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  So, anyway I will repeat it for the benefit of the audience that here the small control  

property and the continuity of the control at origin are connected by an if and only  if 

relationship which means that if the control is not continuous you do not have small control  

property, if you do not have small control property the control is not continuous at  the 

origin ok. So, it works both ways, everywhere in fact yeah that is the power of an if and  only 

if result alright. Anyway, so the key thing is you now have a formula for a universal  

controller which will work I mean it may look like a funny looking formula but it works  ok. 

It gives you a stabilizing controller it is smooth everywhere but at the origin  where it is 

continuous ok, still pretty good I would say. Now, before going to the rest  of the piece of the 

proof which is now a little bit more mathematical and it really just talks  about you know 

the fact that the controller that we have prescribed is smooth ok. So,  that is really what we 

will prove but before we do that I want to look at this example  ok and the fact that there are 

multiple controllers possible and so on and so forth ok. 

 

 So, if  very simple example alright, very simple scalar example x dot is minus x cube plus u 

ok, this  is the system that we are looking at. Now, one obvious control without doing any 

analysis  or anything is to simply prescribe my control as this x cube minus x ok alright. 

Then you  can see that your closed loop system is x dot is minus x. So, this is basically what  

you would call a feedback linearizing controller. 

 

 We have not looked at feedback linearization  but basically what this controller is doing is 

linearizing the system in a sense. So,  this is what this control does yeah. When you look at 

feedback linearization this is  the kind of controls you will design, you will cancel, you will 

try your best to cancel  the non-linearity and then introduce a nice linear term. In this case 

you got a linear  exponentially decaying system ok. One thing that is obvious is if your when 

x is large  control is large yeah that should be obvious right because of the x cube term 

which will  dominate alright. 

 

 If x is small control is small yeah seems intuitive also large very  far away from the origin 

large control close to the origin small control seems intuitive.  Now let's do what we call 

typically called Lyapunov redesign. We don't design a control  first like we did here which is 

sort of a feedback linearization based control. We just  we choose a Lyapunov function first 

for the system. In fact what we choose is a control  Lyapunov function but I don't say it like 

that. 

 



 Let's say it's a Lyapunov function. I  know it's a candidate Lyapunov function because it's 

continuous and positive definite and  all the nice things. So, this is a good function. So, I take 

V dot and I get this. Now V dot  obviously contains the control right because I have not 

chosen it yet. 

 

 Now without going  into any CLF theory or universal formula I just use this and look at this 

to design  a control. What will I do? I know that this two multiplied are not giving me 

anything  bad they are giving me a negative term. So, I don't try to cancel it. I don't try to  

cancel it. I just introduce another negative term. 

 

 Okay. So, my control is just u equal  to minus x. In fact it's a linear controller. Okay. It's a 

linear controller. 

 

 Alright.  So, I get V dot as minus x4 minus x square which is again negative definite. So, by 

Lyapunov  theorem I have asymptotic stability. Great. Done. What is the nature of this 

control?  Again large when x is large, small when x is small. 

 

 However, important thing is it is  not never going to be as large as this guy. Alright. Never 

going to be as large as this  guy. In fact I have made a small computation also just for our 

reference. If I take x equal  to 10 this one comes out to 990 magnitude. 

 

 Magnitude is 990. Magnitude of this guy comes  to be minus 10. Okay. This is positive 990 

this is minus 10. When x is value of x is  10 units. 

 

 Whatever that unit is. Okay. Alright. Let's look at the universal formula. 

 

 Okay.  Universal controller. We know that V equal to x square by 2 is already a CLF. Yeah. 

Why?  Because you can see that if the control term is 0, if the control term goes away, I just  

verified like this. Then I still have a negative term here. 

 

 Yeah. That's all. CLF means is  this. Till the control terms vanish or are 0 then this drift term 

is still negative which  it is. Right. What is the drift vector field in this case? By the way, if I 

ask you what  is the drift vector field and what is the control vector field? Everything is a 

scalar  field here but still what is the drift vector field in this case? F0. 

 

 What is F0? Yes. You  should be able to parse this. That what is F0, what is F1 if you want to 

apply these  results. What is F0 you think? And what is F1 for this system? This is the 

system that  we are looking at. So there is of course just F0 and F1 and nothing more. 

Because there  is only one control. 

 

 Number of control vector fields is same as the number of controls.  So there is only this 

much. So what is F0? Minus x cube. 

 



 What is F1? 1. 1. Okay. Great.  So it is a CLF because del V del x F0 is negative. Yeah. When 

the other part is gone. 

 

 Okay. Alright.  I will start the universal formula computation. Okay. So I first compute Ax 

which is what?  Del V del x F0 x. Okay. So what is del V del x? It is x. 

 

 Del V del x is just x times F0  x which is minus x cube. So Ax is minus x to the power 4. What 

is B of x? It is del  V del x which is x again times F1 x which is just 1. 

 

 Okay. So it is just x. Okay. So  it should anyway it should be evident that I mean although I 

checked I said it is CLF  and all that. It should be evident to you that if Bx is 0 the only way 

Bx can be 0 is  if x is 0. Okay. And remember that we have to check all the CLF conditions 

only for non-zero  x. 

 

 Okay. Only for non-zero x. Therefore I am saying that the condition 2 of the CLF  definition 

is trivially satisfied which means you can never get in a situation where your  drift where 

the control vector fields do not contribute and x is non-zero. Okay. If your  control vector 

fields do not contribute then x is 0. That is the only possibility in this.  So it is anyway 

trivially satisfied. 

 

 We don't have to check anything but it is okay. In  this case you also see that it is minus x4 

is there which is a nice helping term. Alright.  So I use the universal controller. 

 

 Okay. I don't have to write this case because this  means x is already at the equilibrium. 

Right. So this case is irrelevant for us. Yeah. Because  if Bx is 0 x is 0 which means I am at the 

equilibrium so obviously I am not applying  any control. 

 

 It is stupid to apply a control at the equilibrium. Okay. Right. So I just  compute this formula. 

And what is that? I have just populated the terms. 

 

 Minus A plus  square root of A squared plus B4. And that is what it is. A squared B4. And 

this whole  thing multiplied by B over norm B squared which is just what is B over norm B 

squared?  Sorry. 

 

 This is B. Norm B squared is this. Where B is a scalar so norm of B is absolute  value. Okay. 

So this is B over norm B squared. Okay. So basically I have just you can just  simplify this. 

 

 It just comes out to this guy. This is what is the control. This is what  is the control. It is x 

cubed minus x square root of x4 plus 1. Notice that the expression  for this control is 

significantly more complicated than both the other ones. One is a linear  control which is 

minus x other one is x cubed minus x. 

 

 So simple expressions. Yeah. This  expression way more complicated. But it is a very nice 



controller. Right. Better than  the other ones. Why? If x is large what happens? This can be 

ignored. 

 

 This is playing a very  small role. So then this is x cubed. This is almost zero for large x. 

Imagine for large  value of state you are almost applying no control. For small value of x 

what happens?  This is gone. 

 

 This is also gone. You are left with minus x. So for small value of control  it behaves like this 

one. Like a linear controller. For small values of x it behaves like the  linear controller. For 

large values of x it almost applies no control. 

 

 In fact you  can compute. If you take x equal to 10 this is like 1000 minus 10 square root of 

10 to  the power 4 plus 1. This is almost zero. 

 

 Yeah. But it is evident anyway. Right. Because if  I ignore the one both of these are x cubed. 

Ok. So this is a very cool controller. Right.  Because it is like it is applying very small control 

for large values of state. 

 

 Ok. Now  whenever I say things like this it is your job to tell me nothing comes for free. Ok.  

Nothing comes for free. Remember this these controllers both these controllers in fact  this 

guy gives you a x dot equals minus x. 

 

 This guy gives x dot is minus x cube minus  x. Both of these are beyond exponential rate of 

convergence. Super exponential. Exponential  or super exponential. 

 

 Ok. Because x dot is minus x is already decaying at minus 1 t.  Minus 1 rate exponential 

decay. This is even faster than that. 

 

 Ok. So both of these are  converging rather fast. Ok. This guy there is no guarantee. 

Probably converging very  slow. Ok. It is not necessarily converging very fast. 

 

 So nothing is for free. Yeah. We  have designed controllers they are actually not that useless. 

It is not like we did a  very shoddy job. 

 

 No. In fact more often than not we use this method. Sorry. We use this  method of control 

design. Directly guess it from the v dot expression rather than go to  the universal formula. 

Alright. But yeah. This is a nice control if you want to keep  your control commands in check. 

 

 And you don't care about how fast you go. Especially there  is a lot of applications when if 

the states are very large you don't care to apply very  large control. One of the most 

common application is spacecraft de-tumbling. Ok. When a spacecraft  is you have the 

launch vehicle right in multiple stages they get released then it leaves the  earth's 

atmosphere then it says it gets close to the orbit then the spacecraft is released  from the 



top. 

 

 Ok. When it is released of course it goes into the orbit but it is it is rotating  at a crazy rate. 

Very very large rates of rotation. Ok. And remember in this case the  states are angular 

position and angular rate. 

 

 Ok. Angular position is whatever 0 to 360  can't be more than that. But angular rates are 

super large and that is also state of  the system. Right. So the states are very large in this 

case. Now for the de-tumbling  manoeuvre if you start firing your engines like crazy to stop 

the de-tumbling. 

 

 Ok. Then  you lost all your fuel in the first 10 minutes of your mission. Ok. Then what will 

you do  after that. Yeah. So they don't usually folks don't care about the equipments are well 

enough  well protected enough that for large angular rates also the equipment is not going 

to get  damaged. 

 

 This is important. If your equipment is going to get damaged then you better de-tumble  

soon enough. But if your equipment is well stacked and you have done a good enough 

design  so it is not going to create a problem for you even if you are rotating fast. All you  

want to do is make sure that it stops after say 2 days. 

 

 It is fine. Yeah. So the de-tumbling  manoeuvres are really done with very small intensity 

jets. Very small. Or in fact a lot  of times it is not even they try not to use jets so you find a lot 

of results on using  magnetic torquers for de-tumbling. So they use the earth because if it is 

a low earth  orbit you can imagine there is a small magnetic field on the satellite. And 

outside the earth  orbit outside the earth's atmosphere there is no real atmosphere to stop 

it. 

 

 So even  the small magnetic forces are enough to stop the satellite or slow down the 

satellite.  So mostly your de-tumbling manoeuvres will be done with magnetic torquers. So 

very small  torques very small. So these are the kind of controllers you want in such a 

scenario  that you don't care when you stop. 

 

 You just want to stop. Ok. So but of course like I  said if you are time critical application 

then yeah but then you better have enough  you can see the trade off right. If you want fast 

you better have enough fuel or enough  actuation ability. Ok. Because you are burning at this 

rate. 

 

 This is huge compared to this  which is almost zero. Right. So lot of applications are there 

where you don't care about applying  like you know huge torques just to stop a vehicle or 

something. Fine with stopping when  it stops. Yeah. The only thing is you still have to apply 

something in the in orbit because  there is nothing else stopping it. 

 



 So then you can't do a mission. Right. If you want  earth pointing satellites then how will 

they point the earth if they don't stop. 

 

 Ok. So  that's what is important. Alright. Ok. So I hope you understand that the universal 

formula  though it gives funny looking controls it is a very useful control design. Secondly  

more often than not we don't use the universal formula. Yeah. We directly guess the 

controller  from this kind of a Lyapunov redesign. 

 

 So we start with the CLF ideas. Right. But then  we design the control using you know just 

by guessing at this stage. Ok. Now one of  the other things that you know you folks should 

also see is that actually I can keep  control to be zero in this case. 

 

 Then the system is still a stable system. Ok. The purpose  of designing controllers for such 

systems would be to get a particular convergence rate.  Ok. So this system is already 

asymptotically stable without any control. Yeah. The purpose  of designing controller would 

be to get a rate, particular rate of convergence go at  a particular speed. 

 

 Yeah. Alright. So there is a nice exercise for you guys. Find a control  Lyapunov function and 

apply the universal formula to get a control. 

 

 This is the exercise.  Any questions? Ok. Absolutely. Everything is dependent on the V. 

There is no except  for feedback linearization there is no real method which gives you a 

control design without  a V. I mean while you have things like model predictive control and 

so on where you sort  of guess a control out of a optimization. But in those cases 

stabilization guarantees  are not rigorous. 

 

 I mean there are guarantees but the guarantees are very conditional for  stabilization. Yeah. 

They work more on I would say intuition. See it is more like I mean  how would a typical 

predictive controller work is it would basically say that I will  discretize this problem. So I 

will have say I look at say 20 time step horizon. So now  I have a discrete problem right. I 

have a discrete problem meaning that I can write  this whole problem as a if my state space 

is say 5th order 5 states. 

 

 Then I will write  this whole problem as a 5 state and 20 time steps. So 100. So 100 by 100 

order matrix  and I can pose an optimization problem right. What will be my optimization 

requirement?  It would be like say fuel consumption is low. So something like a U transpose 

U will  be 1 and U transpose not U. U will also be the control at every stage every time step  

time step 1 time step 2 all the way to you know time step 20. 

 

 Ok. So you put one piece  of optimization cost is this U squared or U transpose U. The other 

piece could be you  want your state to shrink. So you can put another cost as X transpose X 

where X is again  the stacked. 

 



 So it is like 5 states in 20 time step. So 100 is X transpose. So now you  have an optimization 

problem. You solve this optimization problem and if the solution is  good then you know 

that if you keep applying this this this is a control sequence right.  You got a control 

sequence for 20 time steps. If you apply this control sequence for 20  time steps you know 

that you will hopefully reduce the X transpose X because that is what  you pose as 

optimization problem. Then you apply the first two first two three steps  of that control then 

you do the do it for the next horizon. 

 

 This is the receding that  is what it says receding horizon. You switch the horizons first 

horizon second horizon.  So you compute for this horizon apply control only until this point. 

Then you compute for  this horizon apply control here. 

 

 This horizon apply control here. You don't apply all  the 20 steps of control. You apply only 

the first two or so. And so there is some proof  which which shows that yeah you will 

converge to the origin and all that. Proofs are very  highly dependent on a lot of things yeah. 

 

 They are actually dependent on on existence  of a controller. So it is very odd yeah. So so 

they are more optimization I mean and if  you want to see such setup such a setup is way 

more useful if you want to put constraints  on the states and things like that way more 

useful. Yeah. But if you are looking for stabilization  type or you know tracking type results 

you rely on V have to rely on some V. 

 

 Yeah. And  again it's also a nonlinear problem right. Optimization nonlinear optimization. 

So you  don't know what comes out of it. Yeah. You put it into an engine then what. 

 

 You don't  know. Just like a lot of you will also use learning algorithms these days right. I 

mean  it's like I just have a hammer and I keep hitting all my nails with it. So you don't  

know that if you learned well enough or not and if it will then perform well in given  us 

particular set of data. So that's a little bit of an issue. But anyway different context. 

 

  In this context we are looking at stabilizing controllers or tracking controllers hard to  do it 

without a V. 

 

 Yeah. Very difficult to do it without a V.  Absolutely. Yes. Yes. Yeah. But it sort of means that 

close to the equilibrium you will  have less control. Doesn't necessarily say that away from 

the equilibrium what will happen.  Close to the equilibrium these controllers will guarantee 

that your control magnitude  will be small. 

 

 Away from the equilibrium no such guarantees. This is guaranteed. Yeah.  That's not 

dependent on V. The small control property will hold. Yeah. Yeah. All right. 

 

  So what I want to do is to look at the proof is a little bit I'm not sure how many of you  will 

follow but it's OK. There's a quick proof of why the controller is smooth. OK. How we  do 



this is by invoking the implicit function theorem. 

 

 OK. If you don't know what is the  implicit function theorem I just tell you in words you can 

look it up later. It basically  says that if you have a function of two variables or two or more 

variables. 

 

 Yeah. Actually it's  stated in two variables only. If you have a function f x y such that f x bar y 

bar is  equal to 0 say. OK. And you also have d f I think one of the partials right. I would  I 

think it's the partial with respect partial with respect to the y variable. 

 

 This is full  rank. OK. Or maximal rank when I say full rank it means partial of f with respect 

to  y maybe non square matrix. I hope you understand that. Yeah. f is not necessarily a scalar  

function could be a vector function. 

 

 OK. The implicit function theorem can be stated for  a vector function. f is in general a 

vector valued function of two parameters two variables  x and y. OK. Again different 

dimensions not necessarily scalars and the partial of f with  respect to the y bar or the y y 

variable is maximal rank. 

 

 Yeah. Not full rank maximal  rank. Then you can say that y bar in the neighborhood of so y 

can be written as a function of x  smoothly in a neighborhood of x bar y bar. OK. Basically 

you can it's that's why it's  called the implicit function theorem. 

 

 This function is implicit but you can it is possible  to write it in an explicit way. OK. You can 

give an explicit relationship. OK. A lot of  times that's not possible. If I give you an implicit 

function of variables then you may  not be able to write an explicit expression. Yeah. In this 

case it says it is possible  if the partial of the function with respect to the y variable is full 

rank then y can  be written as a g of x. 

 

 A function of smoothly also smoothly. OK. All right. And of course  we started f with f 

smooth. We also started with f otherwise of course nothing is possible.  OK. All right.  Thank 

you. 


