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Week 12 : Lecture 70 : Finite time stability: Part 3 

 

  Hello, welcome to lecture number 3 of the final week of this NPTEL course. So, we were  

talking about finite time stability. And we've already looked at sort of the conditions that  

are required to talk about finite time stable systems considering that there is some non-

Lipschitz  kind of properties that we desire to have finite time convergence. So, we 

essentially  look at autonomous systems, we've been looking at autonomous systems, which 

are unique in forward  time. Therefore, the requirement is that the functions be locally 

Lipschitz everywhere,  but removing the origin. And then we of course, define finite time 

stability, which includes the  notion of a settling time function, and a neighborhood on 

which this settling time function  works. 

 

 So, the settling time function is a function of the initial conditions. And it  essentially tells us 

beyond what time the system trajectories are going to go to zero and stay at  zero. So, we of 

course had this proposition, which essentially says that beyond the settling time,  the 

trajectories will remain at zero for all time beyond the settling time. Now, we obviously 

want  a Lyapunov characterization because that's what we've been doing this entire course. 

 

 We've been  looking to get some kind of a Lyapunov characterization for almost all of our 

results.  And that's what we want to do here as well. So, we stated the Lyapunov finite time 

theorem,  which essentially requires the existence of a continuous differentiable V as before 

and positive  definite, you know that these two things actually make this a candidate 

Lyapunov function in the  normal sense of the word. And then we would like V dot to be 

negative definite again in a removed  origin removed domain. And so D removing the origin. 

 

 So, everything that we state here has  been removing the origin because things are not 

uniquely defined at the origin. The solution  exists but is not unique at the origin. Therefore, 

we remove the origin from the discussion. And  further we require that we have this kind of 

not just negative definiteness, but something much  stronger. So, we already state negative 

definiteness, but this is something much stronger,  which is what gives us this finite time 

convergence type of condition for alpha that is  between 0 and 1. 

 

 Now, given these three conditions, we have finite time stability. And on top of that,  this 

theorem itself gives an expression for the settling time itself. In fact, an upper bound on  the 

settling time, if you know the initial value of Vx0, right, the and we actually saw how to  



compute it, it's pretty straightforward, right? You just integrate this differential inequality,  

given initial and finite final values and initial and final time. So, you get something like this 

on  the left hand side and this on the right hand side just by a standard simple integration. 

And then we  have this time quantity on the left hand side and we take all these other 

quantities on the right  hand side. 

 

 And if we equate this to 0, we know that this guy is also going to 0 because it is  lower 

bounded at 0. So obviously, it can never be less than 0. So if the right hand side goes to 0,  

and the left hand side is less than equal to 0 means it's actually going to be exactly equal to  

0. So that's what we sort of want. So once we equate this, you actually get a nice expression  

for the time, which is in fact, the settling time. 

 

 Yeah, I mean, this is of course, used as an upper  bound, because of the typical 

conservativeness of the Lyapunov analysis. Yeah, you can see that  there is a less than equal 

to already here. Therefore, it is possible that you might reach  0 faster than this time. But 

this is definitely an upper bound. And as you can see, this time,  and as is typical for finite 

time stability, this time depends on the initial condition because v0  is nothing but v of x0. 

 

 So that's something that's already been highlighted here, v of 0,  v0 is actually nothing but a 

notation for v x0. Now, next we state like a  converse theorem, that's what we do now.  We 

state a converse theorem. What is the converse theorem? It says that if origin is  f t or finite 

times stable, right, and  n is as in definition one, as in, it's not definition one, but as in  in a 

finite time stability definition. So what was n? n was the neighborhood in which the settling  

time works. 

 

 That's it, nothing very special. Okay, then what we say the converse states that there  exists 

c0 function, v a Lyapunov-like function, which maps n to real numbers, such that it  satisfies 

all the conditions that were actually requirements in the previous case. So what were  the 

requirements? One is that v is positive definite, right, then v dot  is also c0 and negative 

definite on n again. So v dot being negative definite obviously just  means that v is c1 again, 

exactly like we had in the previous theorem, right, you had v to be c1,  yeah, v to be positive 

definite, v dot to be negative definite. Here there is d removing 0  is what we are 

considering, but here we are considering the set n, right, okay, which was  the set that 

comes from the finite time stability definition. 

 

 And further there exists k positive  and alpha in 0-1 open interval such that v dot plus k v to 

the power alpha is less than equal to 0  on n, okay. So the only difference between the 

converse theorem, yeah, and the main theorem and  the finite time stability theorem is that 

there everything was in the domain, right,  here we are talking about a domain removing 

origin, right. Actually there is an error here,  this should also be the domain removing origin, 

right. But because a priori we are not given a  set n from the finite time stability definition, 

the set n actually comes from the  Lyapunov finite time stability theorem, right. In the 

converse theorem on the other hand we are  already starting with the assumption that the 



system is finite, origin is finite time stable,  therefore we have a settling time function and 

we have a set n on which the settling time function  is valid and therefore we are 

everywhere using this set n, okay. 

 

 And so somehow you can see that  this is a if and only if kind of a condition, okay. So if you 

have finite time stability you  have such Lyapunov functions existing and if you have a 

Lyapunov function existing then you have  finite time stability, right. You just have to satisfy 

these three properties, right. These  three properties here and vis-a-vis these three 

properties here, very similar looking, okay.  So again we are not going to prove this, you can 

look at these references, yeah. 

 

 If you want to  sort of see and understand the proof we are simply giving an overview and 

so we are not really going  to prove things here, okay. What we are instead going to do is do 

more fun things and actually  look at an example, right. So what is the example? The 

example is rather important, right. It is the  Spacecraft Angular Velocity Stabilization,  right. 

You have already seen some spacecraft examples, right. 

 

 So we are looking at Spacecraft  Angular Velocity Stabilization and what is the Spacecraft 

Angular Velocity  model? It is something like j omega dot is minus omega cross j omega plus  

some control u and you know that j is basically three by three  symmetric inertia tensor, 

right. You know that omega is the angular velocity  in body frame and u is some external 

control. For example, a thruster, yeah.  Thrusters are the most commonly used external 

actuators in satellite whether it, so this is an  orientation angular velocity, it is an 

orientation control problem. So you still have thrusters to  actually manage what is called 

reaction control system. 

 

 So you have thrusters as part of the  reaction control system to manage the orientation 

speeds and so on, yeah. Suppose we have started at  some speed omega zero and we want to 

actually drive the speed to zero. You can see that if  there is no control then zero is an 

equilibrium of the system. So it is a fair thing to ask to go to  zero equilibrium. Of course, we 

usually do this via Lyapunov functions, right. 

 

 If I wanted to do it  in infinite time, I mean my standard Lyapunov function would be 

something like omega transpose  j omega. This you can understand is basically the kinetic 

energy of the system, right. And  actually half omega transpose j omega is the kinetic energy 

of the system, right. So we  actually remove this half, right. It is, so we use twice the kinetic 

energy of the system just  for simplicity. 

 

 And so if we take a v dot, we get twice omega transpose j omega dot  and that's equal to 

twice omega transpose and j omega dot can be substituted  from here which gives me minus 

omega cross j omega plus the control, right. Now you understand that  this vector  is 

orthogonal  to omega, right. That's evident because the cross product is orthogonal to  each 

of the component vectors. So you have omega and j omega as the two vectors in the body 



frame.  So if I take the cross product of these two, then I'm certainly going to get a vector 

which  is orthogonal to these two and the dot product of the vector with its orthogonal is 

obviously zero. 

 

  So omega transpose omega cross j omega is zero, right. So omega transpose  omega cross j 

omega is actually zero. Also property of the scalar triple product, right.  So this is actually  

the same as omega dot. 

 

  Yeah, that's identical. These are the same things.  Yeah, we're just saying the same thing 

and therefore this comes out to be a rather simple  expression and that's twice omega 

transpose u. Now if you wanted some kind of a finite time  convergence, I would simply, in 

fact exponential convergence, why not, I would simply plug in u as  minus j omega which 

would imply that I get v dot as minus, well I'll just take it as half j omega  just to make my 

life easy and I will get something like minus omega transpose j omega as my v dot  which is, 

actually let me modify this further and say this is minus k by 2 j omega and this,  I'll do this 

more carefully, this is twice omega transpose minus k by 2 j omega. This is a scalar  so I can 

move it anywhere and this cancels with this so I will get minus k omega transpose j  omega 

and that's minus k times v, right. As you can see this is exponential decay, right. 

 

 So in fact  I have obtained exponential convergence. I can obtain exponential convergence 

of the angular  velocity dynamics to zero. I can exponentially go to zero. However, you know 

that exponential is also  infinite time, right. So obviously that's not what we're interested in 

and you can also see that  this control is also rather nice, right. 

 

 I mean it's not just that I got infinite time convergence  and I'm rather sad. No, because my 

control is also rather nice and smooth, right. So that's  something that's good, right. That's 

something that's good, right. I get a nice smooth  infinitely differentiable controller u and so 

this is a infinite time convergent  smooth controller. 

 

  So that's the great property that we have. It's infinite time conversion and the smooth 

controller,  right. Now if I want finite time convergence, remember what is the property I'm 

looking at for  ft convergence because I have most of the other properties already, yeah. 

What is it?  I already have v to be c1, right. If you see I chose a v that's rather nice. 

 

 It's  c1 in fact c infinity, right. It's infinitely differentiable and v dot negative definite is  also 

rather easy. In fact even in this case you see that v dot was negative definite. So that also  

I've ensured. I can ensure what I need for finite time convergence primarily is then v dot 

plus  v dot. I would write it rather like that v dot is minus kv to the power alpha, right. 

 

  Okay, so in order to achieve this I will actually prescribe a controller which is minus k over 

2  but this time I will take  all right this time I will take something like  omega transpose j 

omega to the power alpha minus one multiplied by j omega. Okay, so it's almost  a similar 

looking controller. It has this k by 2 j omega here. Still the only thing is I've  scaled it with 



some scalar divisor and it's something that divides because notice  this alpha minus one is 

less than zero, right. 

 

 Alpha is between zero and one. So  important thing to remember is that this is less than 

zero. So it's actually in the denominator  and that's important to remember that it's actually 

in the denominator. All right, now if I  do this what I will get as v dot is actually equal to let's 

be careful again 2 omega transpose  minus k over 2 omega transpose j omega which is a 

scalar again time to the power alpha minus one  times j omega, right. So notice this is a 

scalar. 

 

 These are scalars. This is the only vector  quantity that I cannot move around but this entire 

thing I can move around wherever. So  obviously I move all of these out, right. I know that 

this cancels with this. So I'll have minus  k omega transpose j omega alpha minus one times 

omega transpose j omega and this is actually  equal to minus k omega transpose j omega to 

the power alpha, okay. Because these two multiply  to give me alpha, okay. 

 

 So this was smartly chosen exactly so this product becomes alpha  and because it's a scalar 

I could move it out no problem. So the important thing to note is that  this is actually minus 

kv to the power alpha, okay, as required. So I wanted v dot to be  equal to minus kv, in fact 

less than equal to minus kv to the power alpha. I've made it exactly  equal to minus kv to the 

power alpha and this alpha can be any number between zero and one.  Now the important 

thing like I said is that this control now is not smooth, right. 

 

  Yeah, important to remember that this is not smooth.  Unlike before, why? Because as I 

said this is actually division, a division by some omega  transpose j omega to the power one 

minus alpha, okay. So there is a division. So something funny  is happening at the origin, like 

at omega equal to zero. 

 

 Everywhere else it's fine, right.  Everywhere else it's actually fine. So in fact what you can 

claim about this is that  this is locally Lipschitz everywhere except the origin. This is exactly 

the kind of controls we've  been looking at and it's of course continuous, right. 

 

 So this we can say is c zero. This is  c zero. This is continuous, right, everywhere. This is 

continuous everywhere. Just that it is  locally Lipschitz everywhere but not at the origin, 

okay. So why is it continuous at the  origin? It's evident that I mean as you can see the 

numerator is also going to zero as omega  goes to zero. The denominator is also going to 

zero zero as omega goes to zero. 

 

 Therefore you  do have continuity but you do not have the Lipschitz property at the origin, 

okay. And  this is exactly the kind of controllers that we have studied, that we've been 

talking about that  give us finite time stability and you can see that we have exactly this v 

dot equals minus kv alpha  and therefore we know that from our finite time stability 

theorem that there is this time within  which within exactly within which my states in this 



case the angular velocity will go to zero,  okay. So that's pretty powerful, right. I mean it's 

saying something rather nice that you are  going to go to zero in finite time, okay. 

 

 And that's very very important. All right, great.  So that's sort of what we wanted to discuss 

on the finite time stability. What we want to do is  start a new notebook and talk about 

sliding mode control, right. So I am going to do that in  yeah in a new notebook, right. So that  

it's a new topic, right. 

 

 So we started in a new notebook, right. So this is sliding  mode control. The interesting 

thing is you will see a lot of similarity between  what we spoke about in finite time control 

and what we see in  sliding mode control, yeah. In fact sliding mode control I would say is a 

kind of  kind of finite time control which involves sliding modes and we will actually look at 

what these are.  So again because of our time constraints we are not going to really look at  

you know we are not going to really look at a lot of proofs. We are sort of going to motivate  

the idea of sliding mode control as far as possible as much as our time permits, okay. 

 

  And so we will do this mostly through examples and ideas. That's what is our aim, okay. So 

suppose  so sliding mode control again lot of nice deep history here and  and it's it's Utkin is 

mostly credited to bringing sliding mode control to the  sort of mainstream control and he's 

been active I mean he has written a large large  section of papers and articles in the area of 

sliding mode control establishing the area of  sliding mode control but there are many many 

researchers now in the area and it is sort of  falls under the under what is called variable 

structure  controllers, okay. This is because these controllers tend to change their structure  

depending on where they are operating. So anyway we will explore different facets of 

sliding mode  control as I said using examples, okay. 

 

 That's primarily our idea, right. So let's look at  a simple second order system first. So this is 

x1 dot is x2 and x2 dot is u plus f x1  t, right. And you have some initial conditions x1 0 is x1 

0 and x2 0 is  some x2 0, alright. Obviously u these are all scalars so x1 x2 is an r u is an r is 

the control  and f x1 x2 t is again belongs to reals but is essentially a non-linear disturbance,  

okay. 

 

 It's a non-linear disturbance term, okay. So that's important. However we assume  so this is 

something I will probably highlight  that f x1 x2 t is bounded for all time. So there is a 

uniform bound,  okay. So obviously the idea is  construct or I will actually put it more 

formally as an objective  construct  disturbance rejecting u such that x1 x2 go to 0 

asymptotically,  okay. Notice to begin with we did not require  finite time convergence. 

Although I said that sliding mode control is sort of a finite time  control, sort of a method in 

finite time control but sliding mode control actually has its  more novel features than the 

finite time control the way we have seen it,  yeah. 

 

 So the aim is not immediately to achieve finite time convergence of both states but in fact  

the aim is more to reject disturbance, reject bounded disturbance like this, right. So you can  



think of this disturbance obviously as you know standard external disturbances but it can 

be  disturbances that are coming also from some kind of reduced order dynamics or you 

know I mean  model approximations and model truncations and several other things, right. I 

mean this could  essentially basically comprise of all the non-linearities that you don't want 

to directly  work with when designing the control. So as long as you can say that this is 

bounded.  So one of the typical obviously a tough sort of question that is usually very 

common when you are  doing sliding mode control is you know is how to deal with the 

unbounded cases, right. 

 

 I mean  because if you think of how these disturbances I mean at least in these basic 

examples how we are  what we are asking of this disturbance term is pretty heavy, is pretty 

heavy because as a  non-linear control theorist you would immediately ask why would a 

function of states be bounded.  I mean what you are essentially asking is not just a bound 

but a uniform bound. You are saying that  this quantity has to be bounded has with this 

uniform bound for all x1, x2 and t, right. And  that's a pretty serious ask because even if I 

think of something as simple a non-linearity as  say f x1, x2, t is say some polynomial non-

linearity x1 square plus x2 square,  right. Or say t times I mean it's something as simple as t 

times x1 squared plus x2 squared. 

 

  You see that this is unbounded, right. It's not uniformly bounded, right. It's bounded if your  

states are bounded, yeah. So, unbounded but bounded if states bounded, okay. In fact,  even 

if it's even the linear case, right, you know things like t x1 plus x2 has the same property,  

right. It's bounded if the states are bounded, yeah or for bounded time in examples like 

these. 

 

  I mean if you have actually I shouldn't say this is bounded if states are bounded.  I will not 

suppose I have something like this, yeah. So, these even these simple non-linearities  and 

even this linear function for that matter is bounded only if the states are bounded. 

Otherwise,  it's unbounded. 

 

 Therefore, this is one of the tougher critiques, right. However, there are  of course modern 

answers to this if you can a priori guarantee that your solutions that your  states a priori 

guarantee with some control that your states are not going to escape some  invariant set 

then some bounded invariant set then you are fine. Then you have these kind of  guarantees 

on your states and you are you are more than happy to go along with that, okay.  However, 

in general it is not easy to satisfy this, yeah. But these are the assumptions that  the very 

very classical standard sliding mode control methods work with and that's what we  are 

going to see as well, yeah. So, we will continue with this in the subsequent lecture.  Thank 

you. 


