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  Hello everyone, welcome to another session in nonlinear control. So we were looking at  

some preliminary material since last time. And so some of this, I mean, we didn't of course  

cover this material, we were looking at a few myths and temptations in nonlinear control.  

This was sort of one of the first things that we looked at basically, meaning to say that  the 

function convergence doesn't mean the derivative convergence and the derivative  

convergence doesn't mean the function convergence and so on. This was sort of the first 

thing that  we did. And then we moved on to some preliminary material on vector and 

matrix norms. 

 

 So obviously,  we started with the vector norms. So if you have a fixed vector, then you can 

define these  infinity norm or any p-norm in this way. And using these vector norms, we can 

in fact graduate over to  matrix induced norms as well. So the matrix induced norm is 

defined using the supremum  and the vector norms. 

 

 And of course, there are also simpler formulae in some sense for  computing these. So we 

actually saw that there are these, you know, simple expressions for this  induced norms. Of 

course, we have the Cauchy-Schwarz inequality on the induced norms.  We have these very 

simplified expressions for the infinity one and two matrix induced  norm. Otherwise, it 

would be rather difficult to compute the supremum and so on. 

 

 So we also  looked at some properties of symmetric matrices. And in general, we looked at 

the notions of what  is a normed linear space. So some more abstract content is what we 

discussed. So these were ideas  on what is the notion of a vector space, a linear space having 

a norm, essentially a notion of  length, if you may. And of course, we also showed proofs, we 

saw a little bit of the proof of,  you know, when these particular norms that are defined 

actually satisfy the norm properties,  right? Primarily the triangle inequality because the 

rest of the properties are relatively easy  to verify. 

 

 And we saw those as well. And then we looked at what is the notion of, you know,  

convergence and Cauchy sequence and so on. And this led us to notions of, you know,  

complete normed linear space. So what is the meaning of it? So there is a vector space,  and 

then there is the epithet that is a normed linear space or normed vector space. And then  

there is the idea of a complete normed linear space. 



 

 And that's what is called a Banach space.  Essentially, in such spaces, the notions of 

convergence and Cauchy convergence  become identical, right? Again, we saw examples, I 

mean, in Rn, which is the sort of vector space  that we deal with for most of this course, of 

course, is a Banach space, right? So we also saw  a more advanced notion of inner product 

space. So we looked at normed linear space, which is  the idea of norm, which is the idea of 

length for vector spaces, for general vector spaces. And then  one's also interested in 

operation between vectors, right? So how does one vector operate  on the other? So that's 

one particular operation that's defined is an inner product, right? And so  a vector space 

that is a normed space, or in fact, you don't necessarily have to norm, but anyway,  the 

normed vector space, if it's endowed with the inner product is called an inner product 

space.  And of course, the inner product also has a few properties, it has a symmetry 

property,  distributivity property, scalar multiplication property, and the fact that the inner 

product  of the vector with itself is non-negative and zero only if the vector itself is zero. 

 

  So then, just like the normed linear space, we looked at the completeness,  we are also 

interested in completeness of the inner product space. And that's the idea of a  Hilbert 

space. So what we say is that an inner product space, which is complete with the  associated 

norm, right, it's evident that if I'm given an inner product, then if I operate,  if in the inner 

product takes two vectors, as you can see, so if I put in the same vectors,  x comma x, then I 

get a norm, right, it can be shown that this is in fact a norm. And so the  idea is that if the 

vector space is in fact complete with this particular norm that's  generated from the inner 

product, then what we have is called a Hilbert space. Again,  as always, Rn is an obvious 

example. 

 

 So once we looked at this, we wanted to get signal norms,  we sort of went over this in not 

so much detail. And so that is the first thing we want to do today  is that we want to look at 

the signal norms in a little bit more detail. So what is the signal  norm? See, until now, we've 

been looking at vector norms, and matrix norms, right? Signal  norm is also a norm that's 

defined on a vector space, right? So, but the only difference is,  we are not talking about a 

vector signal, which means that it's a map from time to Rn.  And that's what most of the 

states that we will be looking at subsequently are, right? Eventually,  once you solve a 

nonlinear differential equation, what you get is a function of time. And it's  typically a vector 

function of time, because you will have multiple states, and you will have more  than one 

state. 

 

 So you typically have a vector function of time. And so what we then do is we  define these 

signal norms, right? So the P signal norm, which is denoted in this way,  is defined using the 

vector norm. Please note that the vector norm contains the time argument,  right? Because it 

has to, because the vector is the vector norms are for fixed vectors. So until  I fix a time t, x of 

t is not a fixed value, right? So therefore, in order to evaluate a  vector norm, I will need to 

specify the time. Therefore, whenever I'm talking about a vector  norm, for a signal of a time 

varying quantity, I will have the time argument in here, right? It's  almost like saying that I 



have a signal, and I'm looking at the value at some particular time,  right? So that's the idea. 

 

 So using this vector norm, and note that this is arbitrary vector  norm, we didn't say that it's 

the one norm, two norm, infinity norm or anything, because you see  no subscript here, 

right? So this is flexible. And so we take this vector norm, take its,  take its power to the 

power p, and integrate from zero to infinity over time, and then  take one over p, right? 

That's what is the p signal norm. Yeah, p signal norm. Similarly,  we have the infinity norm, 

which is defined slightly differently using the supremum,  it just says supremum over all 

time greater than equal to zero norm, vector norm of x t.  Okay, now, as I said, the vector 

norm used is arbitrary, but typically, for a single problem,  for evaluating a single particular 

problem or a control question, you would always use the same  vector norm for all the 

vectors you have, okay? Otherwise, you will end up getting really  ridiculous results. 

 

 Yeah, it's important that you're consistent, you use the same vector norm  everywhere. But 

the choice of that particular vector norm that you use for the entire problem  is completely 

free. You are free to choose which vector norm you want to use. Okay, great. Now,  so, so 

obviously, the that's what we are saying here, the choice of the vector norm is not matter,  

doesn't matter, but do not switch, be consistent throughout the problem. 

 

  Now, one of the important things that we define here is that if a particular signal norm is 

finite  for any given p from one to infinity, then we say that x belongs to this capital script L 

p space.  Say that x belongs to this script L p space. Okay, this is a very large class of 

functions.  We just called the L p class of functions. Okay, and these are very important 

classes,  they appear everywhere in analysis, Fourier series. 

 

 These are essentially some kind of  advanced integrability type conditions, because, as you 

can see, each of these norms is defined  using integral of some power of the vector norm, 

right. So these are like integrability conditions.  So if you take p equal to one, this looks like 

classic integrability condition, but if you take  p equal to two, and so on, they're just 

advanced versions of the same integrability condition.  Okay, so please remember that these 

are these these define a very, very large class of functions,  and very, very large and very, 

very useful class of functions. 

 

 Okay. So one of the important things  that we realize immediately is that when we say that x 

belongs to L infinity, we are just  referring to bounded signal. Why? Because the infinity 

norm is just defined by the supremum  over all time. Yeah. So it's easy to see, easy to prove 

something like this. How do we go about it?  If x is bounded, if x of t is bounded for all time, 

it means that there exists some constant m,  such that the vector norm of x for a particular 

time t is always less than equal to m for all t. 

 

  And this is true, this holds for all t, right. If you fix up time, then the vector norm x t is  

always going to be less than equal to m. Okay. Again, this m may vary depending on which 

vector  norm you chose, but there exists such an m. So we don't have to worry because we 



are going to  be consistent. 

 

 We are going to use the same vector norm all the time. All right. Great.  Now, once you 

know that the vector norm x of t is less than equal to m for all t,  the supremum also has to 

be less than equal to m. Because if at every instant in time,  I evaluate the vector norm and 

it's less than equal to m, then the supremum also has to be  less than equal to m. 

 

 Right. The supremum is nothing but the least upper bound. So I'm saying  m is an upper 

bound for all time. Therefore, m also has to upper bound to supremum. Right.  Which means 

that there is a bound on the supremum norm or the infinity norm. 

 

 Therefore,  x belongs to L infinity. Right. So, you know, looking at the other side of the 

argument,  if the function, you know, if I say that the infinity norm is in fact equal to m, right,  

now, then I know that supremum is equal to m, which means for all time, the vector norm x 

of  t is going to be less than equal to m because again, infinity norm or supremum essentially  

is the least upper bound. So it is in fact an upper bound, whether the least or the largest,  it 

doesn't matter, but it's an upper bound for the signal. Therefore, this upper bound will 

always  hold. 

 

 And this indicates that the signal is a bounded signal. All right. So it's a very easy  proof. And 

you can claim that signal is a bounded signal. So like I said, the LP space appears  in quite a 

few places in mathematics. 

 

 Anyway, so LPs, typically the LP can be seen as a regularity  condition. Yeah. And typically 

appear in the several convergence type results that you will  see. And small LP is a discrete 

counterpart. So if you have not a continuous function of time,  like we are using, right, but a 

discrete function of time, that you just have the function value at  step one, step two, step 

three, step four, and all that, then and so you use summations instead  of integration, then 

you have the small LPs. 

 

 And the same notions apply there as well.  Right. Now, as far as the notation goes, let's be 

careful. The vector norm, like I said, it's  frozen in time signal, right, because the vector 

norm can only be evaluated if your  function is fixed. 

 

 Right. So therefore, the vector norm, right, will always contain the time  argument in there, 

right? It's a time frozen quantity. On the other hand, the signal norm,  if you notice, either I 

take a supremum over all time, or I take an integral over all time,  which means that the 

time argument goes away, vanishes from this quantity. Therefore,  in the left hand side, 

there can be no time argument, it would be ridiculous to say that  X t norm of p, right? So 

therefore, the signal norms will always have no time argument,  just something like this and 

a subscript, maybe. Okay. Now,  one of the things that we sort of know about vector norms is 

this notion of a norm equivalence. 

 



  For vector norms, we have this very, very nice result, which essentially says that if you take  

any two vector norms, they're comparable by a constant. Okay, what does it mean? If I take 

the  q norm, then I can always find constants alpha beta such that I can compare it with a p 

norm  like this, I can bound it on both sides with the p norm with using constants alpha and 

beta.  Now you can see I can always flip this argument, right? I can always say that  X is 

greater than equal to one by beta, Xp is greater than one by beta Xq. And similarly,  X is less 

than one by alpha Xq. Therefore, the p norm can also be bounded on both sides with the  q 

norm, right? So this non equivalence is very standard and holds for vector norms. 

 

 However,  such an equivalence is not possible for signal norms. Okay, this in short sort of 

means that if  I take any signal, that is any any vector function of time, then there is no 

guarantee that if it is  belonging to an l1 space, that it will belong to l2 space, or if it is in 

infinity space,  it will belong to l1 and l2 space. There is no such guarantee. Right? So these 

are completely  distinct class of functions in general is what it means. 

 

 Yeah. And where does the problem come?  Because you're sort of trying to integrate over 

all time, or you're not trying to take  supremum over all time. This is this is where the 

problem arises. And let's see some examples of  this. So the first very, very standard 

example is this function vector function xt is cosine t sine  t. Right? And what is the infinity 

norm? So I'm going to take, it's my choice what vector norm I  choose, I choose to take the 

two norm because you can see that the two norm is very easy to compute  in this case. 

 

 So, so the infinity norm is the supremum of the two norm over all time. And what's  the two 

norm? It's just one. Okay, so the supremum is actually equal to one. And the supremum is  

actually equal to one, as you can see here. Now, this means that the supremum is bounded, 

therefore  the infinity norm exists. 

 

 Yeah, therefore x belongs to L infinity, as per our definition,  right? If a function has a has a 

finite LP norm, then it belongs to the LP space, right? It has a  finite infinity norm, therefore 

it belongs to L infinity space. Yes. Now let's evaluate the  one norm or the x one. How will it 

look like? In this case, instead of taking the supremum,  you're just integrating from zero to 

infinity. And this quantity is still one, because nothing  has changed. 

 

 I've still taken the two vector norm, right? I've chosen to take the two vector  norm, I'm 

choosing to be consistent. Therefore, the two vector norm still evaluates to one.  However, 

now if I integrate this one from zero to infinity, then I get infinity.  Therefore, the one norm 

is not finite anymore. 

 

 Therefore, x does not belong to L one. So  therefore, there's no way you can propose any 

kind of norm equivalence like this, because  one quantity is finite, another quantity is 

infinite. Therefore, there's no way there can  be an equivalence, because there can be no 

such constants relating a finite quantity and an  infinite quantity. There exists no such 

constant, right? Just pretty obvious that  signal norms are slightly more evolved or involved 



notions, where this sort of  norm equivalence kind of things don't hold. Okay. So the only 

thing the norm equivalence  basically says for these kind of examples is that, you know, 

instead of the two norm,  yeah, if I chosen some other norm, say some five norm or three 

norm,  nothing would have changed, the constant would have changed a little bit. 

 

 That's it, right?  There's a constant here would have changed. That's it. And that's what we 

are saying with  norm equivalence here. Yeah, it did not it doesn't mean that this will not be 

infinity,  so it still have been infinity. 

 

 Okay. All right. So let's look at some other examples. I mean,  we just looked at an example 

where the function is bounded or L infinity, but not L one. What about  the other cases? 

What about a function which is L two and not L one? So this is one such example,  where a 

function is f of x is defined as one over x for all x greater than equal to one and zero  

otherwise. So let's evaluate. I mean, this is a scalar function. So there is no choice of vector  

norm or anything like that. 

 

 The norm is just the absolute value. So what is the L two norm? So if I  want to say that I 

want to compute the two norm, then I will just have zero to infinity  f of x absolute value 

squared to the power half.  Right. Okay. And what is f of x squared? So this will actually 

reduce to what? This will just be  one to infinity one by x squared dx to the power half. 

 

 And you already know this is nice,  it's minus one by x. It's just minus one by x evaluated 

from at one and infinity and to the  power half. And this is basically one. Yeah, so the two 

norm is just one. What about the one norm?  What about the one norm? This is a problem. 

So the only difference that will happen is that  this will become one to infinity one by x dx. 

 

 All right. And this is a problem. Why? Because this is  going to be log x from one to infinity. 

And this is infinite. So therefore, this is not  right. 

 

 So f is not in L one. Okay, I hope that's evident. Okay. Similarly, you have  another example, 

which is where you have this. Just a second. 

 

 Just remove this.  So we have a clean place to write. Alright. So yeah, so this is a case where 

you have  a function f, which is in L one but not in L two. So actually, this should be the other 

way. 

 

  Just a second. I will fix this. L one not in L two. Okay. So  again, not difficult to evaluate, I 

guess that this function is L one not in L two.  Again, you integrate for the one norm, you're 

going to just do zero to  infinity. And you have f going from  and this will actually reduce to 

this is zero to one.  Right. Interesting thing is this is only from this is not actually at zero,  

but at one, okay, but we still do this integral like this. 

 

 So this is just one over square root  of x dx. Okay. And this will become I believe this will 



become two square root of x  zero to one this is going to become two.  Yeah, I think that 

should be fine. Yeah, I think that should be fine. Anyway, we can check  is just this factor of 

two that you have to check. 

 

 But otherwise, I think this is fine.  Yeah. And if I do the f two, now what happens is zero to 

one, one over x dx  to the power half and again, this will land you in trouble, because this 

will become log of x zero  to one. Yeah, and the problem is at x equal to zero, this is 

undefined, right? It's minus  infinity. 

 

 Right. So this is again going to go to infinity. All right. So that's a problem again.  All right. So 

that's not. So these are just some nice examples, right? That works for one  space, right? It's 

an L one or not an L two, A two not an L one, L infinity not in any LP,  any other LP and so 

on. 

 

 Yeah. So you can you can create many such counter examples, right?  So basically to 

indicate that norm equivalence does not hold in general, right? So in signal,  in the case of 

signal norms, and expected right not since we are talking about general, much more  general 

norms. So what I wanted to look at is, since we have looked at so much of the norms,  we've 

looked at nonlinear spaces, we've looked at the idea of the fact that the norms follow  

triangle inequality, obviously, one of the key properties of norms is triangle inequality.  But 

one of the other properties, and then you also saw it for the matrix norms, is this sort  of 

Cauchy Schwarz type of an inequality that the norms really follow. Yeah. So, so this Cauchy  

Schwarz inequality, of course, we stated it without any proof here for the matrix case. 

 

  But I wanted to work out a simple proof of Cauchy Schwarz inequality for the general case.  

So, so this is the notation that you have two vectors x and y, which belong to a  normed 

linear space. So there's a vector space x and there's an inner product, sorry, in fact,  it's not a 

normed linear space, it's an inner product space. Right? And the inner product,  and this is 

in fact, the Cauchy Schwarz inequality that we want to prove, right?  For the matrix case, 

you've already seen that, and this is the more general one. 

 

 So this is a  very nice nifty simple proof. So if you take any vector u, it can be written as 

these two  components, that is a component in a direction of some vector v, and something 

orthogonal to that.  So how do you get the component along v? You just take the inner 

product and divide it by  norm v squared. So essentially, it's the inner product is seen as a 

projection.  Right? The inner product is seen as a projection. And then you have some vector 

w,  which is orthogonal, right? Which is orthogonal to v, right? So you can always break any 

vector  in these two components, if you may, in these two components, a component in the 

direction of  any arbitrary vector v, and something that's orthogonal to it, right? We are not 

even saying  that this is, you know, we're not trying to even define what this is, you know, 

more explicitly,  because we don't need it. 

 

 Right? Now, if I take the inner product of u with itself,  then you can, you can just write this 



formula again, right? So basically, this is u. So I just  repeat the same thing here. And then I 

expand it using the inner product ideas, how inner product  works, right? So from the first 

two, I will have u v over norm v squared whole squared,  right? Basically, this multiplied by 

this, and then I'll have a v inner product with v.  And then I will have a mixed term, which is 

twice u v divided by norm v squared,  I believe they should be norm v squared. Right? 

Because of that, it should be norm v squared,  and then there will be a v inner product with 

w. 

 

 And then you have a w inner product with w  as the last term. Right? So now, anyway, we 

are not too concerned about, you know,  what this is going to look like, and so on. This last 

term, but we know that this guy is going to  zero because they're orthogonal. Remember 

that I could have expanded this term very easily as well.  If I if I simply say, I mean, if I 

instead of w, I use, you know, w bar, and  and then I say that I take  right, so this would be 

this term. Instead of w, I could have simply written this term,  but the point is that u and w 

are still orthogonal. 

 

 Okay, so that would have still  been the case. Sorry, sorry, not u and w, but v and w are still 

orthogonal. And that that would  have still boil down to the same expression. So that's why 

we're not expanding, but we could have  if you wanted. Right? All right, great. So so basically 

using the fact that any vector can be  written in components of a vector v and something 

orthogonal to it. 

 

  Okay. And this orthogonality is being defined by the inner product. Okay, is defined by the  

inner product. That's it. I mean, it's not necessarily 90 degrees or anything like that.  It's 

being defined by the inner product. 

 

 Yeah, you may choose some funny inner product for which  it is not 90 degrees. Now, once 

we have that, we know that this is a non-negative quantity.  It's a norm omega squared, a 

norm w squared. Similarly, this is norm v squared.  Right? And this norm v squared will 

cancel with this norm v to the power four,  two, so I am left with norm v squared. 

 

 This quantity is greater than equal to zero. So  what do I know? I know that u square is in 

fact greater than equal to just the first term.  And I immediately get the Cauchy-Schwann's 

inequality. Yeah, exactly as I wanted. In fact,  in Rn you can do something even simpler. 

 

 You have this triangle inequality,  right, from the typical norm in Rn. And then you just 

expand both sides.  Right? Just you take a square basically. You take a square and then you 

expand this side,  you get this. On the left hand side, you have a norm u plus v squared, 

which is basically  this quantity in an inner product space. 

 

 Yeah, you are using the norm that is being induced by  the inner product. Right? And so you 

get what? u u, inner product of u u, inner product of v v,  plus twice u v. Right? And so this 

guy cancels with this guy, this guy cancels with this guy.  And so I'm left with and the two 



cancels out here. And so I'm left with u v less than equal to norm  u times norm v. Alright? 

So this is how you would approve the Cauchy-Schwann's inequality in general.  Thank you. 


