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Week 11 : Lecture 65 : State constrained control: Part 1 

 

  Welcome to another session of SC 602, Non-linear control. So, what we were doing last 

time  was actually giving you an intro of adaptive control. So, I think I of course did not go  

much further. So, there is of course an entire section you can see which is on backstepping  

parameter unmatched with control. I did not cover this because again this is not an adaptive  

control course. But of course you can see that the examples we were considering the  

control and the uncertainty appears in the same equation. 

 

 So, this is called a matched  uncertainty. And as you can imagine these are much easier to 

handle. All that we did  was instead of theta star we put a theta hat. So, again I did not say 

that at the time. 

 

  But this idea that whatever control I get I just substitute the unknown with an estimate  of 

the unknown is called the certainty equivalence principle. So, this is very commonly 

whenever  you hear somebody in adaptive theory talking about certainty equivalence this is 

what they  mean. They basically design the control of assuming the parameter is known. 

And then  in the adaptive control this is replaced the true value of the parameter by its 

estimate  theta hat. So, this is the notion of certainty equivalence. 

 

 So, basically you are taking  the certain controller and you are creating an equivalent 

controller. There is no you  never change the structure of the controller. And this obviously 

gives us an easy way of  constructing the control of course. So, the idea was pretty straight 

forward. All we did  was we again constructed the known case control. 

 

 So, we of course we did it we are back stepping  in this particular case. But it does not 

matter how you do it you construct a known case control.  And then you basically replace 

the theta star in the control by the theta hat. And once  you do that you basically add to your 

Lyapunov function a term in the parameter error. So,  this is what we did. 

 

 So, you had this Lyapunov function for the system or the control Lyapunov  function. 

Remember that we need a control Lyapunov function or a strict Lyapunov function.  So, you 

should not even start doing adaptive control without a CLF or a or a strict Lyapunov  

function. Otherwise adaptive control is known to fail royally ok. Not even like you know in  

small ways it will basically really damage the system in the presence of disturbances. 



 

  So, make sure that for the known system you always start with a strictly Lyapunov 

function  which is what we get by back stepping. That is why back stepping is so popular. 

Then we just  added a term in the parameter error ok. This was the idea right. And then we 

did the analysis and  the purpose of this analysis was to get a update law. 

 

 We got that. The really cool thing like I  said was you do not care where you start this 

update law. You do not care about the initial  condition. It can be anything. It can be as far 

from the true value as you want. 

 

 You will still  get exact tracking. This guarantees that you get exact tracking ok. And that is 

pretty amazing if  you ask me right because you made the system agnostic to the unknown 

however much it was.  So, as you saw with the your typical signal chasing arguments which 

is what we did in the  end here. We could prove that E1 and E2 both go to 0 correct. 

 

 And we of course only could prove  that something like this you know. You only can prove 

this on the parameter errors right. So,  the parameter errors are not guaranteed to go to 0 

unless you have something called a persistence  of excitation condition right. Of course we 

did not discuss what is the persistence of excitation  condition. That is not part of the plan 

again right. 

 

 But finding the parameter is the so in  adaptive control we do not particularly care about 

finding the parameter. Our aim is to track and we  did it successfully. So, we do not care to 

find it ok. But in system identification and also in  all learning all of learning all of deep 

learning finding the parameter is the requirement ok.  And so in those cases persistence of 

excitation is inherently assumed yeah. 

 

 Although they may not  use those same terms same ideas or same words sorry they may 

not use the same words but the  idea is the same. Persistence of excitation is required for 

parameter learning ok. And  that is the crux of it. You cannot you cannot learn without 

having this kind of a persistence  yeah. But although typically all the learning algorithms are 

data driven. 

 

 So, nobody tries  to verify these conditions. They just assume you did a good job ok. And 

then you run the algorithm  yeah. But in reality if you do want to learn in a true sense you 

need persistence of excitation ok.  That is really the key point here. 

 

 So, this is what we will do in terms of adaptive control.  We are not going to do anything 

more. What I want to do is start a new topic and that is  on constraint control. We want to 

talk about control under state constraints ok. So, a lot  of you until now we have been 

talking about lot of scenarios although we have done non-linear  control design and I hope 

you have learnt some methods at least pretty well. 

 



 But we have not  seen a lot of realistic scenarios. We have definitely not seen disturbances. 

But I did  say in passing yeah we did not cover it. But we did say in passing that you know 

that because  we are doing Lyapunov based design it is naturally robust. In the sense if you 

add some disturbances  your system is not going to become unbounded. 

 

 You are still going to have some kind of bounded  performance which is governed by the 

size of the disturbances. And in a lot of cases you can even  increase the control gains in 

order to make the residual set. Suppose you are supposed to go to  the origin instead of 

going to the origin you will somehow you know circle around the origin  alright. And 

whatever the size of the circle or the set is can be made can be shrunk by choosing  larger 

control gains ok. So, this is really the advantage of Lyapunov based design that you are  

getting robustness for free ok. 

 

 It is easy to prove I am not going to really prove it here.  But robustness is sort of something 

we have already handled. That is why I do not talk about it  separately in this course ok. So, 

you can just blindly go and design a Lyapunov controller for  your systems. Basic robustness 

is bounded noise bounded disturbance handled. 

 

 You do not have to  think about it and worry about it yeah great. But the other scenario is 

that of constraints  on the control and constraints on the state ok. Of course I am not going 

to talk about control  constraints per say which can also be handled by the way in this using 

the same methods that I am  going to talk about. But we want to talk about state constraints. 

So, if you see one of the  issues with non-linear control is that if you have ever implemented 

any non-linear control and  we have we have implemented these back stepping controllers 

on quadrotors and things like that. 

 

  Usually what will happen is you will get a lot of overshoots ok. Like in linear systems when 

you  are talking about a linear system you design a linear controller. You can quantify how 

much is  the overshoot right. You can actually say I want this much overshoot accordingly I 

will choose the  PID gains using some transfer function ideas and all that. You can actually 

compute what is the  overshoot. 

 

 You can actually control the gains so that the overshoot is minimized and things like  that. 

In the non-linear case there is no such equivalent ok that you can that how much can you  

overshoot and it is a non-linear system right. It can actually throw you out before coming 

back in  alright. So, it is a possibility that will be overshoot. So, we see a lot of overshoots 

and  then gain tuning is not very easy. 

 

 So, this is another thing I will get a lot of questions on  how do I tune gains and things like 

that ok. So, one of the key requirements in a lot of  applications is that your state trajectories 

while they are trying the transient basically until now  we are only talking about asymptotic 

performance ok. So, that is what so until now only asymptotic  guarantees yeah. What does 

it mean? It means that I am only saying that I will do this as t goes to  infinity or that as t 



goes to infinity. I am going doing something nice as time becomes large ok. 

 

  So, the big question is what about transients? Yeah. So, what happens to the transients 

alright.  So, while I am converging to the good place how bad is my trajectory yeah. This as 

you as you can  see none of the theory that we have done until now does not really cover 

this. Yes, you have to you  have to understand that because again we are using Lyapunov 

based design we have always had something  like v dot of x of t say is less than equal to 0. 

 

 At least we had this right. We had some kind of  negative semi definite which means that we 

have v of x of t is less than equal to v of x of t 0  correct and this gave us some kind of 

ellipsoid right. I mean this is this what does this mean?  This means that in terms of your 

right in terms of your yeah in terms of your real world systems  what does it mean? It 

means that I sort of got a ellipsoid in which my states will remain ok.  Now this ellipsoid 

could be of any size right. I mean it is not being yeah it is governed by  your initial 

conditions right here right. But suppose your initial conditions were large you  started with 

a large offset yeah not that uncommon. 

 

 Suppose you are very far from your desired  trajectory. So, you started with a large offset. 

So, and this is your ellipsoid that is governed  by this ellipsoid is actually nothing but v well 

let us see this is actually ellipsoid is if you  like this terminology yeah it is weird notation. 

But all I am saying is it is like if you compute  v x t 0 it is some constant value right because 

it is v is mapping to scalars it is some constant  value right and if you take v inverse of that 

this is the shape you might get yeah you could  get some other shape also I am not saying it 

has to be an ellipsoid. But I am saying it is some  shape some closed set right because it is a 

inverse of some constant ok. 

 

 Because say for  example if I think of v as x 1 square by 2 plus x 2 square by 4 right then I 

want so this is this  set is something like equal to some constant right. So, you can see this is 

some kind of  an ellipse equation right. So, ellipsoid ellipse equation and similarly if you do 

more you can get  some general versions of ellipsoid. Now the point is if your initial 

conditions were rather large  or initial errors were rather large because this can be in terms 

of x or it can be in terms of  error depending on how the problem is posed right. 

 

 Then this ellipsoid is large right. Now what  happens in the future later on all I am saying is 

I am restricted inside this set and nothing more  right. So, my states can be anywhere here 

right I mean in the sense that all I am saying is at any  instant in time I am not going to 

exceed this ellipsoid yeah which can if my trajectory if my  desired was this yeah this is my 

desired right I want to sort of move here yeah usually you will  take origin is the desired but 

do not worry about it I am just giving you a representation it may  not be the truth in error 

vary in error variables typically origin will be your desired always that  is how we have 

been working but if you think reference trajectory right you should x minus  r is equal to the 

error so the r could be something in this blue something like this blue thing right.  But I may 

be straying from this really far away right I could do this try to reach it but then I  could go 



here try to reach it I could go here and then eventually slowly I can reach right. But I  am 

going all the way to the end could I could potentially go all the way to the boundary right  

which means I am my states are growing larger large in an attempt to reach this set okay.  

So, yes there is some bounds on the transients but they are not bounds that you might like 

yeah. 

 

  Then there is another scenario where there is a lot of safety critical applications what is  

the safety critical application and one simple application is obstacle avoidance applications  

suppose I have some robot and I have these yeah so I have this starting point and I have  

this end point yeah I want to go but I do not want to hit anything okay. So, now the robot if  I 

design a normal control I have no way of specifying that I have to avoid these sets right  

there is no such thing right how do you specify it there is no way typically your normal 

control  will probably just go here which it will not because there is an obstacle so it will hit 

the  wall yeah that is a problem. So, what do you want the controller to do? We wanted to go 

here  and then figure out there is an obstacle I see yeah we wanted to go here we want and 

figure out  say okay fine there is an obstacle then do this maybe go here then do this and do 

here okay.  Whatever I mean I am not talking optimality here optimal path might be 

something like  I am not talking optimality here but I am saying that I want to at least avoid 

the obstacles right.  So, if I see an obstacle I should turn now it should not be like I have to of 

course you can  do it the funny way where you can see a obstacle give a trajectory which is 

around it and then  start rotating around it and all that right that is of course one way but 

the other ways of course  you can include it in the control design itself all right. 

 

 So, safety critical applications are  basically saying that you have some reach or avoid sets 

you have some avoid sets or possibly  you do not want the states to grow too large in the 

transients itself while it is trying to reach  okay you want the states to behave nicely while it 

reaches okay and that is a requirement for almost  any control yeah anything you do any 

trajectory tracking you probably do not want to stray too  far away from the desired yeah 

unless because it may go out of your operational range sensors  might be an issue 

everything might be an issue if you have two large velocities in a spacecraft  that is a 

problem. So, you do not want to even in the transient stage exceed this okay. So,  this is what 

sort of motivates the notion of barrier function for control okay.  So, this is what we want to 

look at and there is a little bit of theory we will cover yeah and let  us see I will sort of try to 

motivate it initially if you look at this dynamical system is just a  dynamical system okay not 

a yeah there is no control yet okay as of now no control we want  to talk about what these 

barrier functions are right. So, the idea is make sets invariant  okay or forward invariant, 

forward invariant is forward in time invariant okay. 

 

 So, until now  aim has been what to have stability and reach a point and reach a equilibrium 

right.  We did not try to make sets invariant although if you remember we did all this 

Lassalle theorem  naturally there were some invariant sets okay. So, that is where so let us 

see let us use that  example also okay. Suppose I take again some V of X of T alright. Now 

suppose again there are it  has level sets of this kind this is one level set of V another 



another and so on right. 

 

  Because so this will be something like V of X T equal to say C 1 V of X T equal to C 2 V of X  T 

equal to C 3 these are the sets because I already showed you how you draw and of course  

you would expect that because it is smaller so you would expect by virtue of the fact that V  

is a Lyapunov function you would expect that what C 3 will be less than C 2 less than C 1 

right.  Because it is inside so you expect that it is the case right. Now what do we do? We 

start typically  with Lyapunov function, Lyapunov candidate maybe right V X T right and 

then what do we typically  get? We at least try to get something like V yeah because if we 

did not get this I guess we  achieved nothing right. So obviously let us assume we got this. So 

therefore at this point this  became a Lyapunov function itself okay. 

 

 Now like I showed you before the set which is defined by  so we already know that V X of T 

less than equal to V X at T 0 holds right because of this right.  So what does it mean? It 

means that if I define my set omega C or omega say C 1 as set of all X  such that V well I will 

just say V X less than equal to C 1 yeah. What is this set? This set  is just the outer ellipse 

right is the outer ellipse okay is invariant under what condition?  What do I need for this set 

to be invariant using this Lyapunov function? I only need that  V X T 0 right is that fine right 

because I already have that V X is less than V X T  0 and if V X T 0 is less than C 1 I am good 

okay alright alright alright great.  Now now one of the issues so this is so I got invariance 

right this is actually invariant  right because forward in time invariant if I start inside this V 

X equal to C 1 set I  am going to stay inside it okay alright. Now suppose my initial 

conditions okay so  this is assuming what my initial conditions are somewhere inside this 

way somewhere inside  this outer ellipse. 

 

 Now suppose my initial conditions were inside the inner ellipse okay  somewhere inside 

the inner ellipse right. So in that case you can see that omega C 3  is also invariant if V X T 0 

less than equal to C 3 correct. So suppose I started inside  the smaller ellipse then this 

becomes invariant which means I never escape this gate right  never escape this gate. So 

basically by this logic if you keep using this you will see  that depending on initial conditions 

how it is chosen or in fact even by scaling the V  itself you cannot you don't need to actually 

change initial conditions by scaling the V  itself you will be able to show that all these sets 

inside some larger ellipsoid are  all invariant. So once you start inside them that's what is 

invariance right invariance  means start inside a set remain inside a set okay that is 

invariance okay. 

 

  So whenever you start inside you remain inside this set okay but the point is this is not  

what we are necessarily looking for okay. So it might so be the case that our set this  guy is 

our safety set that is I want to remain only inside this larger ellipsoid that is  my safety set I 

am allowed to operate anywhere inside this larger region but because of this  Lyapunov 

style of construction what happened is if I started inside this set I never escape  this yeah I 

don't even utilize the larger space right I don't go here and come back  to origin right 

whereas I am allowed to I am allowed to use the larger space larger  state space because I 



only want to keep this guy invariant but because of the Lyapunov  construction that I used 

right with positive definite function and then negative semi definite  V dot what happens is 

if I start here I remain only inside this set which is governed by  my initial condition not by a 

predefined set that I as a user you know defined right.  Typically what how do you define 

your safety set or desired region of operation you decided  predefined it you don't base it on 

your initial condition, initial condition can be anything  right but it's you don't base your 

safety critical set on where you started so because  of this kind of construction you will 

always stay inside this set so you are actually wasting  the ability to work here yeah which 

might in some cases be what you desire actually  yeah you might need more control effort to 

always stay inside yeah you might be allowed  to get out and then come back in that's okay 

because as long as you are remaining in the  larger set but this doesn't allow it okay.  So we 

want to look at constructions which will allow us to make one set forward invariant  but 

everything inside is not forward invariant necessarily okay so that is what we are looking  

to do with barrier functions okay.  Thank you. 


