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  Welcome to our class on Non-linear control. So, let us go back to where we were. We had  

started talking about feedback linearization. And we were actually doing a couple of, of  

course I mean we introduced some notation, which probably was a little bit complicated.  

But then we also did an example. So, hopefully there is a little bit of clarity and you also  

hope that some of you did go back and actually try to look through this material. 

 

 I posted  it already on Moodle. So, the lectures are already on there. So, this is what I have  

been using and I plan to use subsequently also.  So, the only two real notations and then of 

course extended versions of this. 

 

 There is  the Lie derivative, which is basically the directional derivative of a scalar valued  

function along a vector field. And then there was the Lie bracket, which basically takes  two 

vector fields and gives you a sort of a, sort of a skew symmetric operation. It  is like a DGF 

minus DFG and this kind of an operation. And then there was of course the  add notation, 

which is basically just a different way of writing iterated Lie brackets.  We had used this to 

of course look at systems of this form with output which looks like  this. 

 

 And we want to sort of come up with this diffeomorphism, this transformation.  If so, if you 

remember the feedback linearization has two pieces. There is a state linearization  or a state 

transformation and there is a feedback which is then finally used to linearize the  system or 

make the system look linear. I would not say linearize. So, the idea is you just  take 

successive derivatives of this output and you try to see in which derivative the  input shows 

up and that is called the relative degree. 

 

 And that is basically qualified with  this sort of expression because as you take derivatives 

of y, the time derivatives of  y, you will start seeing the dynamics again and again and again. 

And that is what happens.  You have y is h and then you have the first derivative is Lfh. If 

you assume that the  Lgh is 0. Similarly, the second derivative becomes Lf squared h if you 

assume that Lfh  is 0 and so on and so forth. 

 

 And this does happen because you assume relative degree  r. So, this happens until k equal 

to r minus 2. After that you get something non-zero.  So notice that we are still working with 

a scalar valued control. This is a single input  system. 

 

 The idea is again work for the multi input case but this thing is just become a  little bit more 



complicated. So, easier to work here with the single input case.  Alright, so that is the idea. 

We essentially try to compute the relative degree by seeing  how many derivatives of the 

output you need to get to the input. And we then say, sort  of say that this is how, this is the 

part of the dynamics that you can actually linearize  via feedback. 

 

 So this r, the dynamics of size r is what you can linearize. So it is like  a partial feedback 

linearization and the rest of it is some additional dynamics. So in order  to get to this sort of 

nice linear sort of structure, we need a few inequalities. That  is in order to verify that these 

things, this y equal to h, its derivative, its second derivative,  they do form new coordinates, 

we need some equalities. The first one basically said that  if you have these qualities to be 0, 

that is Lgh, Lglf, Lglf square all the way to Lglfk  to be 0, then it is equivalent to saying that 

Lg, Laddfg, Laddkg all the way is 0. 

 

  Okay, these two are equivalent. Okay, so and the key, the very very key identity that we  

use to prove all of this is basically this guy. Okay, this is what you need. Alright,  this is what 

you need. So I can even highlight this. 

 

 Yeah, so this is really what you will  require in order to complete all of this proof. We 

actually looked at the proof. Okay, so  once you have that this sort of an iterated 

relationship, yeah, there is an equality that  is between Lg, Lfk to Laddfkg. Yeah, there is a 

similarity here, there is an equivalence  here. You can actually start talking about 

independence of these vectors. 

 

 Okay, what  are these vectors? This is just the Jacobian corresponding to this new 

coordinates. That  is the new coordinates are h, Lfh all the way to this Lfr minus 1h. Okay, 

and so if  you take the d which is just the partial, you get a Jacobian structure. Alright, so  

because dh is a row vector, dLfh is a row vector, so you essentially get, you know,  a 

Jacobian. And we used, we want to prove that, we want to prove that this is linearly  

independent. 

 

 Okay, these r row vectors are in fact linearly independent. And how did  we do that? We did 

that by looking at the multiplication of this guy with some other  vector. Okay, which was 

very smartly chosen. Okay, why was it smartly chosen? Because once  I do the multiplication 

here, we actually did it very carefully. Right, once I do the  multiplication here, you can see 

that every row basically just contains, you know, things  like this, this guy. 

 

 Right, and then this guy and so on and so forth. So basically you  start seeing a lower 

triangular structure. Alright, why? This is because of the first  equality that we proved. Okay, 

this is just coming from the first equality. Right, in  this case you have this last term to be 

non-zero, in the second row you have last two terms  to be non-zero and so on and so forth. 

 

 So you have a lower triangular form. Alright,  and it is well known that the lower triangular 

form, whatever is the number of non-zero rows  is the rank. Okay, so the product of this 



matrix, these two matrices is an R by R matrix  and we have proven that the R by R matrix 

has rank R. Okay, which means individually  each of these guys also have to have rank R. 

Right, and therefore these are linearly  independent and these are also linearly independent. 

 

 Okay, so you simultaneously prove that all  of these are in fact linearly independent. Okay, 

alright. So this is where we were. Yeah,  of course with the linear independence you, once 

you have this linear independence you  can construct this change of coordinates. Right, and 

since this gives me only R number  of coordinates, I actually add a few more. 

 

 What is how many more? N minus R more, because  I started with an N dimensional, you 

know, state space. So I have to go to another N  dimensional state space. So I have this R and 

then I have this N minus R where these  phi are simply chosen to make sure that this whole 

map phi, capital phi is a diffeomorphism.  Okay, which essentially means that the Jacobian is 

invertible. Okay, has to have an invertible  Jacobian. 

 

 Right, so that is essentially what it, this says. This guy has full rank. Okay,  yeah, full rank 

means invertible in this case. Yeah, because you can see that phi is, it's  N dimensional. 

 

 X is also N dimensional. So when I take the Jacobian it's an N by N  matrix. Right, so full rank 

means it's an invertible matrix. So del phi del x or d phi,  whatever you want to write it, is 

supposed to be an invertible matrix. Now in order to  help with that we already know that 

this, the Jacobian of this is invertible or full  rank, sorry, not invertible, in this case maximal 

rank. Right, why? Because of the lemma  0. 

 

2. Lemma 0.2 basically just said that, that this is maximal rank or this is rank R. If  these 

rows are rank R then obviously the Jacobian of this is exactly this guy. Right,  and that's also 

rank R. Okay, so this helps us obviously. 

 

 So lemma 0.2 is what helps us  in claiming that these are in fact independent coordinates. 

This is what it means for the  coordinates to be independent. I mean we are not used to, I 

mean we are not used to this  because we just say that x1, x2, x3 are our coordinates and we 

think they are independent.  Because they are in orthogonal frames. 

 

 Right, so we never think about it. But now if I transform  this x1, x2, x3 non-linear to some 

other function, other three functions. Okay, so I say x1 square  plus x2 square minus x3 

square x1 square plus x2 square plus x3 square x1 square minus x2  square plus x3 square. I 

just gave you some non-linear transformation. Now what is the  guarantee that these new 

coordinates are in fact coordinates, that is they are linearly  independent. Okay, the only 

way to claim that is by checking the Jacobian. 

 

 Okay, you have  to take the d phi. Okay, and then you have to see that it is full rank. Right, 

and if  it is you are good. And that's really what we are trying to do. So because of these are  

independent coordinates, because it gives me maximal rank, not full rank in this case,  but 



maximal rank. So all I have to do is to make sure that the d phi of these, that is  partials of 

these are also linearly independent. 

 

 Okay, that's it. Okay, and we actually looked  at an example, like this DC motor example. 

Right, what did we do? We actually verified  both the lemmas. Right, first is this equality 

lemma, which is basically saying that you  know this LGLF and LGLF all the way to LGLF r 

minus 2 is 0, which means that you want  to prove that L add f r minus 1 is 0. Okay, sorry, L 

add f r minus 2 is 0. 

 

 Okay, and that's  what we did. Basically, it's easy to see that L add f k is 0 in this case, 

because what  does r turn out to be? What was the relative degree of the system? The 

relative degree  was just 2. It was very simple. We just we did all the computations. What 

did we do?  We computed LGLF, first we computed LGH, it was 0. Then we computed LFH, 

which was  theta x1 x2. 

 

 Then we computed LGLFH, which was theta x2. So this itself came out to be  non-zero. 

Right, so this is just the first power. So basically you have r equal to 2.  Because this 1 is 

equal to r minus 1. 

 

 So r is basically equal to 2. Okay, so we got  relative degree 2. Right, and so all we had to 

prove was that L add f 0 GH is equal to  0 and that's what we proved. It's very easy, already 

done. 

 

 Yeah, so lemma 0.1 was  easy to prove. Then we wanted to look at the rank of you know the 

lemma 0.2, which is basically  saying that the H and LFH, which are our new coordinates. So 

in this case, H is basically  your x3 and LFH is theta x1 x2. These are the two new 

coordinates. Right, and we wanted  to see if there Jacobian has maximal rank. 

 

 So we computed that. Right, we actually computed  the Jacobian, it is DH is 0 0 1 because H 

is x3. Right, and then LFH is theta x1 x2.  So DLFH is basically this guy. And for this to be 

maximal rank, we just need for x1 x2  to be non-zero. Okay, then the way we chose our phi 

that is the third coordinate was just  to make sure that I get a full rank Jacobian. 

 

 Okay, and what did I recommend? I thought,  I just thought I will make the third row 

orthogonal to the second row because this first and the  second row are already orthogonal. 

Notice, because the dot product of first and second  is 0 already. Right, the first and second 

are already orthogonal. So I just made sure  that the second and third are orthogonal. 

 

 So to do that I chose this sort of a y3. Right,  so everything looks non-linear. And of course 

now I know that if x1 x2 is not equal to 0 0,  then this is a full rank matrix. Right, so I am 

good to go. This is a valid new set of coordinates. 

 

  Valid new set of coordinates. Okay, the other choice which I had sort of used earlier was  



taking the third coordinate as x2 minus b. Right, in that case I would have got 0 1 0.  But 

actually I have written it here. Yeah, corresponding to this I would get the third  row as 0 1 

0. 

 

 Yeah, this is fine too. The only problem is in this case we saw that you need x2  be non-zero 

for this to be full rank. Yeah, if x2 is 0 then you see that the second and third  rows are 

exactly the same. Alright, and that is a problem. 

 

 Okay, so if x2 is non-zero all of this  works. No problem. This new coordinate also works. 

There is value in looking at this. We will look at,  we will see this immediately, subsequently. 

 

 Okay, alright. So now, great. We now are in a position  to sort of talk about the transformed 

system. What does it look like? So if you look at this,  this sort of new representation or new 

variables in which we are writing the dynamics. Okay,  and you start computing the 

derivatives. Right, you start computing these derivatives. This is  basically, well I mean this 

is written in terms of this guy. 

 

 Right, that is z is basically looked  upon as all these coordinates. These new coordinates are 

just written as z. 

 

 I used y.  That is not a big deal. Okay, alright. So this is just writing in terms of the capital 

phi. This is  not very useful to us. Just look at this part. Okay, z1 is basically the actual output 

of the  system. 

 

 So z1 dot is actually LfH has to be because Lgh is 0. That is how we have been doing.  And 

that is equal to z2 itself because z2 is LfH. Now if you take the derivative again of z2,  it is d 

dt LfH but that is going to be Lf squared H because again Lg LfH is 0. Right,  this is again how 

we have got the relative degree. 

 

 This is by the relative degree assumption. Right,  so therefore you have z2 dot is Lf square H 

which is z3. Okay, and you can keep on going like this.  You essentially form an integrator, a 

chain of integrators. Okay, z1 dot is z2, z2 dot is z3  and so on and so forth until you get to zr 

dot. 

 

 Right, which is now the last coordinate, this guy.  Now when I take the derivative of this, I 

will get what? Lf Rh plus Lg Lf R minus 1H. Right,  just by taking the standard derivative. 

Right, and plugging in the dynamics. Okay,  now you know that this is not 0 because of our 

again relative degree R assumption. 

 

 Right,  so I am going to write this as some Bz plus Azu where Az is not 0. Okay, so that is 

what the  linear part looks like. Right, it is just a bunch of integrators and then the final state 

has some  nonlinearity in its derivatives. Okay, so notice I started with a nonlinear system 

which was  nonlinear everywhere. 



 

 Right, in all the states probably. Yeah, just like in the DC motor case.  But now I have 

because of my state transformation, I have reached a stage where I actually have  linear 

integrators everywhere and only in the last state there is a nonlinearity but I will  just define 

this as my new input V. Right, and that is possible because U is actually V minus B  divided 

by A and A is nonzero. Right, therefore I can do this assignment. From V I can compute U,  no 

problem. There is no singularity issue or anything because A is nonzero by my relative  

degree assumption. 

 

 Okay, therefore I just had a chain of integrators here. So this is the partial  linearization that 

we have achieved. Okay, you cannot do anything more. Whatever is the relative  degree of 

your output, that is the best you can do. If you can find an output for which your  relative 

degree is n, then this entire thing will look like a bunch of integrators. Okay,  I hope that is 

clear that if relative degree is equal to n, then this is just all going to  be looking like a bunch 

of integrators. 

 

 Okay, so you have effectively completely linearized  the system. Okay, alright, great. Now 

for the rest of the dynamics, if we assume that the phi is,  okay, until now the way we were 

choosing phi was just to ensure that you got a diffeomorphism,  that is you got Jacobian full 

rank which is what we did here. Right, we just gave a row  which sort of made sure that, you 

know, this is a full rank Jacobian and from that I went back and  constructed the additional 

phi states. Right, but here we are saying, suppose I have another  assumption on phi, that in 

the phi dynamics the control does not show up. 

 

 Okay, so that is the  assumption. So that is what is the normal form. If control does not 

appear in phi i dot. Okay,  the control does not appear in phi i dot equations, then that is 

how you choose the phi,  which means, what does it mean? It means that Lg phi i x is equal 

to 0, that is the way control  will not appear. Right, this is the control vector field. Right, if I 

take phi i dot,  I get Lf phi i plus Lg phi i times control. 

 

 Right, so if Lg phi i is 0, then no control appears in  the phi equations. Right, and with such 

choice of phi, if you wrote this dynamics, you have what is  called a normal form. Okay, and 

the d dt phi i is Lf phi i and we just call it Qiz, because Qi is  just a new notation, because now 

we are writing in terms of the new variables, z, that is all.  Alright, so what do I have then in 

the normal form? In the normal form, I again have this bunch  of integrators, that does not 

change. Here, control does not appear anymore. 

 

 Okay, control  does not appear here, because I choose the phi's in a smart way. Right, so 

that phi dot does not  have the control. Alright, does that make sense? Okay, now if you go 

back now to our example. Okay,  you look at this choice of y1, y2 and then y1, y2 is what 

they are, we can't really play with them. 

 

  Yeah, we chose this guy. What is y3 dot? This guy. Yeah, but control appears in that 



equation.  Right, so this choice of transformations does not give me the normal form. Okay, 

does not give me  the normal form. It just gives me a linearized form, but it's not the normal 

form. 

 

 Usually in  feedback linearization, control theories prefer to work with the normal form. 

Why? Because it's  just nice, right. You have a non-linear system, right, whatever 

nonlinearities there are, but  there is no control in that, but then you have a linear system 

sort of driving this nonlinear  system. Alright, and this driving system is linear. Okay, so you 

can do a lot of things  with the driving system. 

 

 Right, remember again with the cascade, go back to the cascade idea.  Right, there was a 

driving system or a driven system. So here this will become the driving  system and the 

output of this will go to this way because we will look at it, how that happens.  But the point 

is there is nonlinearities here with no control and then there is this linearity here  where 

you can control these states very well. Basically you can make sure these states do  

whatever you want. 

 

 Yeah, because it's linear and has a very nice structure. Okay, so this is the  normal form. 

What I am trying to say is what we chose as y3 does not get us to the normal form.  This on 

the other hand gives us the normal form. Why? Because if you look at z3 dot,  okay, what is 

z3 dot? z3 dot is just x2 dot. 

 

 Right, what was x2 dot? No control. No control  in x2 dot. Okay, so but remember this was a 

restrictive choice, right, because this was  a valid choice only when x2 is non-zero. Okay, this 

is a valid transformation only if x2 is  non-zero. Okay, so it's a slightly more restrictive 

choice. Here we had the freedom of having either  x1 or x2 non-zero. 

 

 Anything being non-zero was good enough for here, but here no. We definitely  need x2 to 

be non-zero. But although this is a restrictive choice, it still gives us the normal  form. Okay, 

which is why this is also an important sort of transformation. I think that's what I  wrote 

here. 

 

 Yeah, this transformation for the DC motor system is what gives you the normal form.  

Okay, it gives you z1 dot is z2, z2 dot is this guy and z3 dot is this. 

 

 No control here. Notice,  the control doesn't appear here. Okay, alright. So that's how you do 

it. You get to the normal  form. In addition to trying to get to a diffeomorphism, you make 

sure that the,  in the derivative of the extra states or the phi states, the control doesn't 

appear. Alright,  so that is how you get to the normal form. Alright, so now you have 

essentially what is  called a partially linearized system. 

 

 Yeah, because like I said, with this choice of V,  you have the z1 to zr states being a linear 

system. Right, just bunch of integrators actually,  not any linear system, but a very specific 



linear system. And then you have a bunch of  non-linear systems. Alright, we'll see what can 

be done in these cases. Yeah, how to control in  these cases. 

 

 But before we do that, we want to define the notation of a zero dynamics. Alright,  so we are 

denoting by xi these partially linearized states, which is z1 to zr,  and by eta the rest of the 

states. Okay, just for notation sake. So the xi dot system is again in  this form, integrator 

form. 

 

 Right, so in this integrator form. Yeah, so and the eta system  is some non-linear form. 

Right, we don't know what it is, but it is some non-linearity. The  only thing that we know is 

because of its normal form, the control doesn't appear. Right, so it is  some function of xi and 

eta. So what we have done is we have split the z states into xi and eta  states. 

 

 Okay, so I have split the z states into the xi states and the eta states. That's all.  Yeah, the xi 

states correspond to the linear part and the eta correspond to the non-linear part.  Yeah, 

now suppose that the output is identically zero, then all its derivatives are also identically  

zero. Right, which means xi is identically zero. Okay, what this does to the xi dynamics or 

the,  whatever, I mean the way, so if you look at the zr dynamics, so zr dot is also zero. 

 

 Okay,  and that essentially is equal to this guy. I mean you are just plugging in xi equal to 

zero  in this right hand side. Yeah. No, because this is depending on all the states. 

 

 See,  if you go back here, let's go back here. All this entire state, right, entire z,  I can't 

control that. That is coming from all this Lfh and Lgh. Yeah, that you can't control.  It is not 

just depending on these states. 

 

 Yeah, it can depend on both. So all I am doing is I am  splitting the z into these two pieces. 

All right. Right, so anyway this is anyway too much detail to  get to the basic point. The basic 

point is that what you call the zero dynamics is when xi is  zero here. Okay, remember this is 

the nonlinear part and if you put xi equal to zero here,  what you get is the zero dynamics. 

Okay, why this is of interest, why this is of value is  because this xi system is the linear 

system. 

 

 Right, the assumption is that I can do anything  with it. So I can even drive it to zero as fast 

as I want. So if you remember, even in the cascade  case, right, what did we say? That we 

had a stable system which is being, which has an additive term  which is the, which is 

basically coming out of a passive system, which is the output of a passive  system. So we 

were putting a nonlinear stable system in cascade with a, right, you had this  guy. So here 

what did you have? You had a stable system here, right, and you had in addition to it  this 

basically this y guy that was coming out of a passive system. Right, it's very similar to that.  

Here if I make this zero, right, that was the whole idea, right, if y is zero, right, then this  

system is just z dependent and this is a stable system. 

 



 Right, but we also know that I can do  nice things with y because of passivity in this case. In 

this case it was passivity and that is  what is driving this system. So similarly you have this 

idea that this xi states not passive in this  case but they are basically a linear system, coming 

from a linear system. So the assumption is I can  do whatever I want with it. Therefore it is 

important to actually study the zero dynamics.  That is what happens or how does this 

system, the nonlinear system behave when the linear part goes  away or decays or dies 

down to zero, what happens, okay, and that's important, all right.  Thank you. 


