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  Okay, the next one is of course cascade connection with passive systems.  Okay, so this is 

exactly what was happening here.  Okay, so what I am presenting is just a simplified already 

distinct version of that.  So what did you have here?  You had a nonlinear system which of 

course by under several assumptions could be written  as a linear combination of some 

nonlinearity, nonlinear drift and some outputs.  Okay, and then there was this linear system 

which is of course you have some nice properties  that is passive with respect to the output 

and the input V, yeah, and there is this feedback  interconnection.  Okay, so that's exactly 

what is specified here for a more general setting again even  a nonlinear setting. 

 

  Yeah, if you see now I have a system that is not controlled anymore.  Okay, I have 

completely removed the dependence on the second state here.  There is some differences.  I 

am just trying to highlight what the differences are from here to here. 

 

  Okay, if you notice this dynamics first you see that there is this drift term here.  Right, this 

no longer depends on the Y on the X state.  Right, here it does.  It depends on the Xi state.  

Right, so I have sort of removed the dependence. 

 

  It's not required, I mean but it's okay, I mean we don't necessarily need to do that.  You 

could also have considered F sub A Z, X but again just to keep things simple we  have taken 

this sort of situation.  Okay, so of course we will assume that this system is you know 

asymptotically stable.  Right, which is what?  If Y equal to zero there exists W such that this 

is, in fact we are actually we are only  assuming stability not even asymptotic stability, just 

less than equal to zero.  Okay, we are assuming that there exists some Lyapunov like 

function or Lyapunov function. 

 

  Yeah, in fact I should say maybe more carefully this is positive definite function.  Yeah, such 

that partial of with respect to Z FAZ is less than equal to zero.  Okay, this is essentially the 

Lyapunov stability condition.  Okay, so if I don't have any outputs then you have the passive 

system which is actually  connected with it.  That's exactly what you have here. 

 

  This system is passive.  Right, that's what we assumed with all the strictly positive real and 

all that.  Yeah, so this system is actually interconnected with this guy.  Yeah, because of this 

Y.  Yeah, this is the interconnection. 

 

  This Y goes in here.  That is essentially the interconnection.  Okay, so that's what we 



assume that there is this passive system.  Now not necessarily linear but nonlinear.  Okay, 

and we are seeing that this is interconnected to the Z system. 

 

  How?  Y gets fed back into the Z system.  Okay, exactly the same setting.  Yeah, just that 

here you have nonlinear, there you have linear.  So the linearity here is also not required 

honestly speaking.  Yeah, not required. 

 

  So what are we saying?  We are saying that the passive system output drives the Z 

dynamics.  Okay, so what are we going to do?  Of course if you have passivity you already 

have a storage function.  Right, for the system VX and such that what happens?  You already 

know that for this guy you will have V dot.  Right, because that is essentially passivity for 

this system.  Okay, notice again that this system has no connection to this system. 

 

  Yeah, not yet.  Of course we will introduce it via the control.  But as of now, no obvious 

connection.  Okay, but we will make it an interconnection means back and forth.  Yeah, that 

is otherwise it remains a cascade. 

 

  Yeah, here you see this way, this way.  There is connection both ways.  That's what we will 

do through the control.  Okay, great.  What are we now saying?  We are now saying I will 

construct a new function U which I am going to claim is a storage function  for this complete 

system. 

 

  Okay, a valid storage function.  Let's see.  So what is this U?  It is just the W that I had from 

the stability of this guy and the V that I had from the  passivity of the second guy.  Okay, just 

added the two.  Yeah, almost like back stepping. 

 

  Yeah, reminiscent of back stepping.  Had some function for the first system then had a 

function for the second system, added  the two.  Yeah, that's it.  That's all.  I am now going to 

carefully take partials because I have to compute the U dot, the total  derivative. 

 

  What do I do?  I take partial of W with respect to Z and then Z dot which is this guy, the 

whole thing.  Right, and then I take partial of V with respect to X and then X dot.  So what is 

that?  This doesn't have any del V, del Z and this doesn't have any del W, del X.  Right, that 

should be evident because this is only a function of the X state because  this is a storage 

function for this system.  This has only Z states because this is a talking about asymptotic 

stability of this system. 

 

  Right, so no dependence of these functions.  So these are actually, you know, functions on 

different state space.  Yeah, great.  Great.  Now what do I know?  I know by stability of the 

first guy that this is less than equal to zero. 

 

  Right, excellent.  Almost ignore this.  I also know that this whole thing has to be less than 

equal to U transpose.  This is the passivity assumption.  Yeah, so what do I know now?  I'm 



only left with this guy, right, because I can ignore this.  This is less than equal to zero. 

 

  Anything less than equal to zero I can ignore in V dot.  Right, so this is actually from 

equality I go to less than equal to and then I keep these  two terms.  This is this.  Yeah, notice 

what happened.  I have a sort of feedback passivation type of situation now. 

 

  What will I do?  I will simply choose, so if you see I can take Y transpose common outside in 

both these  terms.  So I have only this term left and this term left.  Right, so I take Y 

transpose common and I have U from here and the transpose of, sorry,  this guy from here.  

Okay, what will I do?  I will simply choose my control U to get rid of this guy and introduce a 

new control V.  Okay, introduce a new control V. 

 

 What does that give me?  It gives me V dot is simply less than equal to Y transpose V. Right, 

so with this new  control V and the output Y that was already there, this entire system is 

now passive.  Right, now this entire system is passive.  Okay, and as soon as you have 

passivity you know what to do.  Right, you can construct V which is say minus KY and 

hopefully Y equal to zero implies X  and Z equal to zero, you are done, you have a 

asymptotically stable equilibrium. 

 

  Excellent, yeah.  Exactly what you did.  Look at what you have.  What is the control?  

Exactly this.  Del V del X times this Fi.  Same del W del Z times F, whatever was multiplying 

the Y. 

 

  Yeah.  Just you know the Lyapunov function for the first system, the partial, so basically 

LGV  if you assume Y as the control, that's essentially what you chose.  Yeah, you think of 

this as a controller then partial of W with respect to Z times F or  LGV as we sort of know in 

conventional terms, yeah, is exactly the feedback passivation  term that you had.  Yeah, 

exactly what he did too.  If you think of Y as the control, this is just LGV, right, and that's 

what he chose  as your feedback passivation term here and then of course a new control 

term. 

 

  Okay.  Again he may have arrived at it differently with more assumptions or you know 

more complicated  sounding assumptions but actually it's the same thing that we are 

dealing with also,  okay.  In fact the linearity here is also not required, right, as you can see 

we worked with a nonlinear  system as long as you have a passive system and the output of 

the passive system drives  this nonlinear system, yeah, in this way, yeah, linearly of course 

there is a linear  parameterization of course, yeah, cannot have Y square and all, otherwise 

these terms cannot  be combined, you see that's the structural requirement, yeah.  So if you 

have a passive system which is driving a nonlinear system in this particular way,  yeah, then 

and this nonlinear system without the Y is already stable, then this entire  system is also 

passive, okay, so stable system in cascade with passive system also passive,  okay, so or if 

you want to say it differently if a passive system is driving a stable system  then entire 

system is also going to be passive, okay, so very cool result, very powerful result,  in fact we 



will see a nice example of a very, very, of course if you also have zero state  observability 

which none of these guarantee by the way, zero state observability nobody  guarantees that 

you have to verify for that particular output, okay.  So notice in this case zero state 

observability will mean that Y equal to zero implies not  just X equal to zero but also Z equal 

to zero, okay, but if you remember Antonio actually  spoke about the zero state 

detectability, yeah, zero state detectable if Y equal to  zero implies that X converges to zero, 

okay, and in all these cases, all these results  zero state detectability is enough, not zero 

state observability is not necessarily required  completely, okay, zero state detectability is 

more than enough, okay, so this is actually  rather nice, yeah, that you can actually work 

with zero state detectability, yeah, please  keep this in mind, yeah, you can even write it 

down in your notes, but anyway it's in  Antonio's notes which I have already posted on 

Moodle, all these ports, all of these,  all these three are now posted on Moodle, yeah, so 

anyway so zero state detectability  is enough, zero state observability is not required and if 

you see zero state detectability  is rather easy to achieve in these cases because if Y is equal 

to zero you know that the system  is anyway converging to zero, right, Z is going to tend to 

zero as T goes to infinity,  okay, by asymptotic stability assumption, so I am done, this 

system is zero state detectable,  okay, not necessarily zero state observable, I don't know 

that you can't say very easy,  yeah, but it is definitely zero state detectable and that is 

enough, okay, feedback interconnection  passive systems passive, passive system in cascade 

with a stable system also passive,  that's what we just did, okay, where is it useful? Attitude 

control of spacecraft, okay,  of course I do very very simple setup here, I don't explain 

anything, yeah, I'll not,  of course I don't have that kind of bandwidth in this course, but this 

is one of the most  important problems that space engineers work on, which is the attitude 

control, that is  the orientation control of a satellite, so why is orientation control required, 

should  be pretty evident, so you have remote sensing satellites or you have navigation 

satellites  like GPS satellites, they all have some kind of antennas or some instrument that 

has to  be pointed somewhere, for example in most cases in your GPS type satellites or even  

in remote sensing satellites, you want the antenna pointed to a particular point in earth,  for 

example maybe towards India, yeah, but the satellite is rotating on the orbit, right,  it's going 

on the orbit, evolving on the orbit if you may, yeah, so obviously it's, if you  do nothing, if 

you don't put any actuation, you don't do any attitude control, the antennas  are not going to 

remain pointed towards, you know, a fixed point on the earth, right, because  it is going to 

do this, if you move and the antennas don't move, then it's just going  to start pointing 

towards something else, right, so the simple task is you have to do  attitude control 

regularly, yeah, because it's revolving on an orbit, right, same with  you know if you have 

solar panels, so satellites need solar panels to generate power for their  equipment, right, or 

else if they are in two years of service, you can't expect to be sending  a battery or anything, 

right, not a choice as of now, yeah, so they rely on solar power,  so now the solar panels also 

need to be pointed towards the sun, so there is lot of equipment  on the satellite that has to 

be pointed towards, you know, a particular point and therefore  attitude control is one of 

the key problems for space engineers, okay, so what is attitude  control?  You make sure 

that the, there is a frame, of course, I mean, again I don't talk too  much about it, but I can 

make a small picture I guess, so not sure if I have a picture here,  no, so if you have a satellite 



say or what we just typically just say rigid body, yeah,  the same ideas work also for 

quadrotors and stuff, if you want to do orientation control  of a quadrotor, same equation, 

same ideas will work, there is no real difference, it's  a rigid body, as long as you think of 

anything as a rigid body, the same equations and everything  will work, okay.  So usually 

you have two frames of reference, one is what is called actually 3, but I am  going to deal 

with 2, one is called the inertial frame of reference, yeah, usually I denote  it as N or this is 

Newtonian because it's a Newtonian frame of reference, it is fixed  to the earth, and then you 

have what is called the B frame or the body frame of reference,  okay, this is the frame that 

is actually connected to the spacecraft body, rotates  with the spacecraft body, yeah, and 

your aim is to, stabilisation means that I want to  align the body frame with the inertial 

frame N, in typical set point regulation or tracking  you will have another third frame which 

would be say an R frame, yeah, or a D frame whatever  you want to denote it, yeah, you sort 

of want to align the B frame to the R frame,  yeah, when I say align the frame, it's same as 

aligning the body because the body is connected,  body and the frame are moving together, 

so if I am starting like this, yeah, and I want  to end up like this, yeah, this is a B frame, this is 

an R frame, okay, so these are all  like standard, you know transformations, attitude or 

orientation transformation, it's a very  important manoeuvre as you can, as we have already 

discussed, we don't assume any movement  of the origin, we assume that the origins are all 

fixed to the same point, we don't  consider the movement of origin because these two 

problems are disjoint problems, you can  solve them separately, that is positioning the 

origin and then reorienting are two distinct  problems, so we work with them distinctly, like 

in quadrotors you have translational  control and rotational control, okay, so we do that, 

this is the rotational control problem,  okay. 

 

  So one of the big challenges is how to represent rotations, so again this is not something  

that I can delve too deeply into in this course, but rotations belong to what is called the  

typical rotation matrix, actually I should not have called this R, let me call this say  some D, 

the typical rotation matrix between any two frames, common notation can be you  know, 

yeah, is belongs to a, not a space, I can't call it a space, a manifold called  SO3, okay, which is 

basically just the space of, or again sorry, the manifold of orthogonal  matrices, 3 by 3 

orthogonal matrices, okay, not just that, actually a little bit more,  yeah okay, so anyway that 

tends to get hidden sometimes.  So this is the space we are working with, okay, again I keep 

saying space, I apologise,  it's a manifold, okay, whenever you say space it means a vector 

space and it is linear,  by nature vector spaces are linear, superposition principle applies, 

sum of vectors is in the  same space, yeah, sum of two rotation matrices is not a rotation 

matrix, okay, you can't  just add two rotation matrices and get another rotation matrix, 

which is why they are not  a vector space, it's not a linear space, it's a manifold, but we 

unfortunately cannot  cover all that, the whole point is this leads to as you can see 9 state 

variables, right,  eventually the representation, whatever it's an SO3 or whatever with some, 

it has 9 variables,  right, so 3 by 3 matrix, right, with these constraints but still a 3 by 3 

matrix, you  can't reduce the number of variables, so it's 9 variables, so again engineers 

being engineers  they like to work with less variables, so initially they started out working 

with these  Euler angles, yeah, yaw pitch roll angles, the problem was that there is a lot of 



singularity  in Euler angles, yeah, that is some you can, once you reach a particular 

configuration  you can no longer represent anything beyond that, yeah, because there is 

singularity in  Euler angles, again not going into any detail throwing words, but these were 

the challenges,  so aircraft folks still like Euler angles because their rotations are smaller, 

typical  aircraft, commercial aircraft not doing twists and you know flips, right, so actually 

the  phi, theta, psi or the Euler angles are pretty small, right, for any commercial plane you  

can imagine, I mean I would not imagine anything more than 15, 20 degrees ever, yeah, so 

aircraft  folks still work with Euler angles, fighter jet folks cannot work with Euler angles 

because  they are trying to do crazy flips and stuff, spacecraft guys can definitely not work 

with  Euler angles because they are definitely exploring all 360 degrees, as soon as the 

spacecraft  is ejected out of a, you know, the launch vehicle, yeah, into the orbit, it's basically  

tumbling, it's essentially like you threw something with your hand, right, you can't  control, 

it's going to be just flipping and tumbling, you know, all over, right, and  then if you want to 

stabilize, so how do you even deal with the angles, you have to deal  with parameterizations 

which do not have singularity, so Euler angles are a problem, so therefore  we spacecraft 

folks move to quaternions which are four variables, yeah, instead of three,  therefore Euler 

angles were three, they were four, and what we are looking at here is basically  a 

modification of the quaternions only, these are called modified Rodriguez parameters,  

these are only three, yeah, they have no singularity, yeah, and they have, I mean well, 

wherever  they have singularity is not where you are interested in operating, so you are 

fine,  okay, so modified Rodriguez parameters is one representation of rotation matrices, 

okay,  any rotation matrix can be written in terms of this row variable, okay, that is what the  

whole idea is, so modified Rodriguez parameters are pretty good, relatively singularity free,  

and they are only three variables, okay, so they are all these parameterizations of rotation  

matrices are based on some ideas of projection, so this is also based on some idea of 

projection,  quaternions are simply based on the idea that any rotation, any rotation to 

initial to final  configuration is not actually, you don't have to think of it as three rotations, it 

is actually  one rotation about one principal axis, it's called Euler's theorem actually, any 

rotation  between initial and final configuration is actually a single rotation between around  

a particular axis which is called the principal axis, and you have a principal angle about it,  

so this is the Euler's theorem, based on the Euler's theorem you have quaternions, yeah,  

and then you have modified Rodriguez parameters which can be derived from the 

quaternions, okay,  but the simple idea is all of these help you parameterize the rotation 

matrix,  so basically what I am trying to say is that this rotation matrix say between the 

body frame  and the inertial frame can be written as a function of this row, okay, this 3 by 3 

matrix  can be written as a function of row, yeah, this expression is also readily available,  

alright, what are the other things? Orientation means I have orientation and angular 

velocity  also, so there is an angular velocity which is in R3, thank you, linear space, there is 

a control  which is what the thrust, typically the thrust you have a, thrusters are typically 

used in  what is called attitude controller, reaction control systems, so these are basically,  

these are only jets that are firing, yeah, you must have seen some visualizations,  yeah, this 

fire jets to reorient the spacecraft, okay, so this is the thrust and this is the  inertia matrix J 

equal to J transpose positive definite, inertia matrix is constant in this  model, okay, unlike 



the robot model inertia matrix is constant because the inertia is written in the  body frame, 

all the equations are written in the body frame, okay, so this is also in the body  frame, 

everything is in the body frame, okay, so more details on this are in a dynamics course,  

yeah, which we teach also later on at some point, but remember that the model is written in 

the body  frame therefore, the inertia is actually constant, yeah, again for the fan if I took the 

frame as the  one that is rotating with the fan and I wrote all my equations on that frame, 

then inertia is a  constant, because my frame is rotating with the fan, therefore no change 

with respect to that,  okay, so that's the idea, we have the kinematics equation and the 

dynamics equation, don't ask me  how this comes, this is not a matter of again discussion in 

this course, just take it on  face value, this is the equation, rho dot, all of these equations are 

derived from the equation  for the rotation matrix, okay, and the rotation matrix derivative 

has a very simple equation,  yeah, this is the equation for the evolution of the rotation, how 

rotation matrix changes,  it is just actually I keep writing this R BN just for your 

convenience, typically we don't write the  B and N, R is usually evident from what you want 

to work in, so this is how the rotation matrix  evolves, the derivation of this is very simple, 

I'm not going to cover it, yeah, from this you  get all these equations, okay, because these are 

just parameterizations of the rotation matrix,  right, so once you know how the rotation 

matrix evolves, you also know how these guys evolves,  okay, so this is the what is called a 

kinematics equation, the evolution of the parameters,  yeah, or you can think in your head in 

terms of Cartesian as angle derivative is angular velocity,  right, connected to angular 

velocity, so that is what it is, somehow angular derivatives are  connected to angular 

velocity, yeah, that is the kinematics equation, and the angular velocity  derivatives have 

some dynamic terms, okay, this is actually very very easy, this is just the Newton  second 

law, right, this is DDT of, this is what this equation is, DDT of J omega is equal to U,  okay, so 

when you take derivative and so why this turns out to be like this, is that remember that  

this vector J omega is in the body frame, not in an inertial frame, okay, so this is a vector in  

the body frame, yeah, it's in a vector in a rotating frame, if on this fan, rotating fan I  put a 

vector, right, which is fixed with respect to the, not necessarily fixed but it's whatever,  

written with respect to the body frame, the rotating frame, it's a vector in the rotating  

frame, okay, so when I take the derivative of such a vector it always has two components,  

one is the change of the vector in the frame that is J omega dot, and the second piece is the  

inertial change, yeah, this is omega cross J omega, yeah, you would have seen this in your  

high school, this is I think, I don't know, the terminology used is called transport theorem,  

you sort of, how do you take derivatives of vectors in moving frames, so typically this in  

high school or in undergrad there is, I am assuming there is in physics this is usually taught, 

yeah,  yeah, you may not remember the form, this particular form but it is taught, if you go 

back  and you look at, you know, even your high school physics problems on Newtonian 

mechanics, you will  see that you did this, yeah, so basically it's like how do you take 

derivatives of vectors in  a rotating frame, yeah, if I give you a vector which is in a rotating 

frame, not in a fixed  frame then how do you take it derivative, this is how you take it 

derivative, you first find the  derivative with respect to the rotating frame and then you are 

taking the derivative somehow  of the frame with respect to the inertial frame, that is omega 

cross J omega, okay,  so that is what this is, it is just Newton's law written in a moving frame, 



okay, so very  interesting but again not, I am not delving into too much details because this 

is not the intent  of this course, yeah, but that's it, simple. Kinematics is angles, derivatives 

related to  velocity, angular velocity, dynamics is angular velocity derivative related to, you 

can think  of it. Thank you. 


