
Nonlinear Control Design

Prof. Srikant Sukumar

Systems and Control Engineering

Indian Institute of Technology Bombay

Week 11 : Lecture 65 : State constrained control: Part 1

 Welcome to another session of SC 602, Non-linear control. So, what we were doing last

time was actually giving you an intro of adaptive control. So, I think I of course did not go

much further. So, there is of course an entire section you can see which is on backstepping

parameter unmatched with control. I did not cover this because again this is not an adaptive

control course. But of course you can see that the examples we were considering the

control and the uncertainty appears in the same equation.

 So, this is called a matched uncertainty. And as you can imagine these are much easier to

handle. All that we did was instead of theta star we put a theta hat. So, again I did not say

that at the time.

 But this idea that whatever control I get I just substitute the unknown with an estimate of

the unknown is called the certainty equivalence principle. So, this is very commonly

whenever you hear somebody in adaptive theory talking about certainty equivalence this is

what they mean. They basically design the control of assuming the parameter is known.

And then in the adaptive control this is replaced the true value of the parameter by its

estimate theta hat. So, this is the notion of certainty equivalence.

 So, basically you are taking the certain controller and you are creating an equivalent

controller. There is no you never change the structure of the controller. And this obviously

gives us an easy way of constructing the control of course. So, the idea was pretty straight

forward. All we did was we again constructed the known case control.

 So, we of course we did it we are back stepping in this particular case. But it does not

matter how you do it you construct a known case control. And then you basically replace

the theta star in the control by the theta hat. And once you do that you basically add to your

Lyapunov function a term in the parameter error. So, this is what we did.

 So, you had this Lyapunov function for the system or the control Lyapunov function.

Remember that we need a control Lyapunov function or a strict Lyapunov function. So, you

should not even start doing adaptive control without a CLF or a or a strict Lyapunov

function. Otherwise adaptive control is known to fail royally ok. Not even like you know in

small ways it will basically really damage the system in the presence of disturbances.

 So, make sure that for the known system you always start with a strictly Lyapunov

function which is what we get by back stepping. That is why back stepping is so popular.

Then we just added a term in the parameter error ok. This was the idea right. And then we

did the analysis and the purpose of this analysis was to get a update law.

 We got that. The really cool thing like I said was you do not care where you start this

update law. You do not care about the initial condition. It can be anything. It can be as far

from the true value as you want.

 You will still get exact tracking. This guarantees that you get exact tracking ok. And that is

pretty amazing if you ask me right because you made the system agnostic to the unknown

however much it was. So, as you saw with the your typical signal chasing arguments which

is what we did in the end here. We could prove that E1 and E2 both go to 0 correct.

 And we of course only could prove that something like this you know. You only can prove

this on the parameter errors right. So, the parameter errors are not guaranteed to go to 0

unless you have something called a persistence of excitation condition right. Of course we

did not discuss what is the persistence of excitation condition. That is not part of the plan

again right.

 But finding the parameter is the so in adaptive control we do not particularly care about

finding the parameter. Our aim is to track and we did it successfully. So, we do not care to

find it ok. But in system identification and also in all learning all of learning all of deep

learning finding the parameter is the requirement ok. And so in those cases persistence of

excitation is inherently assumed yeah.

 Although they may not use those same terms same ideas or same words sorry they may

not use the same words but the idea is the same. Persistence of excitation is required for

parameter learning ok. And that is the crux of it. You cannot you cannot learn without

having this kind of a persistence yeah. But although typically all the learning algorithms are

data driven.

 So, nobody tries to verify these conditions. They just assume you did a good job ok. And

then you run the algorithm yeah. But in reality if you do want to learn in a true sense you

need persistence of excitation ok. That is really the key point here.

 So, this is what we will do in terms of adaptive control. We are not going to do anything

more. What I want to do is start a new topic and that is on constraint control. We want to

talk about control under state constraints ok. So, a lot of you until now we have been

talking about lot of scenarios although we have done non-linear control design and I hope

you have learnt some methods at least pretty well.

 But we have not seen a lot of realistic scenarios. We have definitely not seen disturbances.

But I did say in passing yeah we did not cover it. But we did say in passing that you know

that because we are doing Lyapunov based design it is naturally robust. In the sense if you

add some disturbances your system is not going to become unbounded.

 You are still going to have some kind of bounded performance which is governed by the

size of the disturbances. And in a lot of cases you can even increase the control gains in

order to make the residual set. Suppose you are supposed to go to the origin instead of

going to the origin you will somehow you know circle around the origin alright. And

whatever the size of the circle or the set is can be made can be shrunk by choosing larger

control gains ok. So, this is really the advantage of Lyapunov based design that you are

getting robustness for free ok.

 It is easy to prove I am not going to really prove it here. But robustness is sort of something

we have already handled. That is why I do not talk about it separately in this course ok. So,

you can just blindly go and design a Lyapunov controller for your systems. Basic robustness

is bounded noise bounded disturbance handled.

 You do not have to think about it and worry about it yeah great. But the other scenario is

that of constraints on the control and constraints on the state ok. Of course I am not going

to talk about control constraints per say which can also be handled by the way in this using

the same methods that I am going to talk about. But we want to talk about state constraints.

So, if you see one of the issues with non-linear control is that if you have ever implemented

any non-linear control and we have we have implemented these back stepping controllers

on quadrotors and things like that.

 Usually what will happen is you will get a lot of overshoots ok. Like in linear systems when

you are talking about a linear system you design a linear controller. You can quantify how

much is the overshoot right. You can actually say I want this much overshoot accordingly I

will choose the PID gains using some transfer function ideas and all that. You can actually

compute what is the overshoot.

 You can actually control the gains so that the overshoot is minimized and things like that.

In the non-linear case there is no such equivalent ok that you can that how much can you

overshoot and it is a non-linear system right. It can actually throw you out before coming

back in alright. So, it is a possibility that will be overshoot. So, we see a lot of overshoots

and then gain tuning is not very easy.

 So, this is another thing I will get a lot of questions on how do I tune gains and things like

that ok. So, one of the key requirements in a lot of applications is that your state trajectories

while they are trying the transient basically until now we are only talking about asymptotic

performance ok. So, that is what so until now only asymptotic guarantees yeah. What does

it mean? It means that I am only saying that I will do this as t goes to infinity or that as t

goes to infinity. I am going doing something nice as time becomes large ok.

 So, the big question is what about transients? Yeah. So, what happens to the transients

alright. So, while I am converging to the good place how bad is my trajectory yeah. This as

you as you can see none of the theory that we have done until now does not really cover

this. Yes, you have to you have to understand that because again we are using Lyapunov

based design we have always had something like v dot of x of t say is less than equal to 0.

 At least we had this right. We had some kind of negative semi definite which means that we

have v of x of t is less than equal to v of x of t 0 correct and this gave us some kind of

ellipsoid right. I mean this is this what does this mean? This means that in terms of your

right in terms of your yeah in terms of your real world systems what does it mean? It

means that I sort of got a ellipsoid in which my states will remain ok. Now this ellipsoid

could be of any size right. I mean it is not being yeah it is governed by your initial

conditions right here right. But suppose your initial conditions were large you started with

a large offset yeah not that uncommon.

 Suppose you are very far from your desired trajectory. So, you started with a large offset.

So, and this is your ellipsoid that is governed by this ellipsoid is actually nothing but v well

let us see this is actually ellipsoid is if you like this terminology yeah it is weird notation.

But all I am saying is it is like if you compute v x t 0 it is some constant value right because

it is v is mapping to scalars it is some constant value right and if you take v inverse of that

this is the shape you might get yeah you could get some other shape also I am not saying it

has to be an ellipsoid. But I am saying it is some shape some closed set right because it is a

inverse of some constant ok.

 Because say for example if I think of v as x 1 square by 2 plus x 2 square by 4 right then I

want so this is this set is something like equal to some constant right. So, you can see this is

some kind of an ellipse equation right. So, ellipsoid ellipse equation and similarly if you do

more you can get some general versions of ellipsoid. Now the point is if your initial

conditions were rather large or initial errors were rather large because this can be in terms

of x or it can be in terms of error depending on how the problem is posed right.

 Then this ellipsoid is large right. Now what happens in the future later on all I am saying is

I am restricted inside this set and nothing more right. So, my states can be anywhere here

right I mean in the sense that all I am saying is at any instant in time I am not going to

exceed this ellipsoid yeah which can if my trajectory if my desired was this yeah this is my

desired right I want to sort of move here yeah usually you will take origin is the desired but

do not worry about it I am just giving you a representation it may not be the truth in error

vary in error variables typically origin will be your desired always that is how we have

been working but if you think reference trajectory right you should x minus r is equal to the

error so the r could be something in this blue something like this blue thing right. But I may

be straying from this really far away right I could do this try to reach it but then I could go

here try to reach it I could go here and then eventually slowly I can reach right. But I am

going all the way to the end could I could potentially go all the way to the boundary right

which means I am my states are growing larger large in an attempt to reach this set okay.

So, yes there is some bounds on the transients but they are not bounds that you might like

yeah.

 Then there is another scenario where there is a lot of safety critical applications what is

the safety critical application and one simple application is obstacle avoidance applications

suppose I have some robot and I have these yeah so I have this starting point and I have

this end point yeah I want to go but I do not want to hit anything okay. So, now the robot if I

design a normal control I have no way of specifying that I have to avoid these sets right

there is no such thing right how do you specify it there is no way typically your normal

control will probably just go here which it will not because there is an obstacle so it will hit

the wall yeah that is a problem. So, what do you want the controller to do? We wanted to go

here and then figure out there is an obstacle I see yeah we wanted to go here we want and

figure out say okay fine there is an obstacle then do this maybe go here then do this and do

here okay. Whatever I mean I am not talking optimality here optimal path might be

something like I am not talking optimality here but I am saying that I want to at least avoid

the obstacles right. So, if I see an obstacle I should turn now it should not be like I have to of

course you can do it the funny way where you can see a obstacle give a trajectory which is

around it and then start rotating around it and all that right that is of course one way but

the other ways of course you can include it in the control design itself all right.

 So, safety critical applications are basically saying that you have some reach or avoid sets

you have some avoid sets or possibly you do not want the states to grow too large in the

transients itself while it is trying to reach okay you want the states to behave nicely while it

reaches okay and that is a requirement for almost any control yeah anything you do any

trajectory tracking you probably do not want to stray too far away from the desired yeah

unless because it may go out of your operational range sensors might be an issue

everything might be an issue if you have two large velocities in a spacecraft that is a

problem. So, you do not want to even in the transient stage exceed this okay. So, this is what

sort of motivates the notion of barrier function for control okay. So, this is what we want to

look at and there is a little bit of theory we will cover yeah and let us see I will sort of try to

motivate it initially if you look at this dynamical system is just a dynamical system okay not

a yeah there is no control yet okay as of now no control we want to talk about what these

barrier functions are right. So, the idea is make sets invariant okay or forward invariant,

forward invariant is forward in time invariant okay.

 So, until now aim has been what to have stability and reach a point and reach a equilibrium

right. We did not try to make sets invariant although if you remember we did all this

Lassalle theorem naturally there were some invariant sets okay. So, that is where so let us

see let us use that example also okay. Suppose I take again some V of X of T alright. Now

suppose again there are it has level sets of this kind this is one level set of V another

another and so on right.

 Because so this will be something like V of X T equal to say C 1 V of X T equal to C 2 V of X T

equal to C 3 these are the sets because I already showed you how you draw and of course

you would expect that because it is smaller so you would expect by virtue of the fact that V

is a Lyapunov function you would expect that what C 3 will be less than C 2 less than C 1

right. Because it is inside so you expect that it is the case right. Now what do we do? We

start typically with Lyapunov function, Lyapunov candidate maybe right V X T right and

then what do we typically get? We at least try to get something like V yeah because if we

did not get this I guess we achieved nothing right. So obviously let us assume we got this. So

therefore at this point this became a Lyapunov function itself okay.

 Now like I showed you before the set which is defined by so we already know that V X of T

less than equal to V X at T 0 holds right because of this right. So what does it mean? It

means that if I define my set omega C or omega say C 1 as set of all X such that V well I will

just say V X less than equal to C 1 yeah. What is this set? This set is just the outer ellipse

right is the outer ellipse okay is invariant under what condition? What do I need for this set

to be invariant using this Lyapunov function? I only need that V X T 0 right is that fine right

because I already have that V X is less than V X T 0 and if V X T 0 is less than C 1 I am good

okay alright alright alright great. Now now one of the issues so this is so I got invariance

right this is actually invariant right because forward in time invariant if I start inside this V

X equal to C 1 set I am going to stay inside it okay alright. Now suppose my initial

conditions okay so this is assuming what my initial conditions are somewhere inside this

way somewhere inside this outer ellipse.

 Now suppose my initial conditions were inside the inner ellipse okay somewhere inside

the inner ellipse right. So in that case you can see that omega C 3 is also invariant if V X T 0

less than equal to C 3 correct. So suppose I started inside the smaller ellipse then this

becomes invariant which means I never escape this gate right never escape this gate. So

basically by this logic if you keep using this you will see that depending on initial conditions

how it is chosen or in fact even by scaling the V itself you cannot you don't need to actually

change initial conditions by scaling the V itself you will be able to show that all these sets

inside some larger ellipsoid are all invariant. So once you start inside them that's what is

invariance right invariance means start inside a set remain inside a set okay that is

invariance okay.

 So whenever you start inside you remain inside this set okay but the point is this is not

what we are necessarily looking for okay. So it might so be the case that our set this guy is

our safety set that is I want to remain only inside this larger ellipsoid that is my safety set I

am allowed to operate anywhere inside this larger region but because of this Lyapunov

style of construction what happened is if I started inside this set I never escape this yeah I

don't even utilize the larger space right I don't go here and come back to origin right

whereas I am allowed to I am allowed to use the larger space larger state space because I

only want to keep this guy invariant but because of the Lyapunov construction that I used

right with positive definite function and then negative semi definite V dot what happens is

if I start here I remain only inside this set which is governed by my initial condition not by a

predefined set that I as a user you know defined right. Typically what how do you define

your safety set or desired region of operation you decided predefined it you don't base it on

your initial condition, initial condition can be anything right but it's you don't base your

safety critical set on where you started so because of this kind of construction you will

always stay inside this set so you are actually wasting the ability to work here yeah which

might in some cases be what you desire actually yeah you might need more control effort to

always stay inside yeah you might be allowed to get out and then come back in that's okay

because as long as you are remaining in the larger set but this doesn't allow it okay. So we

want to look at constructions which will allow us to make one set forward invariant but

everything inside is not forward invariant necessarily okay so that is what we are looking

to do with barrier functions okay. Thank you.

