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  Hello everyone.  So welcome to the fourth lecture of nonlinear control.  This is the final 

week of this course and we have been talking about control methods  that allow for some 

kind of finite time convergence behavior.  So we've already covered a decent bit of material 

on finite time stability and finite time control  design and we had just started off talking 

about sliding mode control.  So as we mentioned sliding mode control though has features 

of finite time stability and  control as you will see subsequently.  The way it is sort of posed 

is in the form of a variable structure controller and the  primary requirement as we 

mentioned is for some kind of a disturbance rejection. 

 

  So this is somewhat of a lumped disturbance, lumped nonlinearity if you may and the aim  

for or objective of a sliding mode control design is to develop this controller that  will 

actually help achieve asymptotic convergence or asymptotic stability.  While there is a 

disturbance that is acting on the system and the assumption is of course  that the 

disturbance is uniformly bounded for all time and for all values of the state  x1, x2, 

importantially in some domain.  Now as we already mentioned it is a rather difficult 

requirement to have like bounded  disturbances for all states.  So even if you look at basic 

polynomial or even linear examples of such functions you  will find that there is no 

boundedness for all values of states. 

 

  However one can always claim that in a compact set of the states this nonlinear function  

can be bounded and there are results which are more modern in sliding mode theory.  So 

this sort of helps you to get more advanced results in sliding mode.  But what we will look at 

in this series of lectures is the more classical version where  you are actually assuming 

uniform boundedness on this nonlinearity.  So this is the sort of double integrated type of a 

system that we start off with and we  are looking to design a sliding mode control.  If you 

look at a more basic asymptotic controller or basic asymptotically stabilizing controller  

these controls as you know and as we have been studying until now will typically ignore  

these kind of disturbances and so your control will typically be designed as u is minus k1  x1 

minus k2 x2 for some positive gain k1 k2. 

 

  And this in the absence of disturbance obviously will drive your states to zero.  However in 

the presence of disturbance you would expect something like a oscillatory  behavior.  I 

mean you will expect that you will get some kind of a residual set kind of behavior.  You will 



never expect you will never get to exact convergence.  So that's the whole point. 

 

  No exact convergence in the presence of these disturbance functions.  So then the question 

is what more can be done.  So first is we introduce a sort of a nice differential equation if 

you may that we want  to follow.  So that's what we say.  We introduce what we typically call 

as a sliding mode but we will define these things a little  bit later. 

 

  But suppose we want some kind of a compensated dynamics  and this is essentially 

desired.  This is essentially desired.  This is not actually the case but this is actually a desired 

dynamics and we say this  is x1 dot plus cx1 equal to zero for some positive c.  And it's easy 

to see easy to understand that this quantity is actually x2 itself because  of how our 

dynamics is.  So therefore that's how it's chosen. 

 

  So this is actually x2 plus cx1.  And what one can also understand from here is that from 

here it's evident that x1 goes  to zero exponentially which means x2 also goes to zero 

exponentially.  So that's sort of what we understand.  So if you are able to follow this kind of 

a dynamics even in the presence of disturbance  f you understand that this will guarantee a 

syntactic convergence of both states x1  and x2.  So we call this sort of a function as sigma x1 

x2 and you can see it is usually a function  of all the states. 

 

  Both states in this case.  And this is what is called a sliding mode.  Essentially what does it 

do?  It gives you for this two dimensional system because you have two states.  For this two 

state system we reduce the evolution to a single one dimensional line because x2  plus cx1 is 

a straight line in the state space in the phase plane.  It's a straight line in the phase plane. 

 

  So I hope that's clear.  Something like x2 plus cx1 I can even draw something like this.  Let's 

say here.  So x2 plus cx1 equal to zero would be  something like this.  So this is what will be. 

 

  It's a straight line passing through zero.  So this is what is the sliding surface.  Depending 

on whatever the value of c is the inclination of this line may change and so  on but 

essentially that's what it is.  So this is what is a sort of a sliding mode if you may.  Now how 

do we ensure that our system follows this?  So first we write the dynamics of the sliding 

variable sigma. 

 

  So what is sigma dot?  It is x2 dot plus cx1 dot and x2 dot from our dynamics is just this 

guy.  It's u plus f x1 x2 comma t plus cx2 because x1 dot is in fact x2 and you have some 

sigma  zero equal to sigma sub zero.  So you now are working with a different looking 

dynamics.  I mean you're just working with the sigma dynamics.  And now our aim is to 

push the sigma dynamics to zero. 

 

  That's what we want to do.  So aim push sigma to zero because if sigma is going to zero you 

understand that x1 and  x2 are both going to zero.  So what we will try to do is we will try to 

make sigma go to zero in finite time.  So how do we do that?  We take a v which is half sigma 



squared and we get a v dot which is sigma sigma dot which  is nothing but sigma u plus f x1 

x2 t plus cx2.  Now I hope you understand that this disturbance is obviously a disturbance 

so it's not known  to us. 

 

  It's not like you can cancel it using the control.  However we can certainly cancel this guy.  

We can certainly cancel this guy.  So what is it that we want to do?  You already know that 

you want to have something like a you want to follow from our finite  time stability.  What 

do you want?  You want for finite time convergence you want v dot plus kv to the power 

alpha less than  equal to zero. 

 

  So I mean and you can choose alpha to be anything.  You can choose alpha to be anything.  

That's our call.  But alpha has to be within zero one and k has to be positive. 

 

  That's our requirement.  So based on that if I actually just try to substitute that here what I 

would do is I  would simply try to choose u as minus cx2 plus some v some small v which we 

don't know  yet.  If I do that then what do I get?  I'll add a page here.  Then what do I get?  I 

get v dot.  So v was half sigma squared. 

 

  Let's remember.  And v dot is sigma times v plus f x1 x2 t.  Now we'll do a little bit of an 

inequality.  We already know that this is going to be less than equal to absolute value of 

sigma absolute  value of v plus absolute value of sigma absolute value of x1 x2 t.  And we 

know that this is less than equal to L. We know this is less than equal to L. 

 

  So what do we do?  So we know that this is less than equal to absolute value of sigma times 

absolute value  of small v this additional control plus L. So now what do I do?  How do I 

work this out?  How I work this out is I take my v as the small v that we have here as some 

rho sine  function of sigma or also written as rho signum of sigma.  So sigma is just the sine 

function.  So signum of x to 1 for x greater than 0 minus 1 x less than 0 and obviously 0 

when x is  0. 

 

  No, actually this is fine.  And signum 0 can be anything in the minus 1 1 range.  So signum 

of 0 can be anything in this range.  So if we take actually as minus rho then what we get is v 

dot is equal to absolute  value of sigma times rho.  Let's see if I want to do this.  I think I 

probably jumped a few steps ahead and I probably did not need to do that. 

 

  What we will do is we will choose the v in advance here and these I think I will move  to 

later.  So basically what we are doing is we are actually selecting the v term first.  And what 

happens is when I substitute this in the v dot what I will get from here is  v dot is minus rho 

times sigma times signum of sigma plus sigma times f x1 x2 t.  And this quantity sigma times 

signum sigma is already equal to the absolute value of  sigma.  This is what we want to use 

that sigma multiplied by sign of sigma is actually the absolute  value of sigma itself. 

 

  So what we have here, I think I can erase these safely and redo this again.  So this is v dot is 



now I do the bounding it's because this remains the first term remains  the same minus rho 

absolute value of sigma plus sigma times l.  Why because absolute value of f less than equal 

to l and so there will be an absolute  value of sigma here as well.  Now if I take the absolute 

value of sigma common then this is absolute value of sigma  with a negative sign rho minus 

l. 

 

  So this is v dot.  So if I take rho as well I mean for example as equal to l plus two then v dot 

turns out  to be minus l plus half turns out to be minus half absolute value of sigma.  And 

that's basically saying that this is v dot is less than equal to minus let's see  let's see let's be 

careful here.  I'm going to be very careful here one over root two and one over root two and 

this is  minus v to the power half.  And this is very similar to what we wanted.  If I take k 

equal to one so same as finite time convergence with k equal to one and alpha  equals half. 

 

  So we are allowed to choose alpha anything from zero to one therefore we've chosen alpha  

equal to half and k equal to one so obviously we have finite time convergence so we know  

that the sigma dynamics converges to zero in finite time.  So sigma goes to zero in finite time 

and the cool thing is this happens in the presence  of disturbance.  Alright so you've actually 

rejected the disturbance.  Why do I say it happens in the presence of disturbance?  Because 

we did not neglect the disturbance in the analysis.  We actually put in a term that is the rho 

has this l value which is basically going  to compensate for the disturbance. 

 

  So we have something that compensates for the disturbance using the bound itself.  So we 

have a disturbance compensated convergence.  That's pretty interesting.  That's very 

interesting.  So what is our control now?  So our actual control is u is if you may it was here. 

 

  The control was here.  It's minus CX2 plus V and V is chosen in this way.  So therefore our 

control is minus CX2 minus rho signum of sigma.  So that is X2 plus CX1.  So that's the 

control.  As you can see the control has switching on the sliding surface. 

 

  I hope you understand that this control switches on either side of the sliding surface.  So 

how will this work?  This will be actually evaluate to equal to minus CX2 minus rho when X2 

plus CX1 is positive  and this will evaluate to minus CX2 plus rho when sigma is X2 plus CX1 

is negative.  So there is actually a switching across this sliding surface.  There is a switching 

along the sliding surface.  So the sigma equal to X2 plus CX1 equal to 0 is actually the sliding 

surface. 

 

  So there is a switching sort of a thing happening.  So therefore you can imagine that what 

will happen is if you look at the plots for example,  what you will see is the sliding variable 

of course will behave in a very very nice  way.  I mean it will actually converge in finite time.  

I mean it will just do this. 

 

  It will just do this.  On some finite time your sigma will converge.  So you expect some 

really nice plots on the sigma variable.  However and similarly I mean X1, X2 is obviously 



converging asymptotically.  So this sort of if you made the time in which you have basically 

this reaching.  So this until this time my apologies is called the reaching phase and this 

beyond this is  called the sliding phase. 

 

  Now the problem with this controller is pretty obvious.  The problem with this controller is 

pretty obvious.  Because of the disturbance I mean if you look at this sort of a plot on what 

happens very  close to the sliding surface.  So you will start to see some kind of a zigzag 

motion happening.  So this is the sliding surface and we already know that it probably looks 

something like  this. 

 

  So that's the sliding surface and there is of course I mean this is X1, this is X2, there  is a 

sort of a reaching phase which is finite time and then there is a  sliding phase.  But this is the 

small zigzag things here.  Why because what will sort of happen is that you have because of 

the presence of disturbances  what happens is and you are not exactly compensating for the 

disturbances as you notice.  I mean what you are trying to do is you are simply dominating 

them in some sense using  this L and the disturbances are bounded by L. So it's not like at 

every instant in time  you are exactly cancelling the disturbances. 

 

  No you are not.  You cannot do that because you don't know the value of disturbances to do 

that.  So what happens is once you get to this sort of place where you are on the sliding 

surface  what tends to happen is you will get thrown out of the sliding surface a little bit and  

then you will and then the control law switches right.  I mean you will go from one side of 

sliding surface to another side to one and so you  tend to do a lot of these high frequency 

switches.  Why because your control law is in the finite time convergence kind of idea at 

sigma equal  to zero the control is not Lipschitz. 

 

  It's not smooth.  So there is some high frequency activity happening.  So that's exactly the 

thing here.  Here the sigma equal to zero is essentially the sliding surface.  So on the sliding 

surface you have non-smooth behavior and because in this case the sliding  surface is not 

actually the origin of or the equilibrium of the system. 

 

  So you are still moving on the sliding surface.  It's not like you go to the sliding surface and 

you stop.  You continue to move and there is disturbance.  So what happens is you tend to 

overshoot, undershoot and there is a lot of these high  frequency chatter happening because 

of the non-Lipschitz nature of the control.  This is actually this phenomenon is actually 

termed as chattering and in fact the control  also, the control also in the same sort of 

timeline.  I mean if you see the control will be really nice sigma comma if I put the control as 

well  and this is the sigma and also the control here. 

 

  So the control looks really nice here but then once you reach this place it will be  oscillating 

very fast.  There will be very high frequency oscillations.  In fact I am making it very nice 

and clean.  It will be much worse than this. 

 



  And this is a phenomenon that is not particularly great.  So the problem is in first order 

sliding mode.  Why is it first order sliding mode?  First order means sliding surface is one 

dimensional.  First order sliding mode leads to chattering.  And though there is disturbance 

rejection and a lot of these nice properties this is  not considered a particularly nice 

property to have.  So what we want to look at is what one can do about avoiding the 

chattering phenomenon  and that is what we will look at in the subsequent lecture.  Thank 

you. 


