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  Hello everyone. Welcome to the fifth lecture of this final week of our course on Non-linear  

Control. We have been looking at sliding mode control in the last couple of sessions. Now,  

what was sliding mode control? We introduced sliding mode control as a particular kind of  

variable structure control. And we understand that this sort of variable structure implies  

that the control structure tends to change across the sliding surface. And we have seen an 

example  of that. 

 

 So we've been introducing the whole material on sliding mode control using motivating  

examples. And the example is pretty straightforward. It is just a double integrator with 

some nonlinear  disturbance. The nonlinear disturbance is assumed to be uniformly 

bounded for all time and for all  values of the state. 

 

 And what we do to begin with is to construct what is called a sliding surface.  So the sliding 

surface is like a one dimensional for the two dimensional system. It's a one  dimensional 

sliding surface and you can see it looks something like a straight line. So essentially,  what 

we want to do is we want to send sigma to 0, the sliding variable sigma to 0 in the presence  

of disturbance. So this quantity is the sliding variable. 

 

 So that's what we want to do. We want  to send this quantity to 0 in some finite time, that's 

the aim in some finite time. So it's  actually a kind of finite time control. So we use some 

finite time ideas as well. So since we want  to do that, we construct a Lyapunov function, 

which is exactly in terms of the sliding variable  itself. 

 

 Notice that this is not in terms of the entire states of the system. So it's rather  interesting 

that way. So it's actually something only in the sliding variable. It's almost like  saying that 

I'm looking at the dynamics of the system on a on the straight line. And we want to  basically 

we want to make sure that the dynamics of the system goes to this straight line in finite  

time. 

 

 And what we want to do is we want to make we want to make sure something like this 

happens  because we remember that this exactly gives us finite time convergence. So we 

simply compute a  v dot just like we're used to doing. And then of course, we know that we 

use the signum function  property, we use the signum function ideas. We prescribe a v, 

which is something like this,  right, which is something similar to this. So basically, we first 

subscribe a u which  cancels out this guy, right, and then we are left with another knob v, 



and we choose that knob v in  a way so that's to compensate for this nonlinear disturbance 

by choosing this gain rho to be  larger than L. 

 

 So once we do that, we get something like v dot is less than equal to minus v to the  power 

half. And therefore we have a finite time convergence. So our entire control looks like  this. 

Now, the important thing to note is that that's what that's where we were last time that's  

where we finished last time is that the control across the sliding surface is a rather big 

switch  and depending on how big my if you notice on the sliding surface you have x two 

plus C x one that  is equal to sigma and that's exactly equal to zero. And on one side of it, you 

have the control  to be minus C x two minus rho and on the other side of it, you have the 

control to be minus C x  two plus rho. 

 

 So depending on the size of this rho, notice that this x two may not change too much  if you 

just move across the sliding surface, right, the states are not going to change much  because 

I mean, it's not like we're going to move too much in the phase plane. But the point is  

depending on how big we chose the value of rho, there is a significant discontinuity in the  

control, there's a jump in the control. And this is what obviously leads to this non smooth  

control idea, of course, right. So what happens is because we are not exactly canceling the  

disturbance at every instant in time, right, we're not exactly canceling, we're simply 

dominating it.  What happens is that even after the system reaches the sliding surface, right, 

so this is called a,  you know, this is called a reaching phase while it's reaching the sliding 

surface, and then you have  the sliding phase when it actually moves on the sliding surface. 

 

 So what happens because of this  disturbance in the fact that we don't exactly compensate 

for it is that you tend to oscillate  around it at very high frequency. Why? Because as soon as 

you go to one side, you implement a big  control to compensate, then you again go to the 

other side, big control to compensate, go back to  the other side, big control to compensate, 

and so on and so forth. And in fact, even the control  plots start to look like this, right where 

you have large chattering kind of control, right, we  have large, fast changing control, right. 

So, however, the aim was to send the sigma to zero and  finite time, and that's achieved. So 

the sliding, the sliding variable goes to zero and finite time. 

 

  And this is what is called an end. Of course, this is this is called first order sliding mode. 

Why?  Because the sliding surface that we chose was a first order system, in fact, so, for the 

second  order system, it reduces the dimension, the system starts to evolve technically, in 

the absence of  disturbance, it starts to evolve on a one dimensional surface, you reduce the 

order of the  system by one beyond a certain finite time regime. Okay, so this is called a first 

order sliding  mode. And on top of it, this is also called an ideal sliding mode. 

 

 Since reaching phase is finite  time, that is why this is called an ideal sliding mode. So that's 

what we were discussing last time  as to how to alleviate this issue of chattering. Right. So 

that's what we want to do next. 

 



 Next. So  the question is, how to alleviate the chattering. So one of the methods we discuss, 

obviously, one  method right now, there are multiple, but it has got to do with some kind of 

a higher order version  of things in some sense. So what is it? Answer is add an integrator. 

Yeah, so the system was  something like this x1 dot is x2, x2 dot is u plus f x1 x2 t. Now we 

say we do not directly apply the  control u, but we apply, we supply to the system the 

derivative of the control. 

 

 Okay, so and we  have some x1,0 equal to x1,0 x2,0 is x subscript 2,0. And the u, we now 

that the u variable has  been made into a state, we just choose its initial condition as zero. 

Okay, that's in our hands,  right. So that's what we do. 

 

 That's what we do. So we start working with this higher order system.  Okay, we start 

working with this higher order system. And then what do we say? We say that now,  I'm 

going to now construct new sliding surface. Okay. And what is it? We call this variable s and  

its sigma dot plus c bar sigma. 

 

 Right, so sigma dot plus c bar sigma and remember that sigma was  x2 plus cx1. Okay, and 

now we say that you notice that now our new sliding surface has been  constructed using 

sigma itself no longer using x1 and x2 but directly using sigma. Yeah, and you  still see that 

this will now start to contain the derivatives and the disturbance itself. Right,  right. The 

sigma dot will contain the disturbance. 

 

 So that's the interesting thing. Now the sliding  surface itself starts to contain the 

disturbance terms. So, so what happens now if we say that s  goes to zero in finite time, 

what do we have? We know sigma sigma dot go to zero asymptotically.  Just like before, 

before we proved that if sigma goes to zero in finite time, we have x1 dot and x1  that is x2 

and x1 go to zero asymptotically and that's what we'll have. So we just prove that  sigma 

sigma dot goes to zero asymptotically, right, which means that the earlier sliding  variable is 

no longer going to converge in finite time. 

 

 Right, so this is so we are in fact working  with an auxiliary sliding variable s, right, but this 

sigma now goes to zero only in asymptotically  not in finite time, right, like before. So we 

have weakened the requirements, right, we have weakened  the requirement, we are no 

longer requiring that sigma go to zero in finite time. Right. Now, how  does that help me? 

Okay, how does that help me sort of get rid of the chattering?  Let's, so let's construct the 

dynamics, of course. So let's see what s dot is, s dot is sigma double  dot plus c bar sigma dot, 

right, and this is, let's say, I have to take derivatives now, right. 

 

 So this  is x2 double dot plus cx1 dot, so I'm going to do this carefully, plus c bar sigma dot 

which is x2  dot plus cx1 dot and this turns out to be x2. So first I write the c bar x2 dot 

which is u plus f,  I'm not going to write the rest of the things, plus cx2. Yeah, notice that I 

have not written the  arguments here, but I hope that's evident that it's a function of x1, x2 

and t. And now  this quantity will be x2 double dot which is u dot v plus f dot is the 



derivative of this guy,  right, because we have prescribed the dynamics of u now, so u dot is 

v and f dot is just written  as it is, right. So that is x2 double dot and what is cx1 double dot? 

So cx1 double dot is just  cx2 dot, right. 

 

  Okay, this is just cx2 dot. All right, so what is cx2 dot? This is simply  v c multiplied by u 

plus f.  Okay, so I've just carefully written the derivatives here, I have not done anything 

more.  So this is exactly this guy, right. 

 

  Okay, right.  Right, okay, great. So then I have this as v plus f dot plus cu plus I will say  c 

plus c bar times u plus c plus c bar times f plus c c bar times u.  x2, right and that accounts 

for all the terms. Now if I want s to go to zero in finite time,  what would I do? I would take v 

as one half s squared just like before and compute v dot  as s times s dot which is s times 

this whole thing, right. So I'm going to write this. Remember now  well I'm just going to 

write it like this as it is v plus f dot plus c plus c bar  f plus u plus c c bar x2. 

 

 Yeah, remember now that u is no longer the control.  Yeah, we cannot prescribe u anymore, 

we can only prescribe v and that's what we  want to do. Okay, now what are the terms we 

can we know and we can sort of compensate for here  immediately is c plus c bar u. Yeah, 

because now it's a state so it's known so I can compensate  for it and this is also well known 

so I can compensate for it. 

 

 The only issues are f dot and  f. Now at this stage we make another assumption, right, 

because we already have an assumption on  the uniform boundedness of f so we make a 

similar assumption  on the uniform boundedness of f dot, right. So obviously this is true for 

all x1, x2, t.  Okay, that's what we do and we start off by choosing so we choose v the control 

now  v as minus c plus c bar u minus c c bar x2.  Right, and what else we now take  

something like a plus a row signum s. Yeah, this is not very different from before. 

 

  Yeah, we are doing something rather similar here. Okay, right and what does this leave us? 

Let's see  if this works. We can we may come back and change these terms a little bit if this 

doesn't exactly  work but let's see what happens. So v dot now becomes s times everything 

else goes away like  few terms cancel. This cancels with this and this cancels with this, right. 

 

 So I'm left with only  the f f dot terms, right. So I will get row signum s plus f dot plus c plus 

c bar f, right. So this  actually evaluates to again s and signum s multiply to give me absolute 

value of s. So this is exactly  equal to row absolute value of s plus s multiplied by f dot plus c 

plus c bar f. Now if I do the norm  bounds I know that this is going to be less than equal to 

row absolute value of s. 

 

 So actually  I apologize this should be minus row, right. This is what I knew that that we will 

need to do some change  this is minus so there will be minus again minus row absolute 

value of s plus absolute value of s  multiplied by l bar which is the bound on f dot plus c plus 

c bar l which is the bound on f, right.  l bar is the bound on f dot, right. So this is coming from 



here using the bound on f dot and this  is coming from here using the bound on f, right. 

 

 And now it's pretty easy, right. It's pretty  straightforward. I do what I've been doing until 

now. I will choose row do we say equal to l bar  plus c plus c bar times l, right. And I will add 

a factor now, right. It is basically say something  like a plus a one over root two, right. 

 

 So this will give me v dot as exactly less than equal to minus  one over root two absolute 

value of s which is actually equal to minus v to the power half, right.  And then I'm done, 

right. I get my finite time convergence of s, right. This implies s goes to zero  in finite time, 

right. And therefore we have what we  went, what we wanted to achieve, right. 

 

 We will have what we wanted to achieve. Now this  is essentially called, since the actual 

sliding mode is sigma, actual sliding variable is sigma,  since sigma goes to zero 

asymptotically this is called asymptotic sliding mode  and not the ideal sliding mode, okay. 

Not the ideal sliding mode.  So what is our control now? Our control that goes into the 

system is something like minus,  well I mean the control is already written here so I don't 

need to repeat it.  Let me just highlight it for you.  Yeah, let's just highlight it here and that's 

what is the control, right. 

 

 That's what is the  control that goes into the system. But notice that v is not directly 

implemented but the  integral of v from zero to t which is equal to u is implemented, right.  

Well actually I should not say, but solution of, we should say solution of  u dot equal to v 

with initial condition being zero  is implemented, okay. And that's a good thing, right. First 

of all notice that u dot equal to v  is a stable system because I have u dot, this is equal to 

minus c plus c bar u minus c c bar  x2 minus rho signum s. 

 

 So you see that this is a nice stable term, something nice is happening.  And on the other 

hand an integral effect happens, right. So when we do an integral action earlier  the control 

itself had a signum, right. In the previous case if you see the control had a signum  function. 

 

 In this case the control has no signum function, right. The derivative of the control has  a 

signum function, alright. So what you have, it's still not infinitely smooth or something  like 

that. Actually you can't expect it because you have employed some kind of finite time  

convergence for some variable whether it be at one derivative level or second derivative 

level  and so on. If you notice this finite time convergence is sort of implemented on the 

second  derivative level, right. But still because you implemented finite time convergence 

you will not  have like smooth controllers. 

 

 But the good thing is the non-smoothness is pushed to one derivative  below, right. So the 

control is actually an integral of the signum function, right. And  therefore what tends to 

happen is that you will have you know much cleaner sort of control, right.  I mean this is 

something that you can verify by simulations, right. 

 



 But you will have much cleaner  control, right. Control, so u has integral of signum function 

hence no high frequency chattering.  Okay and this is rather nice and this is rather nice. I 

mean it's not that it is still free of  oscillation. It will still be oscillations. 

 

 Depends on how fast your signum function is moving. So even  if you integrate the signum 

you will still have oscillation but it will be significantly reduced  and it will be significantly 

reduced. So this is one way of sort of alleviating or attenuating this  chattering, okay. And so 

this is sort of nice. This is sort of nice. So this is something that  may be acceptable in a lot of 

circumstances for an actual application as well, yeah, right. 

 

 Now  one of the concepts that we, well in sliding mode control, one of the concepts that 

folks  are interested in is the notion of disturbance estimation, okay. The notion of a 

disturbance  estimation, right. And therefore we sort of are looking at the for disturbance 

estimation  there is a need to have a notion of equivalent control, okay. So that's what we 

will introduce  now a little bit is the notion of equivalent control, right. So what is equivalent 

control?  What is equivalent control?  This is sort of the control  as computed on the sliding 

surface, okay. 

 

 So this is the control as computed on the sliding surface.  So what is this? So notice that 

when we started we had the sliding first surface which was x2 plus  sigma x1, right. And 

what we had obviously was that because of finite time convergence we had  sigma equal to 

sigma dot equal to zero for all t greater than equal to some tr, right, some tr,  right. This is 

the finite time convergence time, right. So if you look at sigma dot and you compute  sigma 

dot that is x2 dot plus sigma x1, x2 dot is x2 dot plus sigma x1 dot and x2 dot was just  u 

plus f x1 x2 t plus sigma x2. And if we say that this is exactly equal to zero and it is  on the 

sliding surface then what you compute out of this the control is u equivalent which is  

actually minus sigma x2 minus f x1 x2 t, okay. 

 

 So this is what is called the equivalent control.  Now the interesting thing to notice is this is 

not  the actual control.  Yeah, this is not the actual control. What was the actual control? You 

can go back,  you can go back and actually get this back here, right.  So that's the actual 

control.  Yeah, why cannot this be the actual control? Simply because it has this unknown 

quantity,  right, which is never being applied, right, which is never being applied. 

 

 Yeah, so  so that's the idea that even though you  don't apply this control, even though 

you're not actually applying this control, you do sort of  get the effect of applying this 

control in a sort of  averaged way. In a time average sense, this is exactly what you have, 

okay. So what does this  sort of mean? Yeah, what does this sort of mean would be a good 

question and how does it help us,  right. So that's sort of the question that we sort of ask 

ourselves, right. 

 

 So  that's sort of what we ask ourselves. But before that, the important thing to sort of note 

here is  this is the  equivalent control.  This is not the actual control, like I already said, but 



this is the equivalent control.  And how can we use it? How do we use it? So the idea, and 

we're not again stating this by  carefully proving these things and so on and so forth. But the 

idea is that we can estimate  the U equivalent as  a low pass filter of the actual control. So 

this is just minus CX2 minus rho  multiplied by a low pass filter of the actual control. 

 

  So this is essentially just an acronym for a low pass filter. I mean, ideally, typically,  how 

would one implement such a filter? It would be something like introducing a filter  of the 

actual control. So this is essentially just an acronym for a low pass filter.  So, using a state 

tau z dot equals minus z plus signum of sigma, and your equivalent  control is simply minus 

CX2 minus rho times this new variable z. Okay. So what are we claiming?  There is this 

control that we can compute from the sort of steady state, if you may,  when you're on the 

slide, when you're sliding, right. 

 

 So notice, in spite of disturbance,  we are exactly sliding, sigma becomes exactly equal to 

zero. So the idea is, since sigma  becomes exactly equal to zero, and in steady state, or in 

fact, after finite time, so I mean,  the steady state happens at finite time, we have an 

equivalent control, which is different from  the actual control, but can be obtained from the 

actual control by means of a filter, like a low  pass filter. And this is sort of expected, because 

if that was not the case, then there is no way you  would have been able to sort of cancel the 

disturbance and stay on the sliding surface.  And therefore, there is enough logic here to 

understand that this idea of low pass filtering  to get to the equivalent control actually 

works. 

 

 And you can see this is a way of estimating the  value of the disturbance. And that is what 

we will do. Yeah. So this is actually a way of  differentiator differentiating terms as well. And 

this is also a way of identifying this  nonlinear disturbances in finite time. Alright, that's 

what we look at in the subsequent lecture.  Thank you. 


