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  Welcome to Non-linear Control. So, where we were last time was at the Frobenius 

theorem.  We had started discussing the Frobenius theorem. We are going to continue to 

actually discuss  and talk about the actual theorem itself. In order to talk about the 

Frobenius theorem,  we first introduce the notion of a distribution which is basically you 

take all these generating  vector fields and you take a span. So, basically at every point p in 

the state space or whatever  set you are working with, you get a subspace. 

 

 At every point p you get a subspace. So, that  is what is the distribution itself. Obviously, we 

do not want the distribution to lose rank  or change rank. So, therefore we talk about non-

singular distributions which do not alter  in rank as you change the point p. 

 

 So, we will always work with non-singular distributions.  And then we stated and proved 

this lemma which is saying that if delta is a non-singular  distribution then involutivity is 

exactly identical to the lie bracket being in delta.  So, actually I forgot we also defined 

involutivity which is saying that if there are two vector  fields in the distribution. If fg belong 

to the distribution then the lie bracket also  belongs to the distribution. Now, we also 

discussed this that it will lead us if you  want to actually check this in reality you will have to 

do all these iterated lie brackets. 

 

  So, many iterated lie brackets. So, we came up with a single simpler condition which is  this 

lemma 1.3 which says that if you have k generating vector fields for delta then  involutivity 

is identical to just verifying that pair wise they belong to delta. That  is it. Pair wise you have 

to check that fi fj belong to delta. 

 

 We also proved this. I  am not going to go into the proof of this. We also sort of anyway did 

this example on  feedback linearization. Yeah, this system and anyway we just this is again 

going back  to the previous material. We just took an output which was given to us and then 

computed  the relative degree of the system. 

 

 After computing the relative degree of the system we saw that  it was 2 and the state space 

was 3 dimensional. So, obviously I need one more additional coordinate  and we saw what 

we were thinking how to choose it. The simple obvious choice does not work.  Like if I 

choose z1 is x1 the derivative x1 contains the control which we don't like because  in the 

normal form the control appears only in the linear part and not in the nonlinear part.  So, we 

don't like this choice. 



 

 So, obviously in order to come up with this good choice we  use the definition itself that is 

you know we want to choose this phi function such that lg phi is  equal to 0. And that gives 

us a bunch of basically gives us just one partial differential equation.  Just one partial 

differential equation which is looking like this. As you can see this is not  completely 

specifying the function but we are just going to guess one possible choice that satisfies  this 

relationship and we guessed it. I would say I guessed it. 

 

 If you can come up with a more  smarter way of doing this sure. In fact we can go later and 

see how to maybe I don't know maybe  it is possible to do better than this. But as of now no 

we just have this we are basically guessing  this function based on the pd that we have. So, 

it's not like a completely out in the blue sort  of a guess but it's more like you know you have 

a pd and it's not easy to solve this. So, you will  sort of try to do something better. 

 

 Yeah. Yeah. Yeah. I mean actually you can do something but  I'm not going to and it's going 

to be very complicated. Yeah. Guessing is way easier here. 

 

  Yeah. You just tend to cancel appropriate terms and so on. And we discussed this last time. 

Alright.  This I left for you to sort of look at because this is part of the exercise that was 

given but  I have it looks like I have already done something on it. So, I leave it to you folks 

to sort of  verify this. 

 

 Okay. Now we actually move on to the statement of the Frobenius theorem itself. Why do  

we care about the Frobenius theorem? Because we are trying to answer that original 

question. When  is it possible to feedback linearize the system? Completely feedback 

linearize system. Until now  we've been looking at relative degree something. 

 

 Right. Which is less than n. Of course the  Frobenius theorem is useful even then but it 

becomes especially useful to figure out when  your relative degree can be made n. Okay. 

Which means that you essentially have the entire system  to look like a linear system. 

 

 Right. After suitable state transformation. Okay. So, that is the  question we are trying to 

answer. So, Frobenius theorem is what lets you answer that question. So,  that's why we are 

moving towards the Frobenius theorem. 

 

 Alright. So, we make a couple of more,  well couple of more, one definition and one 

theorem. Right. So, the non-singular distribution  delta which is generated by these k vector 

fields is said to be completely integrable on some open  set in the state space if there exist n 

minus k n i highlighters. Okay. If you remember your vector  space course, annihilators are 

essentially what annihilate the elements of the vector space,  vector field or vector space 

itself. 

 

 Okay. In this case and remember that the annihilator always has  dimension n minus the, 



yeah, the vector space of annihilators is always n minus the dimension of  the vector space 

itself. That's how it works. So, in this case you have k vector fields.  Distribution is non-

singular which means delta is of dimension k at every point p. At every point p,  delta is 

going to have dimension k. 

 

 Right. Because it's a non-singular distribution. Okay.  Therefore, we have n minus k 

functions. Okay. So, what are these n minus k functions? These  are, notice that these are 

real valued variable. 

 

 These are scalar functions. Okay. These are scalar  functions. And what, how do we define 

them? They have to satisfy that L f i h j which is this.  Del h j del x f i is exactly equal to 0. 

 

 Okay. This is actually like an annihilator. Okay. So,  here it is not h itself but you are taking 

the, it's not, the h is not the annihilator vector.  The annihilator vector is the partial of h or d 

h. 

 

 Okay. Because h is a scalar field or this  real valued function. Yeah. But when I take its 

partial with respect to x, I now get a row vector. 

 

  Right. It's one by n dimension. Okay. So, this is the annihilating vector. Vector. Okay. So,  

and further you want that these d h, d h is of course this guy itself. 

 

 We have already defined  this notation. d h is this. These d h are supposed to be linearly 

independent. 

 

 Okay. Okay. So,  if this, if these conditions are satisfied, then the vector field or the, sorry, or 

the distribution  is said to be completely integrable. Okay. This is just a definition. So, just 

keep this in mind.  We don't want to go into too much more detail than this. 

 

 Yeah. So, distribution generated by  k vector fields, I want the existence of n minus k 

functions such that their d h multiplied by f  i is zero for all i and all j. Yeah. i is ranging from 

one to k, j from one to n minus k. Okay. And  of course these d h have to be linearly 

independent. 

 

 As soon as I said this d h has to be  linearly independent, you should be reminded of this 

lemma 0.2. Yeah. If you remember, I mean,  I will scroll back. 

 

 What was lemma 0.2? Yeah. We started saying that some row vectors are linearly  

independent. Okay. So, exactly like this. As soon as I say that these d h are linearly 

independent,  you should be reminded of that. 

 

 Yeah. So, you are already, it looks like there is a connection  between what we are saying 

here or what we want here and what we were looking for there. Okay.  Alright. Great. Then 



we talk about, I mean, in order to actually verify this result, the Frobenius  theorem, we 

need the inverse function theorem. 

 

 But the inverse function theorem is such an inverse  function and implicit function theorem. 

These two theorems are such powerful results that all of  you who are doing anything in 

systems and control just read and understand this theorem, these two  theorems, the 

implicit function theorem and the inverse function theorem. Okay. Implicit function  

theorem is an out byproduct of the inverse function theorem. 

 

 It is very straightforward.  What does the inverse function theorem say? It just says that if 

you have a continuously  differentiable function from an open set in R n to R n and if the 

total derivative, that is dt of  p is invertible. Okay. At some point p. So, dt of p is invertible. 

Then the function is not just  invertible at p but in a neighborhood of p. 

 

 Okay. So, so all these result, both the implicit and  inverse function theorem results. 

Remember, I connected, if you remember when I talked about  the diffeomorphism. Right. 

And I said that it is essentially like the equivalent of a similarity  transformation for non-

linear systems. 

 

 Right. So, when I talked about the diffeomorphism,  how did I verify something is a 

diffeomorphism? I took its Jacobian and the Jacobian has to be  invertible. Right. This is 

where it all that comes from. Because if the Jacobian is invertible,  that is the dt is invertible 

at a particular point, then there exists a neighborhood around  p in which the entire 

function is invertible. 

 

 Okay. So, it is almost like what we do with  linearization in, you know, in control also we do 

this. Right. We take a non-linear system and  we linearize around some equilibrium point. 

And then we look at the linearization, the ad matrices  and if they have some nice property 

like if A is a Hurwitz matrix, we say that the system is locally  exponentially stable or locally 

asymptotically stable. 

 

 So, this is almost like that. The  derivative of a map or the Jacobian of a map actually gives 

you something about the invertibility  of the map. Okay. And this is why these results are 

rather powerful and applicable in so many  different places. 

 

 Yeah. So, that is what this is saying. It is just saying that if you have  a continuously 

differentiable function from one open set in Rn to another and the derivative or  the 

Jacobian is invertible at some point p, you just have to check at one point, then there exists  

a neighborhood around p in which the entire function is invertible. Yeah. Not talking about  

Jacobian, Jacobian is already invertible. 

 

 Yeah. The function itself is invertible in this entire  set. Okay. So, that is the inverse function 

theorem. And not only invertible, it is in fact,  the inverse is also continuously differentiable. 



Okay. So, similarly if you started with a smooth  map, then the inverse will also be smooth. 

 

 This is exactly what we use to define a diffeomorphism.  Okay. So, whenever you have to 

check that a map is a diffeomorphism, by the way, the map T can be,  is a dt can be invertible 

only if it is going from the same dimension to the same dimension. Right.  So, therefore, we 

are always talking about Rn to Rn. 

 

 Same in diffeomorphism. Right. It is a state  transformation. So, the number of states here 

on the left has to be same as the number of states  on the right. Right. How do you check it is 

a diffeomorphism? Just compute the Jacobian of the  map and the Jacobian is invertible, you 

are good to go. 

 

 It is a diffeomorphism. Okay. And these  are admissible transformations, state 

transformations like similarity transformations. 

 

 Yeah. Okay.  Excellent. Great. Now, we are ready to state the Frobenius theorem. Okay. 

Before I state the  theorem itself, I will tell you that I am not going to do the proof 

extensively. 

 

 The proof is  written here. Yeah. If we actually end up having time, I might just do a session 

separately just  for the proof. Yeah. Proof is quite involved. And, but I will encourage you to 

read it in. 

 

  I will just give you a short sketch. We don't expect you to do the proof itself. So,  I am not 

going to actually cover it. But, later on if there is extra time, I will just do a  separate session 

on just the proof. 

 

 Okay. Alright. It is very, actually this is Vivek's note. He has  done a very good job because 

usually it is not easy to find the proof of Frobenius theorem in  Euclidean space. Yeah. 

Typically, whenever, if you remember I told you that the reference was  Alessandro 

Estalphi's book. So, most of the notes and everything out there, whenever we talk of  

Frobenius theorem, they are working on manifolds. 

 

 Okay. Not Rn. And then there is lot more notation  and you know, careful bookkeeping 

there. Yeah. So, here everything is proved in Rn, which is  rather nice. 

 

 So, the proof is very nice. Please go through it. Okay. If you get a chance.  So, let's look at the 

statement. The statement is actually just two pieces. One, it says that,  if you, of course you 

start with a non-singular distribution of dimension K. 

 

 Okay. Always. I mean,  that is what we have been doing. Then, in, what this entire thing says 

is two things. One,  involutivity and complete integrability are equivalent. 

 



 Okay. There is two pieces here.  Although it has long statement here. Involutivity is 

equivalent to complete integrability. That's  the one statement. And the other statement is 

that, other piece is that, if you have  involutivity, then your, there exists some 

transformation such that your delta looks  like a span of unit vectors. 

 

 Okay. I don't know if you can appreciate it yet. So, I started  with what? I started with, yeah, 

that's what I started with. The delta is what? It's  a span of this guy, right? Some K vector 

fields evaluated at a particular point. What are  we saying? We are saying that, something 

rather powerful. We are saying that, if delta  is involutive in the state space, then it's 

equivalent to saying that this delta is in  fact the span of identity vector fields or the unit 

vector fields. 

 

 What is the unit vector  field? E i is this, E 1 is this. So, obviously it's not affected by point P 

or anything.  Everywhere it's the same. So, it's pretty powerful. 

 

 It says that there exists some smooth  change of coordinates. Okay. Such that all these 

vector fields that you have, F 1 to  F 2 to F k looks exactly like E 1, E 2, E 3 and E k. 

 

 Okay. Alright. I hope you can appreciate  the power of the result. Okay. And if you 

remember, what are these vector fields? They  are just right hand sides of differential 

equation. Right? If you, that's how you have  been, if you think about the control vector field, 

it is something like x dot is u i summation  of u i F i. Okay. That's how we have been looking 

at. 

 

 Right? And it basically gives  you what directions of movement at every point. At every 

point, a distribution test tells  you that what are the directions where you can move using 

this particular control. Okay.  So if I now say that this span F 1 to F k, which is some complex 

non-linear function,  became just span of E 1 to E k. 

 

 Now E 1 to E k is just, you know what it is. It is the  k dimensional R k. It is a subspace R k in 

R n. Right? So it essentially you immediately  can say that at every point in the state space, I 

can move in a k dimensional subspace of  that state space. Yeah? That's pretty powerful. 

Okay. Also, if you replace F 1 by E 1, F 2  by E 2, F 3 by E 3, what is the dynamics come out 

to? Somehow looks like some integrators  are happening. 

 

 Right? x 1 dot is x 2, x 2 dot is x 3. No? Does it look like it is happening?  Maybe not exactly. 

 

 Okay. That maybe not. That no, no, no, no. It's not. The integrator  is not happening very 

well. Let's not worry about that. But the point is, the key point  is, you are reducing this 

rather complicated non-linear, you know at every point P you  get a different subspace, 

different shape of the subspace to a very nice hyperplane.  Okay? So this is the power of the 

Frobenius theorem. One, if you have in-volatility of  this delta, then you get this very nice 

hyperplane at every point. 



 

 Yeah? Which is the R k dimensional  subspace in R n. Okay? And two, in-volatility and 

complete integrability are identical.  Yeah? If you have a non-singular delta. Yeah? And 

that's pretty cool because in-volatility  was some kind of an algebraic computation, you 

know whatever. 

 

 I mean you were just doing  lie brackets. Yeah? And you just do, it's easy to verify. Yeah? 

And by doing that you  actually get that you have complete integrability. And when we 

actually say it's completely  integrable, you actually got these functions h 1 to h n minus k. 

Yeah? That's what it  means right? Complete integrability means I actually get these 

functions h 1 to h n  minus k which the derivatives of which act as annihilators. 

 

 Okay? Alright? So these are  what will become a new coordinates. Right? So alright.  Proof. 

I'll just sketch it for you. Proof goes in three steps. In the first step, in  step one what is being 

done is just this proof. That if you start with in-volatility, any  such f 1 to f k will become e 1 

to e k. 

 

 Okay? That is what this step one is doing. Okay?  It does it in a rather nice cool way. Okay? 

But I mean it doesn't do it okay. It doesn't  do it in completeness but it more or less does 

that. Okay? That you are, if you see  these f 1 to f k, you started with f 1 to f k, these are and 

then you ended up with  something like e 1 to e k but with something more here. 

 

 Yeah? With something more here.  Not e 1 to e k itself but up to the kth element this is 

consistent. Right? It is just the  unit vectors. First unit vector, second unit vector and so on. 

But there is some terms  here. Okay? That's what this does in the first step. 

 

 Yeah? It, the other thing it also  does is it shows that this new vector fields commute. What 

are the new vector fields? These  guys. Okay? And when we say vector fields commute, we 

mean that the lie brackets are  linear. Okay? That's how you define commuting vector fields. 

 

 It is like in the matrix case  also right? You a b minus b a equal to zero. That's actually the 

same. Exactly this. For  the matrix case, yeah? If you say linear system case, x dot is a x, x dot 

is b x. This is  the lie bracket. 

 

 It is easy to compute. If I say f 1 is a x, f 2 is b x, lie bracket  is exactly a b minus b a. Okay? 

Not difficult. You can think about it. In fact just a thought  experiment. So f i, f j commute. 

Okay? So earlier when you started with f 1 to f k it  was not evident. 

 

 But once you do this transformation it is evident that the vector fields commute.  Okay? 

Alright. What do we do in the second step? Hmm. Second step is the complicated  step. 

 

 Actually, sorry, I apologize. Here all you show is that the vector fields commute.  That's all. 

You don't show that it becomes equivalent to e 1 to e k. That is done at  the, in the second 



step. If you look at just the last line of the second step you can see  f 1 to f k are mapped to 

the constant distribution e 1 to e k. 

 

 Okay? And what the second step  does is it actually comes up with the transformation. The 

state transformation. You need a state  transformation right? To go from the f 1 to f k vector 

fields to the e 1 to e k vector  fields. That's what the second step does. It's rather 

complicated because it uses flows  and things like that. I have actually not introduced this 

terminology too much. 

 

 Again,  if time permits we will do a separate session on this but not right now. Yeah? All I 

am  telling you is what each step is proving. Alright. The final step. Okay? Once you know  

that your f 1 to f k's are smoothly mapped to e 1 to e k's. 

 

 Okay? You try to come up  with the h functions for the e 1 to e k system. Okay? What did we 

do? We went from the f 1  to f k vector fields to the e 1 to e k vector fields. Alright? And now 

in order to prove  complete integrability what do I need? I need to come up with the h. 

 

 h 1 to h n minus k.  That will annihilate this guy. This is much easier to do. Right? Because 

even annihilating  e 1 to e k is much easier. Right? What do I say? All I do is I pick this 

annihilating  functions as x j plus k for j starting from 1 to n minus k. 

 

 Okay? I hope this is not getting  already too complicated. Okay? Just look at this. x 1, x 2, x k, 

x k plus 1. I am going  to write this as x k plus n minus k. Yeah? You see this vector? Yeah? 

Let's go back to  what we are doing in feedback linearization. Let's forget this annihilator 

business. What  were we doing in feedback linearization? Whatever was the relative degree 

of the system, we  were choosing the rest of the coordinates. Right? If the relative degree 

was r, we were  using n minus r coordinates on our own so that the entire thing becomes a 

diffeomorphism. 

 

  Right? And in the normal form of course l g phi is zero. Right? It's almost like that.  Almost 

exactly like that. Yeah? If you look at this, this almost looks like l g phi. Doesn't  it? Yeah? 

Because the g is the flipped version. 

 

 The g is this guy, the vector field and the  phi is this guy. Right? Exactly looks like that. Even 

if I go back here, l f h. Exactly  looks like l g phi. This is how I was choosing the new 

coordinates. 

 

 Right? So that the control  doesn't appear. That's all this. This looks exactly similar to that. 

You make something  zero. Some l g phi to be zero. It's exactly like that. In this case, the g is 

this vector  field and phi is this function. 

 

 Okay? So that's all we are doing. If you notice, I am choosing  the g in a smart way so that 

this partial multiplied by E i is zero. Now i ranges from  what one to k. Right? So E i has one 



in what position? In the ith position. 

 

 Right? E i  has one in the ith position and zeros everywhere else. And this i is maximum k. 

Cannot be more  than k. Now if I choose my, this guy is j plus k. Okay? Then where will it 

have its,  if I take a partial with respect to x, this row vector, where will it have one? Where  

will it have one? In the j plus kth position. Right? It will have one in j plus kth position  and 

zero everywhere else. 

 

 Right? So definitely, I will, so this guy will definitely have one  in the j plus kth position. This 

will have one in the ith position. And i is less than  or equal to k. 

 

 Therefore, they don't have, this is a dot product. Right? So they don't  have one in the same 

position. Can never have. That's how I chose it. Right? This E i will  have one say here. E two 

will have one in the second position. Okay? This will have  one in the j plus two ith position. 

 

 Okay? So therefore they are not going to be, have  one in the same position. So the dot 

product has to be zero. Okay? That's it. I am just  making the smart choice. Okay? Why do I 

do it in the E i, in the E one, E two, E k frame  coordinates? Because it's easier. It's just unit 

vectors. Yeah? Much easier to construct  this. 

 

 Okay? Now once I have constructed this annihilator in the E coordinates, E i coordinates,  I 

can take it back to the original coordinates. That is the F one to F k system. Yeah? Just  by 

doing a transformation. 

 

 That transformation comes from here. Yeah? That transformation  comes from here. Which 

is why this thing is a bit complicated. And it's pretty easy to  show that once I make this 

backward transformation, this will also have the same property. That  del H j del Q F i Q will 

be zero. Because I moved back and forth with the same coordinate  change. 

 

 Right? I got a very nice coordinate change. Okay? And I constructed the annihilator  in the 

new coordinates. 

 

 Then I went back. I took that annihilator back in the original  coordinates. That's it. Okay? 

Yeah. The process is simple. Notation is complicated. Alright?  And so what have I done? I 

started with involutivity. Okay? And I proved that I have integrability.  Okay? 


