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  Hello everyone. Welcome to the second lecture in this week on finite time stability. So  

what were we looking at last time? In the previous bit, what we've seen is the need  for 

looking at non-Lipschitz systems or systems which have non-unique solutions at the origin.  

So that's how that's what we formalized that the Lipschitz property essentially means that  

solutions exist and are unique. However, because we are looking at notions of finite time 

stability,  it is not quite possible to have unique solutions from the origin,  especially in 

backward time. And therefore, we do not require it even in forward time. 

 

  Alright, so that is why we settled on the notion of having uniqueness in forward time 

everywhere,  but at the origin. So this is the notion that we choose to work with while 

defining the notion of  finite time stability. So that's the system we were working with. It's 

an autonomous system,  there is no explicit time dependence. 

 

 So it's of the form y dot equals f of y.  And on top of that, we have that f is continuous in the 

entire domain containing the origin,  f is locally Lipschitz in the domain, but excluding the 

origin itself. And f0 is 0,  this is simply the standard assumption that is required to ensure 

that 0 is the equilibrium of  the system. Now, this essentially guarantees that solutions exist 

for all initial conditions in the  domain. And this Lipschitz condition essentially guarantees 

that the solutions are unique  for all initial conditions in the domain, but at the origin. 

 

 So we don't want to deal with the  origin, because there is possibility of non unique 

solutions at the origin if you are demanding finite  time stability. Now, we also defined the 

notion of finite time stability. And how do we define it?  We say that the origin is finite time 

stable, if there exists a neighborhood n,  which contains the origin inside the domain D and a 

settling time function, which maps the  neighborhood to some time 0 to infinity. And the 

settling time is exactly what you would understand  from it, it is the time at which the 

solutions go to 0. So obviously, as you can imagine,  if you start at the so this settling time 

function essentially maps initial conditions to  the time in which these initial conditions go 

to 0. 

 

 So obviously, if you start at 0, since you are  already at the equilibrium, you would expect 

the settling time to be nothing but 0 itself.  And we also want that Tx0 actually converges to 

0, as the initial conditions converge to 0.  So notice that we never say equal to here, because 



we do not want to look at initial conditions  at 0, because our assumptions are on sets that 

exclude 0 or the origin. Yeah. So therefore,  we always talk of convergence to the origin, and 

so on. 

 

 Okay. So the second requirement is,  the second requirement of finite time stability is 

exactly the convergence, the finite time  convergence, it says that if your initial conditions 

are in fact in this neighborhood,  excluding the origin, then we have unique solutions, right, 

which depend on initial  conditions. On this time interval, it is closed on the left and open on 

the right.  So it is from 0 to Tx0. And it is important to note that the solutions are never 0  in 

this interval. But as time goes to this value, yeah, we don't say equal to again,  because this is 

not part of the interval. 

 

 So as time goes to this value Tx0, we say that  x actually goes to 0. Okay. All right. So again, 

we are carefully excluding 0 from the mix. Yeah,  we still want to converge to 0. 

 

 But we never want to start there. And so on. I mean, if you're  starting there, that's 

considered as a special case where you're starting in the equilibrium  and staying in the 

equilibrium. So there is no notion of I mean, we don't have to,  the finite time that we get is 0 

anyway, right, the finite convergence time that we get 0 anyway,  that's what is 

encapsulated here. But we do not want to start at 0 otherwise. 

 

  Okay. And we are always looking at converging to 0. So limit also means converging to 0.  

And the last requirement is obviously Lyapunov stability that I'm not going to repeat,  we've 

already seen that Lyapunov stability is a requirement of asymptotic stability as well.  And 

therefore it is but natural that finite time stability notion would also have Lyapunov  

stability as one of the requirements. 

 

 Okay, great. Now that we understand  finite time stability, we have a few conclusions that 

can be directly obtained. Again,  I'm not going to prove any of these things in this course, 

this is a very short introduction  to finite time and sliding, finite time stability and sliding 

mode control.  So we are simply going to state a few results. So the first sort of proposition,  

which is an almost like saying an outcome of finite time stability is that is what we state  

here. Zero, if zero is finite time, I will just say if zero is finite time stable  for one for the 

system that we already considered. 

 

 And let and we therefore have this,  you already have this neighborhood n and settling time 

function t corresponding to this finite time  stability definition, then what is understood is 

that  a the solution  is  what is understood is that the solution is  uniquely defined.  And most 

importantly, it is understood that x t zero x zero is exactly equal to zero for all  t greater 

than equal to t x.  Okay. 

 

  All right. Yeah. So once you essentially  how, how one would say this is that is uniquely 

defined for all x zero in the neighborhood n.  Okay, what this is sort of trying to say is that 



once you fix an initial condition,  you have a very uniquely defined path. And the important 

thing to remember is that,  I mean, it's sort of understood just from the second piece here 

that once you  that you will reach the origin in this time t x zero. And what happens beyond 

time t x zero?  Well, you are already at the equilibrium. So you're not going to move unless 

there is some  disturbance. 

 

 But we are not considering the disturbance cases here. This is for the purpose  of defining 

for a disturbance free or a noise free situation, the notion of finite time stability.  Therefore, 

once you reach the origin, which is an equilibrium, we're never going to move. Therefore,  

that's what is essentially said here, that once you reach the origin, you will always stay there  

for all time beyond. 

 

 It makes sense. So this is not a very complicated motion. Okay. The next  thing to remember 

is that the solution the way this is written is has to be carefully  written is has to be careful 

here. Actually, there's a dot here, which means that the purpose  of writing this dot is it's 

uniquely defined with respect to the time. And in here, we say that  x t the solution is 

actually this is fine. 

 

 I'll just keep the time here. It's evident that it's  uniformly defined in time, right. And here 

I'm going to say it's continuous  for all x zero in a neighborhood of the origin. 

 

  uniformly in time. Okay. So the first one says that the solutions go to zero and will remain  

there forever. The second one says that the solutions are continuous in the initial 

conditions.  Okay, this is important. Okay. And the final assertion of this proposition, 

proposition is  that t the function t of x zero is unique and again continuous in x zero. 

 

 Okay, so these are the  important sort of outcomes from the definition of finite time 

stability. Okay.  Now, what do we want to do? Obviously, we've always seen that these 

notions of  asymptotic stability, these definitions never really helped us, right. So what we 

really want  to do is to sort of have some Lyapunov like conditions. Okay, so that's really 

what we  would like to do have some Lyapunov like conditions to characterize finite time 

stability as well. 

 

  Okay, and so that is sort of what we are moving towards.  Right. So let's see how to state 

this. I'm wondering if  all right, that's fine. So I will just call this Lyapunov  like 

characterizations. 

 

  Okay, I'm just looking at Lyapunov characterizations for finite time stability.  Okay. 

 

 All right. Let's see. Let's see. Now suppose  I'm going to start with a more, well, I'm just 

going to directly jump into the simpler case,  where and we already know the notion of V 

and so on and so forth, the Lyapunov function itself.  So we define as before  V dot of x as del 

V del x  f of x for a V in C one, right. So if you have a continuously differentiable function  V, 



then you can actually make this kind of a definition for V dot. 

 

  Okay. All right. And this, by the way, this works even for this sort of special case where you 

have  solutions which are unique, but not at the origin and unique in forward time. All right. 

So  this Lyapunov derivative idea is still valid here. Yeah,  that V dot turns out to be exactly 

this. 

 

 Okay. All right.  So, so what we need to understand is that important V dot is well  defined 

in D removing zero, right? Because our solutions are well defined in D removing zero.  Okay. 

All right. So what is the main result?  So what is the main result? This is,  let me see, 

Lyapunov, I'll just call it Lyapunov theorem, right?  I'll just call it a Lyapunov finite time. 

 

  Theorem. And what does it say?  Suppose there exists a V which is continuously 

differentiable  and has the following properties. V is positive definite.  Right? This is a 

standard requirement. I mean, V is just seen as a function of some  X. Therefore, we just 

need to verify the positive definitities of V. 

 

 We already know how to do this.  Next, V dot is continuous. Well, V dot being continuous is 

already evident from the fact that  V is C1. So V dot is negative definite on the deleted 

neighborhood, right? On the deleted  neighborhood of the origin, right? So it's negative 

definite, but you need to verify  only on the deleted neighborhood of the origin. So, yeah, 

yeah, so you don't need to. So if you  remember, negative definiteness had two properties 

that you check, has had two conditions to verify. 

 

  One is that it is the function is zero at zero, and it is strictly positive for all non-zero  values. 

Okay. So in this case, you just need to check that it is strictly negative for all  non-zero values 

of the state. 

 

 Okay. And that's it. Okay. And finally, we want to,  you need this special condition, right? 

That there exists K positive and an alpha in 0, 1  and a neighborhood V inside D, right? Of 

origin.  Such that V dot plus K V to the power alpha is less than equal to zero on this V  

deleting the origin. Okay. If you have this, if you have these properties, then apologies. 

 

  Then zero is finite time stable.  Also, you can actually find or upper bound the settling time 

function, right? As T X zero is less  than equal to one over K one minus alpha V of X to the 

power one minus alpha for all X in N,  then N is as defined in the finite time stability 

definition. Okay. Now, it is important to sort of  try to understand this result, right? I mean, 

the first one, I mean, the Lyapunov finite time  stability theorem is not too different from the 

typical asymptotic stability theorem. In fact,  the first and second look rather similar, right? 

So we require that V is positive definite and V  dot is negative definite on this deleted 

neighborhood. On top of that, we have this  kind of a funny convergence type of a condition, 

which is that there exists some positive scalar K  and some exponent alpha between zero 

and one strictly inside zero and one. 



 

 Yeah, never one  and never zero. And a neighborhood V inside D of origin such that V dot 

plus K V alpha less than  equal to zero. And if you have these three conditions, we are in fact 

claiming that  you have finite time stability. Okay. In fact, if you would understand that from 

A and B,  you would be immediately able to claim some kind of Lyapunov stability. Yeah, I'm 

not claiming,  I'm not saying that I'm giving a proof of this theorem, but I'm just trying to 

indicate why this  might work. 

 

 Yeah. So from A and B itself, it's not difficult to see that you would have Lyapunov  stability. 

The only thing that's left for us is to conclude the finite time convergence. And for  that we 

can actually focus on this third statement. If I try to look at this sort of third statement  a bit 

more carefully, yeah, it basically says that I have V dot is less than equal to minus KV to the  

power alpha. And if you see this is a scalar  differential inequality. 

 

 Yeah, it's not a differential equation, but it's a differential  inequality. Right. But it's not too 

difficult. I mean, you can deal with this in an exactly similar  way, as you would deal with an 

equality. 

 

 Right. So this will be something like, and again, this is  because of the fact that V is positive 

definite, that we can all do this. So V is scalar value,  so it's actually a scalar differential 

inequality. So I can actually do things like this  and integrate both sides. And if you see V 

alpha is less than one,  right, so I will get something like,  I will get something like V one plus 

alpha, I guess divided by one plus alpha. 

 

  I am just trying to see if I am doing this right.  No, I apologize, this will be V not one plus 

alpha, but one minus alpha because alpha is in  the denominator, right? This is one minus 

alpha. And this is going to be less than equal to minus  K T. Yeah. And so if I solve from here, 

for the value of V, what am I going to get? I'm going to  get V is actually less than equal to 

minus K T or minus K times one minus alpha T. 

 

  And this to the power one by one minus alpha.  Right, this to the power one minus.  Right, 

right. 

 

 I believe that's okay. I believe that's okay. Right. And because, so this is one  over one minus 

alpha, this is fine. And you know that one minus alpha is strictly positive by  assumption 

because alpha lies exactly between zero and one. Right. So this is strictly positive. 

 

  And therefore, this is strictly positive as well. In fact, one can very easily show that  one 

minus alpha lies between zero and one as well. Right. One minus alpha strictly lies between 

zero  and one. 

 

 Okay. So this is something that is right. Right. Okay. And now, if I want to,  if I try to equate 

this to zero, right, suppose I equate this quantity to zero, what happens?  Okay. All right. So, 



okay, so I see that the expression here has been given in terms of the  V itself. 

 

 All right. All right. Let me actually try to see. So the left hand side would have  more terms. 

That's what I'm missing here. So what I'm missing here is like a V zero. 

 

  Right. So where V zero is equal to V at x zero. Right. So in fact, I'm going to erase this  and 

rewrite this carefully because I'm going to have V to the power one minus alpha is less than  

equal to k V zero. Yeah, that's what it makes sense. Right. 

 

 This has to be V zero minus  k one minus alpha to the power t.  Correct. Correct. Correct. 

Correct. This is exactly it. And now if I make sure that if  if this equal to zero happens, then I 

know that V is obviously positive definition can never be less  than zero. 

 

 Right. So I know that we will exactly be zero. We will exactly be zero. Right. And if V  is 

exactly zero by positive definiteness, I also understand that my states will also exactly be  

zero. Right. 

 

 So that's sort of what I'm trying to. Yeah, yeah, exactly, exactly, exactly. So this is  exactly 

what it is. One minus alpha. This was also one minus alpha. 

 

 So I should not miss this  exponent here as well. Right. And now from here, from this 

condition, I know that the t I need  will be actually equal to V zero to the power one minus 

alpha divided by k times one minus alpha.  Right. And that is exactly this bound. 

 

  Yeah. In fact, this should be not X, but X zero.  Yeah, there's not X, but X zero. 

 

 Right. It is a function of X zero.  So that's exactly what we get from here. Okay. So this so 

obviously this is the time we get and  this is obviously conservative because all Lyapunov 

analysis is conservative. We already  understand that. And that is why we say that the 

settling time is always upper bounded. You never  arrive at an exact value of settling time 

function, but you usually always almost always arrive at a  upper bound for the settling time 

function. 

 

 Okay. So I hope you understand now that from the first  two, you get the Lyapunov stability. 

That was the first requirement. And the next requirement was,  of course, that your finite 

time convergence, which you get from here. And in fact, the  expression for the settling time 

function is also rather easy to obtain just by integrating this  scalar differential inequality 

condition that we have written here. And just by integrating  it carefully, I was of course not 

doing it properly to begin with, but now that you've  done it carefully, there is also the value 

of time t and the value at initial time  as zero and then divided by one minus alpha. 

 

 So this is this integral evaluates to this in fact,  right? So this will actually be from, yeah, if 

you are being careful, this will be from V zero to V  and this will be from zero to t, right? This 



definite integral. And that's what we've done  here now. And you just get a minus kt. And 

once you have that, you know that you just need to  equate this guy to zero, because that 

means that this is going to be exactly zero because V can  never be less than zero. 

 

 And once you have that, you know that the t can be calculated like this.  All right. Okay, 

great. So we are left with a little bit of the converse theorem and we'll look  at a simple 

example in the next session.  Thank you. 


