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  So, let me take some examples, alright.  You have seen enough theory I guess.  I think 

theory is relatively simple.  I hope you understand that.  So this is again something that I 

have sort of created but not too far away from reality.  Okay, so again a sort of concocted 

example but not too far from reality. 

 

  This is a relatively standard structure.  Typically, you will see this kind of a structure in 

rotating systems again.  So and this term would usually be here.  Yeah, but I have sort of 

switched it because otherwise it becomes a slightly tough example. 

 

  Okay, we can look at the more tougher one also later but for now let us look at this.  Okay, 

aim is stabilization which means that I want x omega to be L infinity and x omega  to go to 0.  

Again, we can also do tracking but in steps later on.  Let us not worry about it.  So now how 

do we start?  You have seen what is the first requirement now?  Okay, so let us try to 

identify what is psi by the way, not zeta. 

 

  That is okay.  Yeah, here there is no psi, it is the omega state.  We have the x and the omega 

state, the integrator and also notice that I deliberately made it  not look like an integrator.  

That was the purpose of making this example.  The second stage does not have to be a pure 

integrator. 

 

  It is not.  You see, it is not a pure integrator which is not a big deal as you will see.  Now tell 

me something.  What do we say?  We assume something nice for this system.  What do we 

assume?  We start with the first system, right?  That is the whole idea. 

 

  You start with the first system.  What do we assume for the first system?  Yes, but yeah, so 

existence of a K0x and existence of a CLF, right?  What is it for the system?  Very simple, 

scalar.  What is a CLF?  What is the K0x you think?  So step one, guess V0x and K0x, yeah, for 

this system, for the first subsystem.  We always start with the first subsystem.  That is how 

backstepping. 

 

  What is V0x?  What is K0x?  Anything, give me some choices.  Anything that comes to your 

mind.  You have now seen enough Lyapunov candidates and Lyapunov functions and so on.  

Give me whatever, anything.  Yes?  No, just V0x. 

 

  You always start with the first subsystem.  Forget the second.  What is it?  X square.  X 



square, okay.  Thank you, thank you. 

 

  My hearing is bad, sorry.  So V0x equal to x square.  I want to test this, okay, alright, as a 

CLF.  Let's see.  How do we test if this is a CLF?  Let's forget about doing K0x, but how do we 

test that this is a CLF?  Do the usual tricks. 

 

  What is it?  V0 dot.  V0 dot.  It is what?  Okay, I will take half x square.  So I will get V0 dot 

as what?  X omega.  In this case, omega is the control. 

 

  Okay.  So omega is notionally the control, right, because we don't have a second system in  

our mind as of now.  Omega is notionally the control, okay.  So if we said that, so what do we 

need?  If the control vector field goes to 0, then the drift vector field has to be negative  for 

all non-zero x.  But what is the control vector field?  X, I am sorry, not the control vector 

field, but the partial with respect to the control  vector field.  So LGV0 is actually x. 

 

  So LGV0 is actually equal to x.  And if this goes to 0, means x equal to 0.  And so there is no 

other possibility.  You don't have to check anything is negative or anything.  It is trivially 

true. 

 

  Okay.  Implies LFV0, no need to check.  Yeah, it is trivially true.  Okay.  So such cases are a 

little bit weird to deal with, but they are okay.  That is not a problem. 

 

  Because essentially you are saying x will be 0 if the control vector field is 0 and  that is the 

equilibrium anyway.  So you don't need to go anywhere else.  So you are done.  That is the 

logic. 

 

  Okay.  So done.  Great.  So this is a valid CLF.  What about K0 x?  How do I choose K0 x?  

What is a good controller for x dot equal to omega system?  Linear system, simple system, 

no?  What is a good controller?  You can guess or you can use the Lyapunov function you 

have to do Lyapunov reshaping.  So fine.  You already have V dot is x omega.  What should I 

choose omega as?  Minus x. 

 

  Okay.  Minus Kx or minus, yeah.  Just to give it a little bit more general.  It will work for any 

positive K. Right?  So these two are done. 

 

  Okay.  Because this will give me implies V0 dot for this case will be minus Kx squared 

which is  negative definite which is the Wx we were talking about.  Great.  So done. 

 

  Step 1 accomplished.  Step 2.  Go to the next system.  Right?  Construct Vx omega and find 

control.  So folks what is Vx omega now?  V0 x plus what?  Half norm of error between 

what?  Omega minus K0 x which is omega plus Kx squared.  Yeah?  It is a scalar so norm is 

just a square. 

 



  Okay?  Excellent.  So I am not going to use the formulae that we because practice shaping is 

a procedure.  Yeah?  The purpose of showing you was the procedure.  So we do not have to 

go back to those formulae and remember and implement those formulae.  This is easy.  

Okay?  Now what?  I need to find the control. 

 

  What will I do?  Take the V dot.  Right?  We have been doing this.  Take V dot.  Okay?  And 

that is equal to V0 dot x.  Right?  Which is basically x omega now.  Plus omega plus Kx omega 

dot plus Kx dot. 

 

  Right?  And this is x omega plus omega plus Kx.  What is omega dot?  It is omega cross x 

plus the control plus K omega.  And I have just substituted for the dynamics.  Now what will 

I do?  I use the same trick that I did before.  So this term here I write the omega as in terms 

of my new variable. 

 

  That is this omega plus Kx.  Right?  So I can write this as minus Kx squared plus x omega 

plus Kx.  Right?  So this term becomes these two terms.  We did this even in the previous 

steps.  Right?  And omega plus Kx times omega cross x plus u plus K omega.  Yeah?  Now 

notice that I already get the nice term. 

 

  Right?  The wx already showed up.  Right?  It like it did in the general case also.  This is the 

wx.  This wx shows up immediately.  Yeah?  All I did was write this term in terms of the new 

variable.  Sort of the new variable that I have created. 

 

  Right?  I want to write everything in terms of the new variables which is x and omega plus 

Kx  that I have appearing.  Okay?  That's what I did.  I wrote this omega as omega plus Kx 

minus Kx.  And that gives me this guy.  Alright?  And now I know that this term can be 

combined with this term. 

 

  Okay?  No need to take transpose either.  It's too easy.  Right?  So basically I have minus Kx 

square plus omega plus Kx u plus omega cross x plus K omega  plus x.  Alright?  Yeah?  So I 

already know this is clf.  Not a problem.  If you want you can work hard and you know that 

the term multiplying the control is the  Lg bar v and if this is zero means omega equal to 

minus Kx so this entire guy goes away. 

 

  Okay?  And this is negative.  Okay?  So, all good.  No problem.  Okay?  Alright.  Now, what 

would be the control now?  If I wanted to use this Lyapunov reshaping idea, what would be 

a good controller here  to make sure that v dot becomes negative definite?  Just like we did 

for the general case, what would I do?  Minus omega cross x minus K omega minus x. 

 

  Cancel everything.  And then minus omega plus Kx.  Right?  Simple.  Yeah?  And you can run 

as many simulations as you like.  This will always work. 

 

  This is a very good controller.  It will work beautifully.  Okay?  Even if you add disturbance.  



So all Lyapunov analysis, again we did not do this but maybe I will do this maybe little  bit 

later because you have not done all the design but any Lyapunov design or Lyapunov  

reshaping or any of the methods that we do, it gives you free robustness.  Robustness is free.  

You know somebody might tell you that oh but this is very theoretical design and you know  

what will happen if there is noise, there is disturbance which is true, how will your  control, 

it will perform well. 

 

  Okay?  It will give you bounded nice performance because robustness is free in Lyapunov 

analysis.  Okay?  And we will sort of try to understand.  Any CLF based design, by the way, 

not in general, if you proved or if you use the LaSalle invariance  type methods which allow 

the use of semi-definite functions to prove convergence and stability  and so on, they will 

not necessarily give you robustness, not guaranteed robustness  but anywhere where you 

use CLF based design, right, which is these.  Whatever we did or doing a CLF based design 

will always give you robustness for free.  Even if you add disturbance to your simulation 

and we will give you assignments in this direction. 

 

  Okay?  Where you will add noise, you will add disturbance and so on and you will see that 

your performance  remains close to ideal.  Okay?  You are not going to deviate, it's not going 

to destabilize your system.  Okay?  So that's of course one of the features.  In most cases, it is 

also possible to compute how much the disturbance will impact your  performance. 

 

  Okay?  It is possible to compute.  Okay?  Again, if I find some time, we will cover this, how 

to compute.  Yeah?  It is also possible to control the effect of disturbance using control gains.  

Okay?  For example, what is the control gain here?  I will mark it.  This is the control gain.  

Yeah?  So just like your typical PID control, you don't have very, you know, sort of very 

obvious  PID type gains. 

 

  Okay?  Here the gains are a little bit more complicated.  So how you will look at this sort of 

a controller, in fact, I would say, I would not call even  this as a control gain.  I will call this as 

the control gain.  So let's see.  These are the feed forward terms and these are the feedback 

terms. 

 

  Okay?  The logic is pretty straightforward.  Okay?  If you look at these terms, they are 

coming about just due to the dynamics of the system.  Okay?  These are just the dynamics 

terms coming from here.  This is the dynamics of the system coming from here.  Okay?  And 

you are sort of cancelling out the dynamics. 

 

  Yeah?  You are cancelling out the effect of the dynamics.  Yeah?  These are therefore called 

feed forward terms.  Yeah?  It means that you sort of predict what the effect of the dynamics 

is and you cancel it  as best as you can.  Obviously, you can never do it well.  Therefore, it's 

called feed forward term.  The feedback terms like this term and this term and this term are 

actually the stabilizing  terms because this term is coming from here. 

 



  Yeah?  And this term is coming from here.  Okay?  These are actually the stabilizing terms.  

Both of these, not just one.  So these are the feedback terms.  They are actually the terms 

that are used to stabilize the system. 

 

  It's a little bit complicated.  I mean, you can also remove this and because there is already a 

k here and all that.  So it might seem like there is only one stabilizing term.  This is not 

necessarily to include.  Yeah?  In fact, I could also not have included in the control law at all. 

 

  Yeah?  I can just adjust it in the k as you can see.  Yeah?  So this term does not even need to 

be there in the control law.  Therefore, let's not worry about this term.  This is actually the 

feedback term.  Yeah?  And you can see again there is a lot of parallels here. 

 

  It's a nonlinear system.  Yeah?  Notice it's a nonlinear system.  Small nonlinearity.  Still a 

nonlinear system.  Okay?  But the control that you got is actually a PD control.  Yeah?  

Because this is a proportional and a derivative. 

 

  Okay?  This is a proportional term and this is a derivative term.  So if I again want to label 

more, this is the D term, this is D term.  So PD control.  And so most aero mechanical 

systems again, PD control works very well.  Usually the control for nonlinear aero 

mechanical systems will be PD plus feed forward. 

 

  Okay?  So this is what this is.  Right?  This is feed forward control.  So applied controls folks 

or control engineers will typically use this terminology.  Yeah?  They will have PD, feed 

forward, feedback and these kind of things.  But the feedback term is essentially 

proportional derivative. 

 

  Right?  Because you took X and omega.  This is proportional derivative.  Alright?  A lot of 

people also wonder why a lot of PID works a lot of times.  Right?  I mean it's a big question.  

Why does it work all the time and why do we do all this nonlinear design if PID works  so 

well?  So typically PID will work well when you don't know the feed forward terms very 

well.  Okay?  So what the I does is, it's sort of at least in the linear domain. 

 

  By the way, PID works only in the linear domain.  Actually it doesn't work in the nonlinear 

domain.  If your oscillations are too big, then it will not work well for you.  So what you try 

to do is you try to maintain the system in a very linear zone and then  you apply the PID 

works well.  Okay?  So in the linear domain, these terms will have relatively smallish 

contributions. 

 

  Okay?  And so the integrator is what creates this internal model.  Right?  So it adjusts the 

steady state error.  Okay?  So these terms.  So the I is essentially replacement for these 

terms.  Okay?  When you don't know these terms too well, you would employ an I term.  

Okay?  That's sort of the purpose of, you know, sort of the principle why PID will work 

relatively  well. 



 

  Yeah?  So I if you, the integrator term is what?  It's a 1 by s.  Right?  So 1 by s is what?  It's 

an integrator.  Right?  And this system is an integrator.  Right?  Just like most aero-

mechanical systems I say. 

 

  Right?  It has an integrator built in.  Right?  So the I term is an internal model.  Yeah?  A 

very standard idea that if you have the internal model in the controller, internal  model of 

the system in the controller, then you can kill the steady state error.  Okay?  You can also 

prove this.  I think if you have done a good frequency domain course, there is proof of this 

also.  I don't remember it but it's not difficult.  Yeah?  So if your controller has an internal 

model of the system, which is what?  Which is saying I know the feed-forward terms. 

 

  What does it mean to have an internal model of the system?  Means I know the feed-

forward terms.  Right?  So if you don't know the feed-forward terms very well and you are 

working in a sort of  linear domain, then 1 by s is a good internal model and that is an 

integrator and that's  in your controller works well.  Yeah?  Cancels your dynamical, the 

feed-forward effects and then you have a nice damping reaching.  Yeah?  Proportion is 

reaching, dynamic d is damping. 

 

  So that's what gives you the, you know, sort of stops your system in some sense.  You 

know?  Doesn't have crazy oscillations.  Okay?  So that's the idea.  Alright?  So you can say 

this is a way of designing CLFs so that you can come up with controllers.  Typical controllers 

for aeromechanical, you will find them to be PD, feed-forward structure.  Okay?  Thank you. 


