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  So, welcome to SC 602, our course on Control of Non-linear Dynamical Systems.  Yeah, we 

are well into the, you know, midst of things.  We have already started doing the Lyapunov 

theorem which is the key results in analysis  of stability of systems.  Okay.  So, to recap, we 

were doing these Lyapunov stability theorems.  Alright. 

 

  So, we have already defined what they are and what the stability notions are and now  we 

have gone ahead and started to already discuss the Lyapunov stability theorems.  Yeah, we 

started with the more basic version, stability, uniform stability and then you  have 

asymptotic stability, uniform asymptotic stability, global uniform asymptotic stability,  then 

the two notions of local and global exponential stability.  Okay.  So, we saw that once we had 

the setup of positive definite functions, radial unbounded functions,  the decrescent 

functions, the statement of the Lyapunov theorems was really easy. 

 

  Okay.  Really easy.  Not difficult to verify either.  Yeah.  Once you understand what is 

positive definite function and I really hope you do. 

 

  Yeah.  I know there were some mistakes last time when I asked a few questions.  So, 

remember these few points.  If some state do not appear in a function, it cannot be definite.  

Yeah. 

 

  If you have things like x1 plus x2 whole square cannot be definite.  Yeah.  So, we have to, so 

these things somehow should not be material that you need to look at your  nodes to sort of 

remember.  Okay.  So, if this is something you need to remember, it should be at the back of 

your mind that  these easy tests, right, that if the function can be zero anywhere other than 

the origin,  other than the zero state, then there is a problem. 

 

  Okay.  These are problems.  Okay.  Similarly, we also know that some keywords are 

associated with some results, right.  We know that positive definiteness is connected to 

stability and asymptotic stability.  Similarly, negative definiteness gives you asymptotic 

stability. 

 

  Similarly, decrescence is connected to uniform properties, uniformity and finally radial  

unboundedness is connected to global properties.  So, although I was very clear, I did not 

mention all properties, okay, separately, yeah, but  it, this is something that should be 

relatively clear to you that I can add and subtract one  word and I will get the requisite 



property.  Okay.  So, like I said, we defined uniform asymptotic stability locally and we 

defined uniform asymptotic  stability globally, but we did not talk about global asymptotic 

stability, right.  So, if I just drop the decrescence here, I will immediately get global 

asymptotic stability  which is not necessarily uniform, okay. 

 

  And remember that for nonlinear systems, these are, none of these properties are easy to  

obtain, yeah, it is not like something is free.  The other thing that I have also mentioned, so 

these are all points to remember, yeah,  some of these points that I mentioned are key 

points, yeah, the easy tests, the word  associations and finally that, you know, if you, if you, 

you know, add and subtract some  words, you get some properties and so on, that's evident.  

And finally also that when you go to exponential properties, they are naturally uniform and  

also if your dynamical system, the right hand side does not explicitly contain time, then  

uniformity is free, okay.  And so, some of these are things that you just have to keep at the 

back of your mind.  These are not things that I would like you to refer to your notes for this, 

yeah. 

 

  It's almost something you memorize, yeah, just memorize these, yeah.  Similarly for linear 

systems, asymptotic stability, exponential stability are the same, like linear  time invariance 

system, but I can actually solve them and you have seen, we have done  the examples that it 

essentially gives you, you know, your exponential, the rates of convergence  are always 

exponential, okay, alright, great.  We also did a few examples where you could, you saw that 

I sort of played around with  some systems just to get some properties and so on.  We also 

looked at finally the pendulum system which again I have modified it because I wanted  to 

make my analysis simpler.  We will look at the more or the actual pendulum without this 

guy later on when we look at  LaSalle invariance because we already saw last time that 

without this term, right, without  this term what goes away?  Without this term, this term 

goes away, right. 

 

  And if this goes away, V dot is only negative semi-definite, yeah.  And that's again a 

problem because all we get is stability, whereas in reality we know  that damped pendulum 

is just going to stop, okay, it's just going to stop, it's not going  to, it's not going to just stay 

bounded and things like that.  Here I am moving my hand, you can see, that's why it's 

staying bounded, but actually no,  if I stop my hand, it's going to stop, okay.  The damped 

pendulum is always going to stop, okay.  So that's the reality, but we are not able to prove it 

with this function which is the  energy, okay, which seems like the most natural choice for 

the Lyapunov candidate in this  case, yeah. 

 

  So for such cases also we have results like the LaSalle invariance and the Babalach's  

lemma, so we will discuss them subsequently.  So when we do that, then I will drop this 

term and we will do the analysis, okay, alright,  great.  Then finally there is anyway some 

example, but anyway, this is not such a complicated  example anyway.  Here you have this 

second order system, alright.  This is a worked out example in the notes itself, so it's, that's 

why it's relatively  easy to follow. 



 

  Here you have a second order system, you can see that without these terms, if you get rid  

of these terms, what is it?  What is this system?  Harmonic oscillator.  Harmonic oscillator, 

just a harmonic and you know that it is just going to go in circle,  circle, circle, so just stable 

and it's not going to be asymptotically doing anything.  So let's see what happens because of 

addition of these terms, alright.  Again the authors who came up with this example are also 

doing nifty things like I am, right.  They are just playing around with terms so that they can 

get good results. 

 

  I don't think this is any real system, alright, but anyway, so it's not so uncommon is what  I 

am trying to tell you, alright.  So if I take this Lyapunov function, very straightforward, right, 

this is what I took  for the harmonic oscillator also, right and you know that this is radially 

unbounded and  all that.  So if I take the derivative, right, x1, x1 dot and x2, x2 dot, for the 

harmonic oscillator  I would have got 0, right.  We just did that example, but here because of 

these additional terms, I will get C x1  square x1 square plus x2 square and C x2 square 

times x1 square plus x2 square.  So if you actually combine them, you will get C x1 square 

plus x2 square whole square,  alright. 

 

  Now it should be obvious to you that depending on the sign of C, I will get some 

definiteness,  okay.  If C is negative, I will get negative definiteness.  I will get basically, v dot 

is negative definite.  I hope you believe that.  This is not like x1 plus x2 whole square. 

 

  This is x1 square plus x2 square whole square.  So this is actually a positive definite 

function, okay.  This cannot be 0 anywhere, but at the origin, okay.  So if C is just negative, 

just a negative constant, then v dot is negative definite,  okay.  And then we have asymptotic 

stability, okay. 

 

  So remember this is not exponential stability, yeah, because our class K functions here 

were  of this kind and the class K function here or the class Kr function here is of this form,  

yeah.  So this is x1 4 plus x2 4.  Basically, it is higher order.  So basically what if you 

remember for exponential stability, we need three same order class  K or class Kr functions.  

In this case, for the v, I have one kind of class K function, class Kr function and for  the v dot, 

I have another kind of class Kr. 

 

  These are not the same order of magnitude because if you remember I gave you the 

example,  if you increase the power, then I cannot have a comparison like this.  You cannot 

make the comparison with constants, yeah.  This will never work, alright.  So not 

exponential stable, not exponentially stable, but uniformly globally asymptotically  stable or 

globally uniformly asymptotically stable, however you want to say, yeah.  Many folks use 

UGS, many use GUAS, so whatever, whatever is okay. 

 

  Great, so this is relatively simple example.  What happens if c is positive?  Then it should be 

obvious that v dot is actually positive definite, okay.  Actually it does not mean anything 



until now to us.  We have not done any instability results as such, yeah. 

 

  We just defined instability.  We just mentioned that if the system is not stable or not 

uniformly stable, it is unstable,  okay, but we have not given any tests or theorems 

corresponding to instability, okay.  That is actually what are the assignment, yeah.  So 

instability theorems that will be actually part of the homework, okay, so that you have  to 

find an instability theorem, okay.  So there do exist instability theorems and it does turn out 

that the system is unstable.  I am giving you that, yeah, but you have to prove it using certain 

results, okay. 

 

  These results look very much like Lyapunov theorems, but they are not coming from 

Lyapunov  himself, they are from some authors, some subsequent authors, okay.  Alright, 

great.  Any questions in all this material, Lyapunov theorems and stability and so on?  Yes. 

 

  Yes.  Yep, absolutely.  That is always the case.  All the results are purely sufficient results.  

So yes, yeah.  I do not think it is exponentially stable, but yeah, but I cannot say conclusively, 

I  agree. 

 

  Alright, true.  Alright, great.  So today what I want to do is what we promised that after we 

have looked at the Lyapunov  theorems, after we have looked at some examples, we wanted 

to, you know, talk about the proof  of some of these, okay.  So we want to look at the proof of 

some of the stability theorems.  So again I will say that the proofs are sort of motivated from 

Vidya Sagar's book, to  some extent Khalil's book, to some extent some notes I found online, 

mostly because  different sources because I have tried to distill it into a simple enough 

looking proof  that we can follow, alright.  That is the only purpose.  Otherwise, yeah, you 

can pick up any good text in nonlinear control and you can expect  to find this proof, alright. 

 

  I prove only two results, a stability result and an asymptotic stability result.  Everything 

else is assignment, alright.  They are very simple because once you have done these, it is 

doing a little bit beyond  it is pretty easy.  Yeah, I can promise you that. 

 

  Alright, great.  So proof of stability theorems.  The first one that we try to prove is the 

stability in the sense of Lyapunov result,  okay.  What does it say?  So now I give you the 

complete statement because earlier it was split into pieces.  So here we try to make the 

complete statement, okay.  So what does it say?  The theorem itself, there exists a V which 

maps time and states in some ball of radius  r to real numbers for some positive r such that I 

have V t0 is 0 for all time. 

 

  I can even say that, right.  And then I have V to be a C1 function.  Yeah, so continuously 

differentiable function.  C1 is continuously, once continuously differentiable.  So the 

derivative also is expected to be continuous, okay.  So once continuously differentiable and 

positive definite, then if V dot is negative semi-definite,  that is V dot is just less than equal 

to 0 just as a function for all x in Br again. 



 

  Yeah, remember this entire analysis and all the trajectories we are expecting them to  be in 

Br.  So all of this, so even the V dot less than equal to 0 is in the same domain.  If I escape the 

domain, then there is an issue.  Yeah, of course V dot could be negative beyond the domain, 

but I don't care because I am  not going to use it.  So the point is within the domain it has to 

satisfy because otherwise I have a problem. 

 

  I might escape the domain and then I don't even have positive definiteness of V, then  I am 

in some soup.  So V dot is also negative semi-definite in the domain.  Then we say that 0 is a 

stable equilibrium in the sense of Laplier, okay.  So this was the theorem, right, just written 

in complete detail, nothing different from  what we have already seen, right.  I hope all of 

you are very clear on this statement already because you have seen it a couple  of times 

now. 

 

  So how do we prove it?  Remember the stability definition.  I have already marked it here.  

So we have to prove it via stability definition.  There is nothing else we have. 

 

  We just have to prove this definition holds.  If I have this theorem to be, if I have these 

conditions to be satisfied, I want this stability  definition to hold, okay, for this general non-

linear system.  Yeah, I have not assumed anything here.  So x dot is f t x t.  So yeah, I have 

assumed a very very general non-linear system, just that I have these  sort of conditions 

holding to, okay.  So very, I mean, so pretty powerful actually if you look at the result itself 

because I  never have to solve the system. 

 

  And I still want that this condition holds.  What is it?  The stability definition says again for 

your benefit that for all epsilon positive there  exists a delta which can depend on epsilon 

and t0.  I am only proving stability.  So it is allowed to depend on initial time, okay.  Initial 

time is not a problem.  Such that norm x0 is less than delta implies that the solutions lie 

within an epsilon ball  for all time greater than equal to t0, okay. 

 

  We will start with the simple case and move on.  What does it mean for us, for V to be 

positive definite?  It means that the initial condition is 0, V is C1.  This is already part of the 

assumption, yeah.  Then positive definiteness requires that V dominates a class K function 

of norm of x,  right.  Alright, this is what is the meaning of positive definiteness. 

 

  And we want of course this is a class K function.  So we require that it is also 0 at 0, it is also 

continuous and it is strictly increasing.  Alright, okay, great, great, okay.  So this is just to 

refresh, all these are refreshers, okay.  We already know all this.  I am just writing it out so 

that when we do the proof we do not have to you know go back  to the definitions, okay, 

excellent. 

 

  So I am going to now do a stage wise proof.  First do a very simple proof.  I will say that 

let's assume this phi norm of x is actually alpha norm x square, okay.  I will just assume that 



this happens.  I am just saying that the class K function has a very nice structure, yeah, that 

is actually  equal to alpha norm x square for some alpha positive, okay.  So I am just 

assuming a very simple structure here, okay, just to make our life easy again. 

 

  It could be any class K function but I am saying it is actually alpha norm x square.  So I am 

saying that because this is the case, then how can I do the proof because this will  give me a 

nice hint on how to do the proof for the general case also, alright, excellent.  So I am saying 

that V t x is greater than equal to alpha norm x square for again x lying  in this ball B R and 

for all time this is the positive definiteness condition, right.  This is just the positive 

definiteness restated for the simpler class K function, okay.  What about this V dot?  It is just 

negative semi-definite, right. 

 

  It is just saying that V dot is less than equal to 0 for all x in B R for all t greater  than equal 

to 0, okay, nothing too complicated, just the negatives.  So I have stated everything I have 

from the Lyapunov theorem, alright.  Of course there is continuity and all but other facts are 

stated here, right.  Now what do I do?  I start with an epsilon, the user is giving me an 

epsilon, from that I construct an epsilon  1 which is the smaller of epsilon and R, okay. 

 

  Why?  This is obvious, okay.  Why do I do this?  Why do you think I do this?  Because we 

want to have a radius epsilon to remain in the ball of radius R.  Absolutely.  I have to remain 

in the ball of radius R, okay.  Therefore, if you give me an epsilon ball which is larger than R, 

it does not make sense  for me to consider that large epsilon ball.  It is better for me to 

consider R itself, yeah, because it is irrelevant for me to use  the large epsilon ball because R 

is smaller, right. 

 

  So I will just take the R ball and work with the R ball because my trajectories have to  stay 

within the R ball, okay.  That I am ensuring and guaranteeing anyway, okay.  So therefore, I 

don't work with epsilon, I work with epsilon 1 because it is obvious  that if the states are 

within epsilon 1, then they are within epsilon anyway. 

 

  So I am done.  I don't have to do anything more.  It is actually a better result if you think.  

Okay, great.  So what do I have?  For all x in B R, alpha norm x square is less than equal to V t 

x.  This is just this written in the flipped form and this is less than equal to V t 0 x 0. 

 

  Why?  Why do I get this?  V dot is less than equal to 0.  So V as a function of time cannot be 

increasing.  So if I wrote this a little bit more carefully, this highlighted guy, it will actually 

be  V t x t is less than equal to V t 0 x 0.  So the left hand side is a function of time, right?  And 

I have mentioned that this V dot is less than equal to 0.  So along the trajectories, V dot 

cannot be increasing, okay.  So whatever is the value of V at initial time, its value at any time 

beyond initial time,  has to be less than equal to this, cannot be increasing, okay. 

 

  So this is simply coming from this.  So this one sentence now codifies both our results, 

okay.  And this one sentence is enough for us.  Now what do I do?  I forget the middle thing.  



This is useless for me.  So I just look at these two because this is in terms of initial condition, 

this is in  terms of final state. 

 

  So I have alpha norm x square is less than V t 0 x 0, right?  And from here I can get a bound 

on norm x square.  What is stability?  It requires me to bound norm x.  So I have already 

come to a stage where I have a bound on norm x square.  Yeah, pretty cool. 

 

  Now what do I know?  What do I want?  I will already state what I want.  Forget proving it 

in the linear.  So I don't like to do this linear proof because nobody can follow anything.  

That is why I did those steps.  Now it is easy to follow.  If this is less than epsilon 1 squared, 

epsilon 1 squared, if this guy is less than epsilon  1 squared, I am done, right?  Because then 

I have norm x square less than equal to epsilon 1 square. 

 

  So norm x is less than epsilon 1 and I am done.  So what do I want?  I want this, whatever is 

in the green bracket.  So my work is cut out because if this happens, norm x square is less 

than epsilon 1 square  which is less than epsilon square and I am done, stability done, right?  

Now you will remember that I have not chosen a delta yet and that is what is going to come  

out of this guy.  That is what is going to come out of this guy because you see the left hand 

side is  depending on initial condition and also time t0 and the right hand side contains an 

epsilon.  So somehow I have to be able to solve for x0 from here, okay?  That is the whole 

idea.  So once I do that, I will be able to get an epsilon, okay?  And my claim is it is, so 

because from here I need v t0 x0 to be less than alpha epsilon  square, just rewriting this 

guy. 

 

  My claim is that I can choose delta, I will choose delta such that this happens.  That 

supremum over x less than delta, norm x less than delta v t0 x is less than equal  to alpha 

epsilon square.  I am saying this is possible.  I can choose such a delta, okay?  It is not giving 

you how to choose but it is saying I can choose such a delta that this  happens, okay?  Thank 

you. 


