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  Alright, so Banach spaces, Hilbert spaces, we have already done this setup on what kind  of 

space we want. So, we also need notions of matrix norms like I said. So, we work with  what 

is called induced matrix norm. It is induced by the corresponding vector norm and  hence it 

is called the induced matrix norm. So, what is the matrix norm for a matrix A?  By the way 

this matrix does not need to be square or invertible or anything like that.  You can compute 

the norm for any matrix. 

 

 So, the P-norm for a matrix is basically defined  using the supremum, yeah, supremum over 

x not equal to 0. The P-norm of A times x divided  by the P-norm of x. I am sorry, this is a 

matrix norm. Yeah, this is how you, this is  a notation for the matrix norm. 

 

 Yeah, and this is the definition for the matrix norm.  This is exactly how you define it. It is 

the supremum over all x not 0, A x, P-norm  of A x and divided by norm of x, P-norm of x. So, 

obviously you have to imagine that  the x has to be compatible with A. I cannot really take 

arbitrary x and arbitrary vector  spaces. 

 

 I mean, yeah, if it is a 1 cross 2 matrix, I cannot take a three-dimensional  vector. This is so, 

so x has to be something that you can actually make this multiplication  happen. Okay. But 

remember that the vector, the size of the vector in the numerator and  the size of the vector 

in the denominator do not have to be the same. Yeah. 

 

 You understand  that you can compute the P-norm for any vector space, right? So, it does 

not matter what  is the size of the vector itself. Okay. So, you compute the P-norm of the 

numerator and  P-norm of the denominator since x is not 0. Therefore, this is, you know, 

this is a  valid operation. 

 

 Yeah. And you look at the ratio. This ratio and when you look at the  supremum, it is 

somehow the maximum. It is a generalization of the maximum. Okay. So,  when you look at 

the ratio and you take a supremum, you are essentially measuring the  maximum 

magnification that a matrix gives to a vector. 

 

 Okay. Somehow measuring the maximum  magnification in some sense. That is how, how 

much the vector gets, you know, enlarged  in some sense, lengthened in some sense. Yeah. 

By a particular matrix. That is really what  you intuitively get out of a matrix norm. 

 



 Okay. Makes sense because vector norms also  measure the size of the vector or length of 

the vector. Similarly, here the matrix induced  norm measures somehow the size of the 

matrix but in how it influences the particular vector  space. Okay. If you change the vector 

space, you might get a different answer. 

 

 Alright.  So, therefore it is induced. Yeah. Remember. Okay.  So, what is the supremum? The 

supremum is defined as the least upper bound. 

 

 Okay. This  is the best definition of supremum you can have. It is called the least upper 

bound.  Yeah. So, of course you can imagine there is an upper bound always. 

 

 Yeah. But then you  are looking for the least upper bound. This is what is the supremum. 

And the more formal  definition is that the supremum for a set S in R closure which is 

basically R union  infinity. Yeah. Is the smallest value of y such that for all x in S, x is less 

than equal  to 1. 

 

 Okay. Exactly the least upper bound written in mathematical terms. Okay. It is  not just an 

upper bound. Okay. If I take this set, if I take this 0, 1 open interval as  my set S, then you 

know that 1, 2, 3, 4, 5 all of them are upper bounds. 

 

 Everything is  an upper bound. But the supremum is the least upper bound. Okay. Yeah. Just 

to you know  sort of do a thought experiment, if I say the supremum is actually 1 minus 

epsilon for  some positive epsilon. 

 

 Okay. But then I know that 1 minus epsilon plus delta can also belong  to 0, 1. Correct. I just 

have to choose my delta appropriately. As long as delta is less  than epsilon, 1 minus epsilon 

plus delta also belongs to this 0, 1 open interval. But then  1 minus epsilon plus delta is 

greater than 1 minus epsilon. 

 

 So, 1 minus epsilon cannot  be a supremum. Okay. The simple idea. So, 1 minus epsilon is 

not a supremum for any  positive epsilon. 

 

 Okay. So, the only possibility is that epsilon is exactly 0 and 1 is the  supremum. Okay. Okay. 

 

 Least upper bound. Yeah. Again for most of you this may be intuitive  in this example that 1 

is the supremum and why did I make this proof you know whatever  funny looking proof. 

But in some more complicated cases you have to use these kinds of proof.  Okay. Anyway, so 

in this case it is very obvious that for an open interval 0, 1, 1 has to be  the supremum. 

Because everything below 1 is part of the set. 

 

 That is the idea of an open  set. Okay. 1 is not included in the set. 

 

 Very nice. Very  good point. Okay. So, if I thought of 0, 1 open interval as my vector space 



then the  supremum is not in the set. Okay. This is the difference between a supremum and 

a maximum.  A maximum will always be part of the set. 

 

 Okay. So, therefore there are many scenarios  of sets for which you cannot define a 

maximum. And hence we have to talk about a supremum.  That is the whole reason for 

talking about the supremum. Okay. That the maximum may not  exist in the set. 

 

 Right. Okay. Yes. Say that again. Absolutely. That is also possible.  So that is what I am 

saying. So, there is couple of reasons why you talk about the supremum.  One is that the 

maximum may not be part of the set. 

 

 Yeah. So, see whenever I talk about  a vector space. Alright. Once I define a vector space you 

have to almost think that my world  ends there. Yeah. Although you know that 2 is there, 3 is 

there, minus 1 is there. 

 

 But  for all intents and purposes between 0, 1 is my world. That is the end. Because all  my 

analysis everything I do is inside that set. So, anything that does not lie in that  set is a 

problem for you in some sense. 

 

 Or yeah I don't understand it. Okay. So, supremum  is a way of sort of giving this extension. 

Okay. It talks about but again all of this  works if there is a super set in some sense. Okay. 

There is something beyond 0, 1 so everything  works. 

 

 Yeah. So, of course like you are saying there are sets where there is no maximum if  I think 

about set 0 infinity. Yeah. If I think of a set 0 infinity then you will say  that the supremum is 

infinity. 

 

 Okay. So, infinity is allowed. So, therefore when we talk about  supremum infinity is 

allowed. Yeah. When we talk real numbers infinity is not allowed.  Yeah. So, if you give me a 

set 0 infinity I will still say there is a supremum but it  is infinity. 

 

 Okay. Which is useless sort of. So, I mean mostly you can't do anything with  it but anyway 

we still say that supremum is infinity. Alright.  Let us look at another example. 

 

 In this case it is a function. Okay. It is a set created  from a image of a function. Okay. So, if I 

look at the function f of x which is 1 minus  e minus x and x is actually non-negative real 

numbers. Yeah. And I look at the set e which  is actually the image of f. 

 

 I hope you understand what is the image of f. It is just all the  values that f takes. Yeah. So, 

the image of f is actually exactly this. Right. What  is the image of f? It is this guy because it is 

a nice continuous function. 

 

 In fact  smooth function. Yeah. So, the image of f is exactly this. So, what is the supremum?  



1. 

 

 Yeah. But it is not contained in e. Okay. So, basically when the supremum is contained  in 

the set you can just replace the sup notation with the max notation. Okay. Also when the  

supremum is contained in a set folks who have done real analysis and hopefully SC639 will  

know that the set is, if the set contains its supremum and infimum then the set is  what? Set 

is a closed set. Okay. If the set contains its supremum and infimum or if the  other way 

round, if the supremum and infimum of a set are in the set then it is a closed  set. 

 

 Okay. So, we talk about a few matrix properties  also. We use a lot of these symmetric 

matrices, symmetric square matrices to design these  Lyapunov functions and so on and so 

forth. So, we like to know some properties of these.  First all eigenvalues of symmetric 

matrices are real. 

 

 Yeah. Most of you should know all  of this. A is said to be, A is positive definite if and only if 

any one of these is satisfied.  Yeah. That alpha transpose A alpha is strictly positive for non-

zero alpha. All eigenvalues  of A are strictly positive. 

 

 There exists a non-singular decomposition Q. Looks like that  and every principal minor of 

A is positive. Okay. So, a symmetric matrix is positive definite  if this happens. Yeah. 

 

 We never talk about definiteness of non-symmetric matrices. Okay.  One can extend that 

definition but remember the eigenvalues of non-symmetric matrices  are possibly complex. 

 

 Okay. So, it does not give you nice results. Okay. So, whenever  we say positive definite 

matrices we are invariably talking about symmetric matrices. Okay. Alright.  The other thing 

for symmetric matrices is this inequality which we use extensively. 

 

  I mean this inequality has some name also but I forget it. Yeah. But basically it says  that if 

you take a quadratic product or a quadratic form using this matrix. So, this  is what is a 

quadratic form. Yeah. Then it is lower bounded by lambda min alpha transpose  alpha and 

upper bounded by lambda max alpha transpose alpha. 

 

 Okay. So, very very important  inequality. Very simple but very important inequality we 

keep using this regularly in  our Lyapunov analysis. Okay. So, please remember this. The 

other important thing to remember  is that this expression is virtually impossible to 

compute by hand. 

 

 Yeah. If I ask you to  compute a supremum of Ax over x and all that you will actually have to 

write some code  and do some kind of a search or do some optimization to actually find this 

answer. Yeah. So, very  painful. So, there are actually simpler formulae here. 

 

 Well known formulae for particular matrix  norms. Matrix induced norms. So, the infinity 



norm is max absolute row sum. The 1 norm is  max absolute column sum and the 2 norm is 

largest singular value. So, square root of  lambda max A transpose A. Okay. So, these more or 

less these three are the ones that  get used more often than not. 

 

 So, we are not concerned. And then you have this anyway  the Cauchy Schwartz inequality. I 

have said find the general proof but actually the general  proof is here. There is a proof here. 

So, we will look at that later very quickly. But  the Cauchy Schwartz inequality is a general 

inequality for all norms and obviously it  is valid also for matrix induced norms. 

 

 Matrix induced norm is also a valid norm. By the  way as soon as I made a norm definition 

for matrices, I hope you understand that matrices  are also vector spaces. So, I mean they 

form the linear norm linear space. Yeah. So, this  is evident because superposition works. I 

mean if you take any two same dimensional  matrices and then you take a linear 

combination, it is the same dimension matrix. 

 

 Yeah. So,  matrices also form a vector space. I mean not different dimensional matrices and 

all  but yeah as long as your matrix dimension is fixed, you are fine. Okay. Yeah. So, of  

course there are simple examples and I do not know if I should go to these but yeah  I mean 

you have the row sum, the column sum and so on. 

 

 So, one norm, infinity norm and  two norm are rather easy to compute. Yeah. Basically you 

just have to apply these formula.  Yeah. Very straightforward. All I have done is compute the 

absolute row sum, absolute  column sum, taken the maximum absolute row sum that is the 

infinity norm, taken the absolute  maximum column sum that is the one norm and then the 

two norm is you have to compute A  transpose A and compute the largest eigenvalue. 

 

 Yeah. Little bit more work. Alright. Great.  Great. Any questions? Yes.  Alright. So, the nice 

thing is, I mean I hope you could have guessed by this formula itself.  Yeah. That though we 

use the supremum there, it sort of turns out to have some kind of  a maximum expression 

eventually. Yeah. So, these for when you are talking about real  valued matrices, so these 

nice things happen. 

 

 The definitions are meant for general vector  spaces and supremum is by definition. I mean 

I cannot say why not. 

 

 I mean and cannot be  the maximum. Yeah. For general vector spaces. Okay. So, but for 

again real valued symmetric  matrices, well actually this I apologize. No, no I think these are 

separate. 

 

 Yeah. Yeah.  For these you do not need any symmetry or anything. Yeah. I mean I think that 

is pretty  clear. I think only this much is for symmetric and this is for the induced norm. 

Alright. 

 



  So, for the real valued ones, yes you have anyway it becomes a maximum. In general, no. 

 

  Right. I cannot make that definition. Yeah. It is the supremum. It will be what it will  be. 

Yeah. If it is not in the set, it is not in the set. 

 

 Alright. Supremum always exists.  Can be infinity. Infinity is an option. So, that is not an 

issue as such. 

 

 Alright. Great.  Now that we have done vector norms and matrix norms. 

 

 Yeah. We have to go to signal norms.  Yeah. I promise you the final, final norm. Yeah. No 

more. Yeah. So, see we are progressing  pretty linearly. 

 

 Yeah. We have states, we have systems, we have states. Yeah. Our aim  is to talk about size 

of states, distance of states from other states and things like  that. Yeah. And now states are 

vectors. So, therefore we looked at vector norms. But then  if you think of linear system or if 

you think of Lyapunov function, there are matrices involved. 

 

  So therefore we also need to talk about matrix norms. Finally, when we solve these states  

and create trajectories, they are functions of time. 

 

 Therefore they are signals. Right.  So we have to talk about signal norms. Yeah. So the 

vector norms give you some kind of  a point wise behavior. So once I freeze time for 

example. For example I say that I want  to look at the behavior at 5 seconds. 

 

 Then my states are a vector. And then I can look  at all these vector norms. Yeah. But once, if 

I want to look at the behavior of a, you  know of a signal over a period of time, then I need 

signal norms. 

 

 Okay. And that is what  these signal norms do. You will see. So if I am given a vector signal. 

Yeah. It is almost  looking like it is a function of time. You get some non-negative real inputs 

and you  get scalar, sorry vector valued outputs. Yeah. Then the signal norm is the P signal  

norm or XP is basically the integral over 0 to infinity. 

 

 Why 0 to infinity? Because  it is time going from 0 to infinity. And you take any arbitrary 

vector norm here. X is  any arbitrary vector norm. Not necessarily the P norm. 

 

 Okay. This is an arbitrary vector  norm. Not necessarily the P norm though you are 

computing the P norm here. Okay. Don't  get confused. So the P signal norm is integral 0 to 

infinity. Vector norm to the power P  dt and take the Pth root of this integral. 

 

 Similarly the infinity norm again has the  supremum. Right. Is supremum over all time of 

this vector norm. Okay. Supremum over all  time of this vector norm. Like I said the vector 



norm is arbitrary. Does not have to  be the, for example if you are computing the two signal 

norm, the vector norm you use does  not have to be the two norm. 

 

 It can be the one norm. Yeah. The only thing you have to  remember is for a single problem 

that you are working out, stick to the same vector  norm. 

 

 Yeah. Don't switch between 1, 2, 3 and just like you know. Yeah. Then you are not  going to 

get any consistent results. All your results will be wrong. 

 

 Yeah. But you are free  to choose any vector norm. Yeah. Not restricted by this P or by this 

infinity. Okay. Doesn't  have to be the infinity norm here. Yeah. In fact that would be wrong. 

So if you have infinity  norm here you use infinity norm here and then if you have P norm 

here you use the P  norm here. 

 

 So basically you ended up using different vector norms in the same problem.  That's not 

okay. 

 

 You have to use the same vector norm for the entire problem. Yeah.  You can stick to any 

vector. Yeah. Is that clear? Yeah. 

 

 Yes. Okay. Alright. So like I  said in all the above definitions x signifies any vector norm. The 

choice does not matter.  However, never switch the norm in between. 

 

 Be consistent. Okay. Whenever a P signal norm  is finite we say that the signal belongs to LP 

space. Yeah. So signal norms actually define  a rather big space of functions. Okay. Rather 

big class of functions. 

 

 Yeah. So these are  called this is called the LP space and this has significance not just in 

control and so on. Yeah.  This has significance in a much larger variety you know array of 

maths. Yeah. For example,  whenever you talk about any kind of function approximation 

using series you need LP  assumptions. 

 

 Yeah. Fourier series for example. When does the Fourier series converge? It only  converges 

when you are in some particular LP space. Okay. So convergence of series and when  do 

Taylor series converge? When do Fourier series converge? So these sort of you know tools 

require  you to have some kind of an LP space around. So what I am saying is this LP space 

has much much  wider application than just in control. 

 

 We are just using it for some very small purpose is what  I would say. Okay. So the other 

thing to remember is that L infinity that is when the infinity norm  is bounded it is exactly 

the same as being as saying that X is itself a bounded signal. 

 

 Okay.  Proof is pretty straight forward. Yeah. I am not sure if you need to I mean anyway I 



can look at  one side of it. So the infinity norm is this guy. Yeah. If a function is bounded it 

means that there  exists some positive number such that the norm is smaller than that 

positive number. 

 

 So if the norm  is smaller than M the vector norm is smaller than M. Notice this is the vector 

norm notation. Yeah.  Now whenever I put the time argument then I am computing a vector 

norm because I froze time.  Whenever there is no time argument notice because of because I 

integrated or I took supremum the  time argument is vanished. 

 

 Right. Therefore on the left hand side you never see any time argument.  Okay. Whenever I 

am computing a signal norm there is no time argument. 

 

 Okay. So this is important  notation wise remember. Yeah. So no time argument here but in 

all the vector norms here you see the  time argument. Yeah. Because without freezing time I 

don't have a vector I have a signal. 

 

 Right.  So once I put some particular time in here I have a vector then I can compute a 

vector norm. Okay.  So this will be our notation. Whenever I compute a vector norm the 

time argument will be evident  will appear and if I am computing a signal norm there will be 

no time argument. 

 

 Alright. Great.  So when I say here that a function signal is bounded it means that in the 

norm it is less  than equal to some upper bound. Yeah. Which means that supremum itself is 

also upper bound. And  because for all time this is less than equal to M therefore the 

supremum itself is upper bound. 

 

  So very straightforward. Yeah. Which means that x belongs to L infinity. Similarly if  the 

infinity norm is some constant it means that the supremum is some constant which means 

that  every for all time this has to be less than equal to M. 

 

 Therefore function is signal is bounded.  Okay. So both ways you can prove essentially L 

infinity is identical to having a bounded signal.  Okay. So L infinity signals are bounded 

signals. Everything in L infinity space is a bounded  signal. Yeah. The interesting thing to 

remember is that if you take any two vector norms there  is a property of norm equivalence. 

 

 What is norm equivalence? It means that your p norm and q norm  are always relatable by 

constants alpha and beta. Okay. For any value of x t. Doesn't matter what  how big x t 

becomes or how small x t becomes. The two norms the two norms p and q norms  vector 

norms are relatable by a constant. 

 

 Yeah. So alpha norm x t p is less than equal to x t q  less than equal to beta norm x t p. Okay. 

And vice versa. Yeah. If you have p in the middle you can  still find some other constants. 

 



 Right. It will be one over alpha and one over beta. Okay. So the  idea is vector norms can 

always be related to each other. Yeah. So they have what is called  norm equivalence. On the 

other hand signal norms do not have norm equivalence. If you have a signal  which is in l 1 

space it may not be in l 2 space. 

 

 If it's in l infinity space it may not be in l 2  space. So if if just because one norm is behaving 

nicely doesn't mean the other will. Yeah. So a  very simple example is this guy. 

 

 If I take my signal as this guy. Yeah. And I use my and I use  the two vector norm. I've 

decided to use the two vector norm. Yeah. Because I know that it's easy.  The two vector 

norm of this guy is just one. 

 

 Right. Do you believe that. The two vector norm of  x t is just one because it's cos squared t 

plus sine squared t square root which is one. Okay.  So if I take the infinity norm it is just the 

supremum of this guy. So it is supremum of  cos squared t plus sine squared t and it's just 

one. 

 

 Right. On the other hand if I take the  one norm then this is integral zero to infinity of one 

which is infinity. I just took the two  norm again here. Two norm here too. No problem. 

Yeah. So the infinity norm is just one which  essentially indicates that it's a bounded signal 

and it is right obviously bounded signal but the  one norm is actually infinity. 

 

 It's a. No. No. No. Boundedness is only connected to the infinity  norm. One norm two norm 

do not have any connotations with boundedness. They are not  connected to boundedness 

at all. They are you can think of them as different function spaces with  different properties. 

 

 Yeah. The infinity norm is bounded which means that the function is also  bounded. 

However the function is not in L1 space at all. Yeah. 

 

 And this is a big conundrum. Right.  I mean you see that it has nice infinity norm nice L1. 

Yeah. But it is sorry nice L infinity  norm but it is not in L1 space. Yeah. 

 

 Similarly L2 and so on. You can compute L2 norm any  Lp norm for example for that matter. 

Yeah. This function is definitely in L infinity but it is  not in any Lp. Yeah. Because it will 

always have one integrated from zero to infinity and that will  essentially give you infinity. 

Okay. So norm equivalence doesn't work for signal norms. Alright.  Thank you. 


