus  sigma i going from 1 to n Pi phii 
is equal to 0. This is the external work done sorry internal work done and this is the external 
work done and the two should be equal and the total work done should be equal to 0.  
 
This equation we will be using when we use the Rayleigh-Ritz method, this we will be using 
when we use the Galerkin’s approach. We will see that during both these approaches, we will be 
able to get the solution to the finite element formulation for different kinds of problems whether 
they be one dimensional, two dimensional or three dimensional. Now what we will see is how 
these methods can be used for simple one dimensional problems. 
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So for simple one dimensional problem, when we are talking of one dimensional problems what 
we do is that if we take any object, we are talking of one dimensional bodies, we will basically 
be talking of rods. So let’s say if we take a rod like this, we want to divide this body into a set of 
small one dimensional elements. So while dividing into set of small one dimensional elements, 
we will approximate this by elements of this type. Each of these will be treated as one single 
element and we will assume that within this element, the area of cross section of the element 
remains the same that means let’s say if I consider this element, this will be an element which 
will look like this that means there is no variation in the area of cross section. So along the length 
of this element, its thickness and height would remain unchanged that way it will vary only in 
one dimension that is why we call them as one dimensional element. 
  
If we want to formulate the same thing as two dimensional problem then we can approximate it 
by triangles or quadrilaterals or something like that. Those could look maybe something like this 
but right now we are just trying a simple one dimensional formulation of this problem. So we 
will assume that there is no variation in the other two dimensions and all loads are also only 
acting in one direction, so all the loads will also be acting in the x direction only. So if I take any 
element, that element essentially looks like this. It is just a rod like element uniform cross 
section, on this element let’s say this is a point 1 and this is my point 2. At this point let’s say the 
x coordinate, if my element is here my x coordinate here and let’s say x1 and at this point that is 
let’s say the x coordinate here is x2.  
 
What we will do is we will define a local coordinate system for the body, the local coordinate 
system would be that instead of talking of the x coordinate for this, we will talk of let’s say the 
zeta coordinates. That means let’s say in the center we will say we will have zeta equal to 0, 
sorry in center let’s say here. At this extreme we will get zeta equal to 1 and at this extreme we 
will get zeta equal to minus 1 and zeta will vary linearly from one point to the second point. So 
our zeta will be equal to, again you will find two times x minus x1 divided by x2 minus x1 minus 
1. So add this point x is equal to x1 so I put x equal to x1, here this term will be 0 and zeta will be 
equal to minus 1. At this point x is equal to x2, so x2 minus x1 this will cancel out 2 minus 1, we 
will get plus 1 over here. Similarly at the center that is x1 plus x2 by 2 we will get zeta to be equal 
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to 0. So essentially zeta will be changing from minus 1 to plus 1 in a linear manner. Here we 
have zeta equal to minus 1, here we have zeta equal to plus 1.  
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If we look at this element, the x value here is x1, here it is x2. Now let’s say in the final 
displacement that is given to this body because of the loading that is acting, there is some 
displacement throughout this body, some deformation throughout this body. Let’s say the 
deformation at this point is q1 and the deformation at this point is q2. So the deformation here is 
q1 where deformation here is q2. Now if we know the deformation here and the deformation here, 
we are interested in finding out deformation at any point inside this element.  
 
The deformation at any point inside this let’s say is given by u and we will assume that this 
deformation is a combination of q1 and q2, it depends only on q1 and on q2. So that’s why we say 
it’s a linear combination N1 q1 plus N2 q2. So the deformation at any point inside this element is 
given by this linear combination where N1 is the function of zeta that is equal to 1 minus zeta by 
2 and N2 which is also a function of zeta is equal to 1 plus zeta by 2. So u which is the 
deformation at any point inside this element is given by N1 q1 plus N2 q2 where N1 and N2 are 
functions of zeta. What we are basically saying is that if I take any point inside this element, let’s 
say I take a point here where zeta is equal to minus 0.5. If I put zeta equal to minus 0.5, I will get 
some value of N1. 
   
Similarly if I put zeta equal to minus 0.5 here I will get some value of N2. For both these, for 
these values of N1 N2 I can put those values here and I will get some value for u, that will be the 
u at this point and since N1 and N2 are varying linearly this relationship gives me a linear 
variation of u along the length of the element. Let’s say if I plot u along the length of the element 
let’s say here it is q1 and at this point it is q2, along the length it will vary in a linear manner like 
this that is what I am assuming right now. And similarly if I plot N1 and N2, at this extreme I will 
find N1 is equal to 1 but if I put zeta equal to minus 1, this will become 2 by 2 which will be 1 
and at the other extreme N1 will be 0 because if I put zeta equal to 1, I will get 0 so this is the 
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variation of N1. And if I try to plot N2 I will find N2 will vary like this, N2 will be 1 at this 
extreme and it will be 0 at this extreme and N1 is the other way round it is 1 at this extreme and 
is 0 at this extreme. At this point we have zeta equal to minus 1, here we have zeta equal to plus 
1 and u is varying linearly from q1 to q2 along the length of the element. For one dimensional 
problem on the whole it’s very straight forward but the same principle we will also be using for 
more complicated two dimensional and three dimensional problems. So we will be extending the 
same principle later on. These expressions N1 and N2 these are referred to as shape functions. 
   
Basically these shape functions are defining, what is the variation of u that is the deformation 
along the element. I said it is a combination of the deformation at point one and the deformation 
at point two and I am assuming it to be a linear combination that is I am using linear shape 
functions. Let’s say if in my element instead of two points, I consider a number of points let’s 
say I consider three points then I can give my deformation to be a function of three points, we 
will see that later but right now we are taking a linear shape functions and we are defining only 
two points on my element that is why this element is also referred to as a 2-noded 1 dimensional 
element. So now I have u equal to N1 q1 plus N2 q2. If I know the expression for u then I can find 
out epsilon which is equal to du by dx, so let’s find out an expression for epsilon. 
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The equation that we have so far, our u is equal to N1 q1 plus N2 q2 or we will use a vector 
notation and write it as N times q where N is a vector and q is also a vector, where N is the 
vector N1 N2 and q is the vector q1 q2 transpose. I have also mentioned N1 is equal to 1 minus 
zeta by 2, N2 is equal to 1 plus zeta by 2 and I also mentioned that zeta is equal to 2 times x 
minus x1 divided by x2 minus x1 minus 1. From this if I write try to write down d zeta by dx, this 
is equal to 2 divided by x2 minus x1. From this if I try to get dN1 by d zeta is equal to minus half 
and dN2 by d zeta it is equal to plus half and epsilon which is equal to du by dx, this will be equal 
to du by d zeta multiplied by d zeta by dx which will be equal to I have to differentiate this with 
respect to zeta. q1 and q2 are constants along the length of the element. If I have an element like 
this, q1 is the deformation here and q2 is the deformation here. Along the length of the element q1 
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and q2 are constant. So du by d zeta is going to give me q1 multiplied by dN1 by d zeta which is 
minus half so minus q1 by 2 plus q2 into q2 by 2. This whole thing multiplied by d zeta by dx, d 
zeta by dx is this which is 2 divided by x2 minus x1 and this two’s will cancel and I will get q2 
minus q1 divided by x2 minus x1. Again?  
 
Student: du by d zeta. 
Professor: du by d zeta.  
Student: yeah, how do we get this?  
Professor: How do we get du by zeta? 
Student: Sir, how do we get this minus q1 by 2… 
Professor: minus q1 by 2.  
 
I am differentiating this term, q1 is a constant so I will write it here, du by d zeta  will be equal to 
q1 multiplied by dN1 by d zeta. dN1 by d zeta is minus half plus q2 multiplied by dN2 by d zeta. 
Any other question? So now this is my expression that is there for the epsilon.  
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I will rewrite this expression, epsilon is equal to 1 over x2 minus x1 multiplied by q2 minus q1 or I 
will put it as in a vector form minus 1, 1 multiplied by q1 q2. What I had before this was epsilon is 
equal to q2 minus q1 divided by x2 minus x1. I have just written that in the vector form like this 
and this now x2 minus x1, this is the element that I have. The x value here is x1, the x value here 
is x2, x2 minus x1 is nothing but the length of the element, so I will say one over the length of the 
element. This vector is nothing but the q vector that I had just introduced and this vector is what I 
get here minus 1 1 multiplied by q and this we will say is equal to B time’s q, so we get epsilon 
to be equal B time’s q where B is equal to 1 over le multiplied by minus 1 1 and this B is referred 
to as the element strain displacement matrix.  
If you remember earlier we had u equal to Nq and epsilon is equal to B times q. So sigma is 
equal to EBq where this B is referred to as the element strain displacement matrix. And if you 
notice the strain within this element does not depend on zeta, either on zeta or on x that means 
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this strain is constant throughout the element. So what we have got in this particular case is the 
strain within the element does not change. We have assumed that this, we have assumed that the 
deformation is varying linearly.  
 
If the deformation is varying linearly the strain within the element will be constant. That is why 
these types of elements are also referred to as constant strain elements. So for simple 2 noded 1 
D element which are also the constant strain elements, we will get u equal to Nq, epsilon equal to 
Bq and sigma equal to E times B times q and if we remember what we have been doing earlier, if 
we can find out u, now we can see that we can immediately get the values for epsilon and we get 
the values for sigma. 
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So in order to solve a one dimensional problem, in order to solve this one dimension problem all 
that we need to do is find out the value of u in this element or to get the value of u, I need to get 
q. So if I am able to get the deformation at these two points, I can get the strain and the stresses 
within this element. Similarly using that you will see that if I can get deformations at each of 
these points and so on. So I can get deformations at each of these points, I can immediately get 
the stress and strain variation throughout this element throughout this body. So next we will see 
that using this formulation, how do we go about getting the deformations at each of these points 
in the body. Any questions on whatever I have covered today?  
 
Student: sir, volume of each element same… 
Professor: Volume of each element, need not be. And then the size of the element will be taken 
depending on… See if I take very very small elements, you will see that our computations will 
become complex, our matrices will become larger and so on. If we take very large elements, our 
accuracy will be less. So the size of the element will be taken on the basis that if in certain area, 
certain position I expect higher spaces, I give it a finer smaller element size. If I expect the 
stresses to be not very critical in that area then I will take a larger matrix.  
 

14 
 



Student: Sir, after we got the specified points, do we interpolate or we had… 
 
See we are not getting the stresses at these points. Yeah between them. No, we are getting a 
displacement at these points. Once I get the, please please… once I get the displacement at these 
points, I can get the strains within the element by using this relationship that I had just given. 
Once I get the strains within the element I can get the stresses within the element. I will get the 
deformations at these points and then I will interpolate to get the stresses and strains and so on. 
So I am not getting the stresses or strains at these points, I will get stresses within the element. 
Any other question? In that case that’s all for today. Next time we will do the detail formulation 
of…  
 
Student: It is the only way we are solving for this displacement.  
Professor: Again. 
Student: The only way solving for is the displacement.  
Professor: We will solve for the displacement and then using these relations we will get the 
stresses and strains.   
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