
Nonlinear Control Design 

Prof. Srikant Sukumar 

Systems and Control Engineering 

Indian Institute of Technology Bombay 

Week 6 : Lecture 31 : Control Lyapunov functions-Part 3 

 

  So, let me sort of recap very quickly what we have talked about in the context of CLFs,  

control Lyapunov functions. So we very conveniently and comfortably use the notation CLF 

or the  terminology CLF. So please don't get confused, it just means control Lyapunov 

functions.  We started with a general non-linear system like this and this was the definition 

for  the control Lyapunov function. The first one, the first condition basically required that  

it be a Lyapunov candidate, a valid Lyapunov candidate and the second condition is sort  of 

the nice negativity condition. So you in the absence of the control you had the  negative 

definiteness condition. 

 

 Here what all we are saying is that we are saying you  can actually find some control U such 

that you can make the derivative negative for every  state. That is really what is a CLF. It 

says that this function is such that it allows  you to find a control such that for that value of 

control the V dot is negative and  this you have to do point wise. This is a point wise 

computation because so the x here  is fixed. 

 

  So you notice that because you are taking infimum only over the control, the x is actually  a 

fixed quantity. So once you fix the state, it is just some number that you have. Basically  you 

just have a function of U in here and then you are just trying to find an infimum.  In fact you 

can just think of this as an optimization problem. It is actually almost an unconstrained  

optimization problem. 

 

 I mean the only thing is you want the value to be negative. You  want the value to come out 

to be negative. If it so happens that you run an optimization  on this and the value turns out 

to be positive of the function here of the cost if you may  have a V dot then it is not a good V 

at all. So the V is not a CLF. And of course such  V such a CLF is very useful in control design. 

 

 We will look at it because you can see that  it allows you to design a control which makes 

the V dot negative. And V dot being negative  definite is what you require for asymptotic 

stability. So obviously that is what you want.  Now we then specialize this to the control 

affine case. Why did we do that? Because  we realized that, well we did not realize anything 

but the researchers who have been  working on this for several years, they realized that 

with just a general non-linear system  where the control can appear in any form, not 

necessarily in an affine form, then it  may not be possible for you to design continuous 

controllers. 

 



 Virtually impossible. So they  figured that it is not possible. So then they specialized to 

systems that are linear in  the control. And hence called control affine systems. So this is the 

structure. 

 

 And this  structure is the most universal structure in non-linear control. Here the F0 is the  

drift vector field. Fi's are control vector fields. These are basically state dependent  vectors. 

At each value of the state, they give you a direction, a velocity direction. 

 

  And then you have a control scaling. So it is almost like saying that I have, if you  count 

these, I have F0 that is 0 and then I have 1 to m. So I have m plus 1 such vectors.  I have 

potentially m plus 1 velocities. Notice that m is necessarily less than n. 

 

 So the  state space is n dimensional and your number of velocity vectors that you have to 

play  with is m dimensional. So m is less than n. So m is typically less than n. Which means  

you have less velocities than the number of dimensions if you think of the state space  as a 

dimension. It may be less than the number of dimensions. 

 

 So the idea is can I play around  with these velocity vectors so I can go in the right direction. 

So if you just think  about moving on a sphere for example, the surface of a sphere for 

example. Now suppose  I want to move on the surface of the sphere. This is my requirement. 

And I have say vectors  in all three directions. 

 

 Velocity vectors in all three directions. So I can potentially  if I specify this vector in a bad 

way, I can potentially get thrown out of the sphere also.  Instantaneously I could just be 

thrown out of the sphere which is not okay. So the idea  is can I play with these vectors so it 

would be something if I want to draw some picture  like this. Suppose this is the surface of 

the sphere. 

 

 I will have a vector this way.  I may have a velocity vector this way. Alright. I may have 

these three velocity vectors. Now  as long as my actual velocity is in this plane, I am more or 

less okay. 

 

 Because this plane  is the tangential plane to the circle or to the sphere. I am more or less 

okay. I will  remain on the sphere at least on the surface of the sphere. But if I start doing 

anything  in this direction, I get thrown out of the sphere. 

 

 Okay. So what would my control try  to do? My control is just a scaling. All it is doing is it is 

scaling each of these fields,  each of these vector velocity directions. Right. So you are just in 

fact you are doing  a linear combination of these velocity directions. To get the direction you 

want to go in. 

 

 Okay.  So although we never design controllers in this thinking like this honestly speaking,  

nobody designs control like this. Very difficult to do. But this is the logic by which the  



controllability of a system is defined. Okay. If you cannot reach all possible directions,  then 

you will have some issue with the controllability. 

 

 Okay. That is the idea. Alright. So what we  did was we specialized to control affine systems 

and for that we defined the equivalent version  of the control Lyapunov function. Okay. We 

have already proved equivalence. Well at least  we proved one side, the other side was 

supposed to be our homework which I will assign soon  enough. 

 

 So this is what is it, what does it say? The first one is again exactly the same  thing as before. 

The second definition changes a little bit. Okay. Nothing significant. It  just says that if the 

contributions of the control vector fields are zero, then the drift  vector field has to push you 

in the negative direction. 

 

 That is it should make V dot negative.  Okay. If not, then again in a sense what we are trying 

to say is the system is not stabilizable  at all. Okay. You cannot make the system go in a good 

way. 

 

 Okay. Behave well. Okay. So  that is the whole idea. So we proved again one side of the 

equivalence.  Then further we talked about the small control property. This was the final 

sort of property  that is required to design continuous control laws. 

 

 Okay. What is the small control property?  It just formalizes and we saw it with a very nice 

example. Right. That for a system like  this the control becomes larger and larger as you 

come closer to zero. Okay. And zero  is a equilibrium of this system. 

 

 Okay. So which is very bad. Right. Because if you want  to try to reach the equilibrium from 

both sides, you are going to give larger and larger  control efforts which is sort of ridiculous. 

You don't want to do that. So this creates  a discontinuity at the origin. And in order to 

prevent this, you say or you assume that  the system has a small control property. And what 

is the small control property? It basically  says that if you start with small values of the state, 

that is norm x is less than delta,  then with small values of control, that is control is close to 

the equilibrium control,  you can make this V dot negative. 

 

 Okay. So basically it says, it essentially says what  we don't have here. Yeah. Essentially says 

what we don't have here. That if you are close  to the equilibrium, then the small values of 

control should sort of send you towards  the equilibrium. 

 

 Okay. That's the whole idea here. And this is the small control property.  We already sort of 

claimed that this small control property is stronger than the second  condition of CLF. Yeah. 

 

 This is a stronger requirement. Yeah. Why? Because if this holds,  then you know that if all 

these terms are zero, all the control terms turn out to be  zero, then this term is still 

negative. Okay. So this is essentially, so this implies the  previous definition is satisfied. 



Okay. So small control property is a stronger requirement  than the CLF property. 

 

 Okay. All right. So once we have this small control property,  this is where we were last 

time. Archtyne and Sontag, it is basically their work, primarily  work by Archtyne and 

Sontag. Yeah. They were the ones who started talking about the CLF,  the small control 

property and then corresponding control to them. 

 

 They gave a universal controller.  Okay. One of the coolest things about this result is that 

unlike a lot of other mathematical  results and this result I tell you is very mathematical. 

They actually give a constructive  design of the control. Okay. We already saw this last time. 

So anyway, what it says is  if you have a control affine system with the control Lyapunov 

function as per this definition,  then if the system admits, the system admits a small control 

property if and only if it  admits almost C infinity stabilizer. 

 

 Okay. And we clearly said what is almost C infinity.  It means that smooth everywhere in a 

perforated neighborhood of the origin and continuous  at the origin. Okay. It means that the 

control that you obtain will be smooth everywhere,  infinitely differentiable everywhere, 

but at the origin it is only continuous. 

 

 Okay.  Not smooth. Not smooth at the origin. Okay. It is continuous at the origin. So this is  

what you can achieve. And remember in specific cases like example that we will look at or  

we can look at, you will find smooth controls which are smooth at the origin also. Okay.  But 

remember this is a very, you know, a result which covers all such control affine systems. 

 

  So it is a very general result. Okay. Therefore, they are saying in general you cannot claim  

this. That you will always find a controller which is also smooth at the origin. Okay.  So what 

you can claim is it is almost C infinity. 

 

 Okay. But in the examples that you will see,  you might find smooth controls. Okay. Using 

this formula itself. So it is not, you know,  not that this covers all cases. 

 

 Okay. So the Einstein-Sontag, so this result, the proof  of this result is based on the Einstein-

Sontag universal formula. Okay. Or the universal  controller or the universal formula, 

whatever you wish to call it. Yeah. It is defined by  first defining these two placeholders, Ax 

and Bx. 

 

 What is Ax? Ax is the derivative with  respect to the drift vector field. And Bx is the 

derivative of V with respect to the  control vector fields. Yeah. So it is tagged as a vector. 

 

 We already saw what are the dimensions.  What is the dimension of this guy? We discussed 

this right last time. 

 

 R1. It is a real value.  Okay. And Bx is? This is Rn. It is an m vector. 



 

 Okay. All right. Great. So what is the universal  formula? This. This is the control. Slightly 

complicated looking. But this is the control.  What is it? Ux is minus negative of Ax plus 

square root of A square plus norm of B4 Bx  divided by Bx square if Bx is non-zero. 

 

 And if Bx is zero, then the control itself is  put as zero. Okay. So you can see that B is a 

vector. So therefore we are being careful.  Whenever we take a square of B, it is the fourth 

power of the norm of B. 

 

 We are taking  the norm of the vector. Okay. And here also we are dividing by norm square. 

So this is  B. 

 

 Okay. So you see that this whole thing is in the direction of B. Okay. This whole  thing is in 

the direction of B. Okay. Because B is actually a vector of dimension Rn. Notice,  this is 

correct. 

 

 Why? Because control is also required to be of dimension Rn. Okay. Control  itself is Rn. We 

have m controls. 

 

 So we have m control vector fields. Okay. So this dimension  is okay. Right. Because B is also 

dimension Rn. 

 

 We just discussed this. All right. So  dimension wise, no problem. Yeah. What is the 

significance of Bx being zero and Bx non-being  zero? This is the clf condition. Right. 

Because Bx was what? This guy. Bx is del VA, del  V del x, Fi x for all i stacked column vector. 

 

 And if this is zero, it means that del V del  x Fi x is zero for all i. Yeah. I should write this. 

Yeah. For all i from 1 to m. 

 

 Okay. So  when is B zero? If del V del x Fi x is zero for all i. Okay. So this is the control 

Lyapunov  condition. Under such circumstances, you know that the drift vector field itself 

will give  a negative V dot. Okay. So we put no control. Because anyway if the contribution of 

the  controls is zero, because here if you put any non-zero value of control, it is useless. 

 

  Because the drift, the V dot is going to be zero even if you put non-zero values of control. 

 

  Right. Because you have Ui Fi. Okay. So it is irrelevant. So we put the control as zero  vector 

itself. And here we give it some particular value. Okay. In order to verify that this  is in fact a 

stabilizing controller, because that's what we want, we can just take V as  our control 

Lyapunov function itself and compute a V dot. 

 

 Okay. So V is our candidate Lyapunov  function. We already know that the control 

Lyapunov function is a candidate Lyapunov  function. So I take that as my V for the system 



for doing Lyapunov analysis. 

 

 Right. And then  I take a V dot. What is V dot? Is exactly this. Partial of V with respect to X. 

And  this for this control affine system. 

 

 Right. And then you know that this is actually AX.  Right. And this is actually B transpose U. 

Is that clear? Right. 

 

 Because B is this. And  B is this guy. So B transpose U is exactly this multiplied by this. Yeah. 

Okay. So once  I have that, all I'm going to do is substitute for the control from here. 

 

 So again I get  two cases depending on whether B is zero or non-zero. Alright. So when B is 

non-zero,  you can see what will happen. 

 

 I will have AX plus this guy. Sorry. I have the control  here. Right. So I'll have my AX and 

then BX transpose of this. 

 

 So BX transpose times this.  Okay. So this is a scalar. So BX transpose just moves here. Right. 

BX transpose just  moves here. And BX transpose BX is what? Norm of BX whole squared. So 

this guy will, this  guy cancel out. 

 

 So all I'm left with is AX minus AX plus this guy. So AX minus AX cancel  out again. So I'm 

left with just this much. As expected because V is a scalar, so V dot  is also a scalar. 

 

 Important thing to note is this is strictly negative. Yeah. Because  BX is not zero. So this is 

strictly negative. 

 

 Whatever AX is irrelevant. Just because BX  is not zero, this is strictly negative. Yeah. 

Alright. And if B is, BX is actually equal  to zero, what happens to the control? Control is just 

zero. So I'm left with just AX. 

 

 Okay.  But I already know by my assumption that AX has to be negative because V is a CLF. 

Right.  V is a control Lyapunov function. So AX which is defined as this has to be negative 

when  these terms don't contribute. 

 

 When BX is zero, A has to be negative. So when B is zero, this  has to be negative. Okay. This 

is true only when B is zero by the way. When B is non-zero,  A can be negative, positive, 

whatever. 

 

 Okay. But when B is zero, A has to be negative.  And so what have I shown? That V dot is 

negative. Yeah. And in fact this is true for all non-zero  X. Remember in entire CLF definition, 

although we didn't stress on it much, everywhere you  see that for X not equal to zero, for X 

not equal to zero. 



 

 Okay. All these assumptions  are for non-zero X. Okay. So it works out nicely. So V dot 

comes out to be negative  definite. And this means by our Lyapunov theorem what? What 

does it mean? V dot turns out to  be negative definite. Asymptotic stability. Done. Right. The 

system is asymptotically  stable. Alright.  Thank you. 


