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Week 5 : Lecture 26 : La Salle’s Invariance Principle: Part 4 

 

  We have now constructed the set E, ok.  Now what?  This is the slightly complicated part, 

everybody has trouble with using this part of the LaSalle  invariance is to find the set M, ok 

and M has to be invariant and inside E and it is  the largest invariant set, ok.  Can't be 

anything, cannot be any invariant set larger than this, ok.  Now how do we do this is, how do 

we usually do this?  I mean because I don't know how to find the largest and smallest, right.  

I mean it is not like an optimization problem that I find largest and smallest because you  

can see that these will be very complicated sets, this kind of optimization will be virtually  

impossible to do.  Basically you are, you will not find an engine which will solve this 

optimization problem  if I actually thought of finding the largest invariant set and all 

because you will have  to initialize, you will have to take all initial conditions and try to do 

something, ok. 

 

  Not possible, not possible.  So what I will do is, we, or what everybody does, not what I will 

do, yeah, what everybody  does is assume E is invariant, ok.  So we actually assume that E is 

itself an invariant set, ok.  So this sort of helps us continue forward. 

 

  What does it mean if E is invariant?  Ok.  What do you need for E to be invariant?  It means 

if I start inside E, I must remain inside E.  But look at the interesting thing, what is the set E?  

Is this guy, ok.  Alright, it is this guy.  Now the first term is a continuous, could be a 

continuous quantity, right. 

 

  It can take any value between minus 2 pi to 2 pi.  Notice, this guy can take any value 

between minus 2 pi to 2 pi.  So I can't really conclude too much about this.  But what we use 

is the fact that the second term, that is x2, has to be zero, is fixed.  So for me to be invariant 

and to remain inside E, I need x2 to be identically zero for all  E in this case. 

 

  I need x2 to be identically zero.  And what does this mean?  If something is zero forever or 

some constant forever.  And all these are continuous, right.  So x1, x2 is continuous because 

I have a differential equation, right.  So obviously continuous, nice properties. 

 

  So what does it mean?  If x2 is zero for all time or any constant for all time?  No, not really, 

right.  That would mean all states are zero.  Only one state being zero is not equal.  Just like 

you know that alpha comma zero is not an equilibrium, right.  I hope you understand that 



alpha, any x1 is not the equilibrium. 

 

  Otherwise it would be this zero velocity, zero velocity, zero velocity, all these will  be 

equilibrium.  So this is not an equilibrium.  No.  What can I say?  If any quantity is, if any 

function is the constant function, what do we know about the  function?  This is function of 

time, right.  I mean although I write it like this, it is actually a function of time. 

 

  Then x2 dot is identically zero.  Yeah, x2 dot has to be identically.  That is the only way 

function can be a constant function.  Alright.  Which means what?  What is x2 dot?  Anybody 

remember?  This minus k sin x1 minus c x2. 

 

  This has to be identically zero.  All of this to make E invariant.  All of this is to make the set 

E invariant.  Without this happening, set E cannot be made invariant. 

 

  Okay.  Now I already know that this guy is already going to zero, right.  And the left hand 

side is already zero.  So what do I know?  What do I conclude?  This also has to converge to 

zero.  Not converge to zero, whatever. 

 

  Has to be zero.  Okay.  Has to be zero.  And what do I know?  Sin x1 is equal to zero at what?  

x1 equal to what?  n pi.  Right.  So pi, I will not write 2 pi because after that it is repetitions. 

 

  Right.  I will just write zero and pi.  And you see zero and pi are both in our set omega.  

Right.  Both in our set omega.  So we started by assuming that E is the invariant set but to 

ensure that E is in fact invariant,  I required sin x1 to be zero which gave me exactly two 

values. 

 

  Not all of E. Not all of E. Okay.  Everything else is the same, right.  Zero and pi.  All other 

angles are the same. 

 

  You can write them if you want but yeah, you can write zero and pi.  I know 2 pi is also 

there but it is all the same.  So I am not including them.  So what do I have?  I have that the 

invariant set is what?  M is equal to what now?  What is the set M now?  0, 0 and pi, 0. 

 

  Okay.  Alright.  Just by starting with E being invariant, I have concluded that only these two 

points  constitute the invariant set.  Okay.  So M is the invariant set, the largest invariant set.  

You cannot have anything more.  Why?  Because I started with E being invariant which is 

the largest set I had to work with. 

 

  From there I could only get out that these two points give invariance.  And what are these 

points?  These are exactly the this and this.  So what does LaSalle invariance say?  Because I 

have satisfied all the requirements of the LaSalle invariance, I constructed a  compact 

invariant omega.  Right?  I had a V and a V positive semi-definite, V dot negative semi-

definite in omega.  In fact it is in D but in omega also. 



 

  Okay?  And so and then I constructed the E and the M sets.  So I have satisfied all the 

requirements of the LaSalle invariance principle.  So LaSalle invariance principle says that if 

I start in this set omega, not anywhere  in the domain, if I start in this set omega, okay, then I 

will converge to this.  Okay?  So interestingly what I have been able to prove is still not if 

you say everything.  Because although there is no restriction on the angle, right, it says if 

you start in  omega, okay?  So I can start at any angle because minus 2 pi to 2 pi closed set 

includes all the angles. 

 

  No problem.  Okay?  And it says I will converge to either this point or this point.  It does not 

specify which point.  You can converge here or here.  No problem. 

 

  But the velocity is restricted.  There is a restriction in the velocity.  Although again in 

reality you know what?  I can start at any velocity theoretically and I will converge to an 

equilibrium, one  of the two equilibriums for a pendulum.  Okay?  In fact I will converge to 

this equilibrium only.  I will never converge to this equilibrium.  If the velocity is anything 

but zero, I will converge to this equilibrium only. 

 

  Okay?  So in fact any velocity is allowed in reality.  But I have only been able to prove this 

much.  Okay?  So, there is a caveat.  Okay?  And even LaSalle invariance does not let us prove 

what we know in reality.  But this is more than enough because I can choose any c. 

 

  If you give me velocity 1 e power 6, I will choose a c accordingly and tell you, yeah  this will 

work.  Yeah?  Because all I have to do is c.  C was nothing.  C is just an artifact of our 

imagination. 

 

  So c is nothing.  We created it.  If you give me 1 e to the power 6, 1 e to the power 10 

velocity for whatever reason  you want to put a rocket thruster on the pendulum but you 

will, I can still guarantee that you  will converge to the equilibrium by choosing a large 

enough c.  Okay?  But, yeah, in theory once you fix a c, your velocities are bounded.  Yeah?  

Not unbounded velocities.  Unbounded velocities are not okay. 

 

  Which is obviously fair enough.  So, do you all understand how to use the LaSalle 

invariance?  I have also asked the TAs to try some examples.  I hope they try something 

other than the pendulum.  Anyway, with LaSalle invariance, application of the general 

LaSalle invariance with multiple  equilibriums.  Okay?  So, it is important that we follow this.  

Now I also want to state, if you have no other questions on this, I want to state the stability  

versions of these theorems. 

 

  Okay?  So LaSalle invariance was obviously by LaSalle.  Yeah?  But then the stability 

versions of these theorems were almost parallely developed by Krasovsky  Barbasheen.  

Okay?  So therefore, I like to call it Krasovsky Barbasheen-LaSalle theorems.  Some books 

call it Krasovsky-LaSalle, some call it Barbasheen-LaSalle, but whatever. 



 

  It is better to put all the names.  So these are very close to LaSalle theorems, but they only 

deal with stability of the zero  equilibrium.  Okay?  Here you have a general multi, multi 

stability, what you can call multi stability because  multiple points you can reach a limit set.  

Yeah?  Here you specialize to reaching the origin only.  Yeah?  And how do we do that?  We 

no longer start with V which is only positive semi-definite.  We actually start with a proper 

Lyapunov candidate. 

 

  Okay?  This is now a proper Lyapunov candidate, positive definite in C1 and we just have 

semi-definiteness  on the V dot.  Such Lyapunov candidates are called non-strict Lyapunov 

functions.  Okay?  So for all x in D, notice for all x in D, not in any omega.  You see that the 

omega is carefully missing here. 

 

  There is no omega here.  Why?  Because I know that I can construct omega just by this fact.  

We just did in the example.  And then if I define the S similarly whatever we called E here is 

the S here.  Just because it is a stability theorem, so I am using a different notation. 

 

  That is all.  If you define the S as such and if x equal to zero is the only invariant trajectory 

in  S, this is just wording that some texts use but this is the same as saying the set x equal  to 

zero is the largest invariant set inside S. Then x equal to zero is asymptotically  stable.  

Okay?  On the other end, you can also state a global version which says that if now you don't  

have a domain, you have all of Rn.  Okay?  Again, negative semi-definite in all of Rn and you 

have the same things happening, then  you have global asymptotic stability. 

 

  Okay?  That's it.  If the domain goes away, then you have global asymptotic stability.  Okay?  

Notice all these results, LaSalle invariance, Barba Sheen, Krosoczky, LaSalle, all these  are 

only for time invariant systems or autonomous systems.  Okay?  For time varying systems, 

the results are significantly more complicated.  Okay?  I mean not easy to apply these 

results.  Okay?  Because the notions of limit points and limit sets itself becomes very messy. 

 

  Okay?  Alright.  So, these are the stability versions of the theorems.  Alright?  Now, if you go 

back to our example, how would I do the stability version?  I mean in fact, this is actually 

pretty straight forward.  Yeah?  What will I do?  I will no longer take minus 2 pi to 2 pi.  I will 

just take minus pi to pi.  Because I only want the bottom equilibrium included in the set 

now. 

 

  Because I am looking to do stability of zero equilibrium.  I will not include the top 

equilibrium in my set D. Okay?  So, my set D will now contain only minus pi to pi.  Okay?  

Anyway, this is something I will ask you to complete. 

 

  Yeah?  But the rest of the steps are exactly the same.  You still have a V. Okay?  Notice that 

as soon as I choose x1 in minus pi to pi, this is positive definite.  This we discussed. 

 



  Right?  Earlier in the example.  We did this example.  Okay?  If x1 is in the minus pi to pi 

range, not minus 2 pi to 2 pi range.  In the minus pi to pi range, this is a positive definite 

function.  Right?  I hope you all agree.  Yes?  Because this function will not be zero anywhere 

but at 0,0. 

 

  The problem with the larger range is 2 pi is included.  Then it is not positive definite.  But if 

2 pi is not included, so minus pi to pi.  Then 0 is the only point, that is x1 equal to 0 is the 

only point where this can become  0. 

 

  Yeah?  x1, x2 equal to 0.  Nowhere else.  Okay?  So, the only difference is in the domain.  

Okay?  So, it will become minus pi to pi cross R.  After that, it is very straight forward.  V is 

positive definite, V dot is negative semi definite in the domain. 

 

  Okay?  And after that, the same analysis goes through it.  This analysis is not changing.  The 

set E or in this case the set S, whatever you can call it S. But this is going to be  exactly the 

same.  Right?  Because V dot is exactly the same. 

 

  So this set is the same.  If this set is the same, the set M is the same without this guy.  

Because minus pi to pi does not contain pi at all.  So, minus pi to pi opens it.  Remember, we 

took for this domain is minus pi comma pi.  Okay?  For applying the Barvashin-Krasovski-

Lassalle, we took, we take this. 

 

  So this is not even part of this set.  Okay?  So M contains only the origin.  M contains only 

the origin.  Okay?  All this, so nothing changed in the analysis.  I just shortened my or 

reduced the size of my domain.  And just by reducing the size of my domain, instead of 

applying the General Lassalle principle,  I am applying the Barvashin-Krasovski-Lassalle. 

 

  Why?  Because by shrinking the domain, I removed this equilibrium.  Minus pi to pi does 

not contain this guy.  Yeah?  Because I excluded pi.  Okay?  That's all.  So by shrinking, so 

what am I doing by saying minus pi to pi?  It is starting from here and here. 

 

  So it's like, it goes from here all the way to slightly here.  That's it.  Minus pi to pi is just 

everything but that vertical, upward vertical line.  Okay?  So I have essentially taken 

everything but that top vertical line and so I have skipped  the second equilibrium.  Once I 

skip the second equilibrium, there is only one equilibrium.  Okay?  And remember, I always 

told you, when you have one equilibrium, only then you can talk  about stability or global 

stability.  If you have multiple equilibria, then you have to think Lassalle type ideas. 

 

  So that's all.  So I have shrunk the domain so that I have one equilibrium in this domain and 

then applying  Barvashin-Korsowski-Lassalle is very easy because the set E remains the 

same and the set M contains  only the zero equilibrium and that proves that zero is 

asymptotically stable.  Not global because of this restriction in the domain, it is not global 

but whatever,  it is asymptotically stable, more than enough.  Okay?  And this is in fact, 



sounds more general.  I didn't have to do all this omega construction and all, right?  It gave 

me asymptotic stability.  So basically what it is saying is, if you start anywhere but at this 

equilibrium, anywhere  but this equilibrium, so you can start anywhere arbitrarily close to it 

but away from that  equilibrium, then you will fall here, which is what is the reality also, 

right?  You can verify that very easily in experiments. 

 

  Alright?  Is that clear?  Okay.  The spring mass damper example is also very similar and 

much easier.  This is a spring mass damper is just a linear version of the pendulum, 

linearized pendulum  if you may.  This is what the dynamics looks like.  x1 dot is x2, x2 dot is 

minus k1 x1 minus k2 x2. 

 

  The constants k1 and k2 depend on spring mass coefficients.  Alright?  And what do I do?  I 

take V as the energy, right?  This is the, what is this term?  Potential energy.  Potential 

energy.  This is the spring energy. 

 

  Energy stored in the spring, this guy.  And this is the kinetic energy term.  Okay?  Spring 

energy, potential energy, kinetic energy.  If you take the derivative and of course you can see 

that this is all nice and radially  unbounded in fact.  V is radially unbounded.  I hope that's 

clear to you.  This is, yeah, in fact in all of Rn, the domain, you don't even have to worry 

about the domain  here. 

 

  Sorry, all of R2.  Okay?  This is V is valid in all of R2.  V dot is negative semi-definite in all of 

R2.  And V is radially unbounded in all of R2.  Okay?  So, once you have that, it's again the 

same kind of S construction. 

 

  Right?  Because, sorry, again E has been used.  It doesn't matter.  So, what is the set E now?  

The set E is just V dot equal to zero.  It is the same.  Amazing, no?  It comes out to be exactly 

the same. 

 

  You just need x1 comma zero.  All sets of the form x1 comma zero.  Okay?  Now I know zero 

has to remain.  You have to, the second variable of x2 has to remain at zero for all time.  

Therefore x2 dot has to remain at zero for all time. 

 

  Which means that minus k1 x2 minus k2 x2 has to be zero for all time.  Same logic.  But x2 

is already zero.  So, x1 also has to be zero for all time.  So, what is the largest invariant set?  

In E, x2 was already zero. 

 

  Now I also want x1 to be zero.  So zero, zero is the only invariant set inside this.  Okay?  

From every other point you will move.  Okay?  So, they are not invariant sets.  Okay?  You 

cannot find any other invariant set.  So, this is the largest invariant set inside E. 

 

 Okay?  So this is in fact your M set if you know.  Yeah?  And so any trajectory which starts 

anywhere in fact will converge to the zero, zero equilibrium.  Okay?  Again it is a linear 



system.  You could have very well computed the eigenvalues and obviously found out that 

they were negative. 

 

  And you would have concluded exponential stability.  This is just giving you an alternate 

way.  But this is just a way of using this theorem.  That is all.  I mean you have already seen 

that I can use it for non-linear systems also.  In fact you can use it.  LaSalle invariance like I 

said is a method of choice for typically for geometers because  like I said because they like to 

use the energy as the Lyapunov candidate. 

 

  And whenever you use the energy as a Lyapunov candidate for these conservative type 

systems  that is with no external forces, invariably your V dot will be zero.  Right?  Because 

energy is conserved.  Right?  It will not be less than equal to anything or will be exactly zero.  

And from there if you want to conclude anything you have to use LaSalle invariance. 

 

  Okay?  You have no choice but to use LaSalle invariance.  Okay?  So LaSalle invariance is a 

pretty very very strong method.  Yeah?  I am not sure if we will have time but there is also 

what adaptive control folks use is  the notion of Barbalat's lemma.  It is a different way of 

doing this Barbeshin-Krasov-LaSalle.  Okay?  Which is more I would say you might find it 

easier to use and it can be used for time  varying systems also. 

 

  Okay?  Here you cannot.  Yeah, you cannot use these for time varying systems.  These 

results in this form.  But Barbalat's lemma also cannot be used for multiple equilibria case. 

So the general LaSalle invariance principle is a very powerful result. Yeah? It is a very very 

strong result. 

 

 You cannot get multiple equilibria type results from any typically any other method.  Okay?  

Not easy.  Not easy.  You have Poincare-Benediction theorem and all that but not easy.  They 

have all sorts of interesting assumptions which you may not satisfy.  Yeah?  So LaSalle 

invariance is actually a very very powerful tool that way.  Yeah? 


