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  Alright, so great, so we have pretty much all the stability notions that we require  covered 

yeah pretty quick yeah. Once you understand like I said stability, uniform stability,  you are 

more or less done. All the other notions are just you know sort of combinations of  one or 

the other of the two yeah and you sort of understand how to strengthen them yeah.  You 

don't have to necessarily remember the sequence and all that.  Once if the first 

strengthening is imparting uniformity which is independence with respect  to initial time 

and then the second strengthening is sort of you know giving some kind of global  property 

which is basically removing bounds on initial conditions ok. So initial x0 if  it is unbounded 

that is you can allow for any initial condition then you have global  properties alright, simple 

great. 

 

 And this is very critical for non-linear systems of  course. For linear system this is irrelevant 

global properties and local properties are  all the same yeah. There is no difference between 

local and global for linear systems.  So that is obviously there. 

 

 If you are talking about time varying linear systems you still  have to talk about uniformity 

ok. So again the other thing to also remember is that if  your system right hand side that is f 

yeah we talk about systems of the form x dot equal  to f t x right. If this f here is independent 

of time there is no time explicitly appearing  on the right hand side then the system is 

uniform for free. There is no uniformity to  be considered separately ok. So these few things 

always remember linear systems local  global no difference. 

 

 If the system right hand side function that is vector field has  no explicit time argument. 

Why do I keep saying explicit because the states themselves are  functions of time when you 

solve them and all that. But if time is not explicitly appearing  in these expressions then the 

system is time invariant or autonomous yeah. These words  are used exchangeably for 

continuous systems yeah. So then uniformity is free you do not  have to evaluate separately. 

 

 If you obtain global asymptotic stability you have obtained  global uniform asymptotic 

stability ok alright excellent. So just keep these in mind.  Now we sort of go to these 

examples right these interesting examples that sort of give  us different funny cases if you 

may yeah. So this is exactly the question that you asked  the system which is attractive but 

not stable yeah. This is the system yeah unfortunately  you cannot solve this by hand at all 



yeah and no analytical solution. 

 

 But the phase  plane plots looks like this ok. So this is x1 dot this is x2 dot this is the system 

I  mean you can think of it as some kind of a constructed system I guess alright. But well  it 

exists so yeah. So the phase plane plot like I said is just a plot between the two  states in this 

case x1 on one axis and x2 on the other axis. So there is a sort of a  bifurcation in this system 

that is inside this blue sort of a you know aerofoil type  shape all the system trajectories 

look like this ok. 

 

  So how do you make the phase plane plot is very standard in MATLAB, Python and so on.  

You basically give a bunch of initial conditions and you look at how those initial conditions  

evolve. So in this case if you start a initial condition here it will evolve along this like  this. So 

you get a idea of what is the phase plane curve. So in fact in MATLAB you have  standard 

functions which will directly make phase plane by automatically randomly initiate  

initializing and then they will just directly make the phase plane plot for you for several  

cases. 

 

  So the basic idea is this system is such that any initial condition inside this sort of  

bifurcation will have this kind of a shape ok. They will all look like this and if your  initial 

conditions are outside then the trajectories look like this ok. So if you start outside  

trajectories look like this ok. So the interesting thing to see is it is attractive right because  it 

is wherever you start you are always getting to the origin right. If you start inside outside  it 

does not matter it is going to just do this and go or it is going to do this and  go it does not 

matter it is going to the origin wherever you start ok. 

 

  So attractive in fact you can even claim global attractivity in this case yeah. I do not know  

about uniform well I guess it is uniform for free no time argument on the right hand  side 

right. So it is uniform in fact it is globally uniformly attractive and probably  the best 

attractivity property you can imagine right but it is not stable why? Absolutely  look at this 

if you give me any epsilon ball ok any epsilon ball around the equilibrium  origin in this case 

right. You make an epsilon ball like this I have actually made the ball  very specifically for 

that you make the epsilon ball yeah ok. Then you cannot remain in this  epsilon ball for any 

delta ball why? Because any delta ball will definitely have initial  conditions outside this guy 

right. 

 

 If your initial conditions well actually it does not  even matter it is outside actually it does 

not matter if it is outside or inside yeah.  There is no initial condition which will remain 

inside the epsilon ball ok. They will always  go out like this yeah if epsilon is like this. Now if 

I of course if I make a very large  epsilon let us see let us see that case also alright great I 

made this epsilon ball now  ok now what does this work? Definitely ok unclear if this works 

or not but there is  a hope that it might work because if I take I mean but potentially I could 

take really  small delta like this. So, that the trajectory that is see the inside trajectories are 

not  a problem this sector trajectory is not a problem because they will remain inside this  



wing and I deliberately made epsilon larger right. 

 

 But any trajectory starting here has  to go around this. Now I do not know if it will remain 

inside this or not but the point  is if I make this delta really tiny I am sure it is going to hug 

this very closely  and then not escape this circle ok. So, there is a possibility of finding a 

delta but that  is not the stability question right. The stability challenge is that you give me 

any epsilon  and I can give you a delta yeah. So, for large epsilon yeah seems like great 

working but  for small epsilon no ok. 

 

 So, it so then it is that is it I do not have to do anything  further if it does not work for even 

one particular choice of epsilon that you give me system  is not stable ok. The system is not 

stable but it is attractive ok alright.  Then there are the simple nice examples like this 

pendulum at the non-linear pendulum actual  pendulum it has a equation that looks like this 

right. And I do not have to actually  do anything to prove that this is asymptotically stable 

you can just I mean I can prove it  not by solving it difficult to solve the system also just 

because of the sinusoid you will  not be able to analytically solve it yeah. But you can just 

look at the movement of a  pendulum you know that it is attractive yeah because of this 

damping term this damping  will come usually from the friction on friction in the pivot 

point. 

 

 So, if you make any pendulum  move it is going to stop at the bottom right. So, it is 

attractive yeah the bottom position  that is theta equal to 0 is an attractive equilibrium right. 

And stability is actually  rather easy in this case yeah in the sense that I can guess it yeah, 

but again I cannot  analytically solve it yeah although this system looks so simple still I will 

not be able to  analytically solve it to get stability. How I would get stability is by linearizing 

yeah  I would linearize this, this will become x2 dot is minus x1 minus kx2 around x1 close  

to x1 equal to 0 near x1 equal to 0 this becomes x1 dot is x2, x2 dot is minus x1 minus kx2  

ok. So, that is actually near x1 equal to 0 if I linearize I will get x1 dot is x2 and  well x1 equal 

to 0 and x2 equal to 0 and x2 dot is minus x1 minus kx2 and of course k  is positive. 

 

 So, this is a stable system right this is in fact asymptotically stable system  but it is definitely 

stable ok. So, this is one of the methods that I do not discuss in  this course, but it is possible 

to get or obtain local properties of a non-linear system  by linearizing the non-linear system 

and obtaining the linear system and looking at  its corresponding stability. So, if you 

linearize a non-linear system and the linearization  is stable then non-linear system is 

locally stable. Linearization is asymptotically stable  non-linear system is locally 

asymptotically stable yeah. Why I do not discuss these this  particular method is because 

this method does not tell you how local is local. 

 

 It just  tells you that if the linearization is asymptotically stable non-linear system is locally 

asymptotically  stable. It does not tell you how local it does not tell you the delta in those 

definitions  ok and a lot of times you need to know those ok. I mean if you are especially 

wanting to  operate such systems you actually want the value of that the basin of attraction 



that  it is called yeah. So, Kahlil uses this word a lot basin of attraction basically it is  the 

delta in the attractivity definition ok. So, we need to know that in a lot of cases  which is why 

I do not talk about that method here, but anyway for this particular illustration  it is ok. 

 

 So, this is an asymptotically stable system yeah local yeah not global ok. Not  global because 

the inverted there is an inverted position that is x1 equal to pi which is also  an equilibrium 

0 0 is an equilibrium pi 0 is also an equilibrium right for this system  ok. So, the pi 0 

equilibrium is unstable ok. We are not talking about but so if you are  talking about stability 

of this equilibrium it is only local because there is another  equilibrium ok. So, whenever a 

system has multiple equilibria you cannot claim global  properties ok. 

 

 It is just like optimization right. So, well in optimization you still can  right because you say 

if you have multiple minima you just find the least minima in the  entire domain and you say 

that is the global optimizer right. Here you do not have any  such thing. Here if you have 

multiple equilibria then you cannot say that any of them is global  because an equilibria 

itself means that you never move from there. So, this inverted position if  you start here and 

there is no disturbance and obviously idealized system. 

 

 If it start here and  there is no disturbance then this is a trajectory which does not converge 

to the 0 0 point yeah.  There is actually a trajectory right because pi comma 0 is an 

equilibrium. So, if I start at this  pi comma 0 I remain at pi comma 0 because the right hand 

side becomes 0 right. So, I do not  move from there. So, this is a trajectory for all time I 

remain here yeah. 

 

 So, my property cannot  be global right because if I start right here I do not converge here 

and global requires that  for every initial condition I should be able to reach the equilibrium 

right. In this case  that is not happening. So, whenever you have multiple equilibria it is 

virtually impossible  to say that it is a whatever you have achieved is a global property ok 

alright make sense.  So, what most people do is they try to say that ok there are some you 

have this equilibria,  but it is an unstable equilibria therefore in reality you will never 

actually stay here  and so on ok which is true right. I mean if you take a pendulum even if 

you start here you will  never stay here right I mean however much your damping is even if 

it is slightly slightly off  from this which it will be in the real world you will go back to the 0 

0 equilibrium ok,  but it is not global ok sadly ok. 

 

 So, remember that not global property alright this system  is globally asymptotically stable 

for sigma positive very easy just solve it yeah this  is easy to solve this is what you have you 

get this this is the solution yeah believe me this  is the solution yeah I checked ok. So, this 

you can see that as t goes to infinity what happens  this term is going to go to infinity. So, 

this entire thing is going to go to 0. So,  attractivity is guaranteed I have to prove stability, 

but yeah I mean yeah it is stable  I guess I have asked that as a example ok yeah nice that is 

an exercise to prove stability yeah  because attractivity is obvious right I mean you do not 

have to do any work at all yeah,  but stability you might have to do a little little little bit of 



work ok. So, that is an exercise  here you have to prove that this is globally asymptotically 

stable. 

 

 Again I say only globally  asymptotically stable because uniformity is free right hand side is 

independent of time ok.  So, no need to evaluate uniform if I say GAS it is GUAS alright ok 

good. So, this is a of course  I sort of wanted to give an example of non-uniform asymptotic 

stability also alright. So, you can  have such examples also. So, all I do is I sort of introduce a 

function of time here yeah if this  was 1 if this was 1 just think about it this is just a linear 

damped oscillator right. 

 

 So,  spring mass damper if this was 1. So, but all I did was I introduced some time varying 

quantity  here and it so happens that the solutions look like this I mean. So, I mean it turns 

out that  it is non-uniform asymptotic stable ok. So, basically you do not have uniformity in 

this  case. In a lot of these cases it is not very easy as you can see to solve them and so on.  If 

you look at this, this is just a linear system by the way yeah linear time varying system. 

 

 So,  as soon as you go from a linear time invariant system to a linear time varying system 

your life  becomes pretty complicated already yeah you do not even have to go to non-

linear. I mean what  I would say is linear time varying systems are sometimes harder to 

analyze than non-linear  systems non-linear autonomous systems ok. So, does not make 

your life significantly simpler  or anything yeah. So, even to evaluate a non-uniformity using 

these definitions would be  rather difficult rather difficult ok. Any questions?  If you have a 

single unique equilibrium point for a non-linear system your question is does  asymptotic 

stability guarantee global asymptotic stability? I would say no, no, no does not. 

 

 You  can have a case where you do not converge to that equilibrium also far away from the 

origin  you do not get to the origin yeah. I do not think this can be said in general that if you  

have asymptotic stability of global asymptotic stability for a non-linear system just because  

you have one equilibrium ok. If you ask me for such an example I will struggle a little bit 

yeah.  I will have to think ok I will have to think. I think a version of this van der pol 

oscillator  might be such an example yeah I have to sort of think about it yeah. 

 

 There may be a version  of a van der pol oscillator which will which sort of does exactly 

what I am saying that  it does not do it is almost like this in fact if you look at this system 

yeah well this  is still nice inside and outside in both places it is converging to the origin, but  

you might have some kind of bifurcation which beyond which it does not converge to the 

origin,  but inside it does yeah. So, non-linear systems can exhibit a very very wide variety of 

behavior.  So I cannot claim that in general if you say asymptotic stability then essentially 

we are  saying asymptotic stability implies global asymptotic stability more or less right. No,  

I would not have any reason to make a separate definition. No escape velocity is slightly  

different because I see you are talking about escape velocity in terms of launches like in  

terms of launching and stuff. 

 



 Yeah I understand what you are saying. Maybe yeah maybe that kind  of a model yes if you 

think of a rocket that you are trying to write equations for and then  you have gravity acting 

on it so there is an escape velocity if it is so basically if one  of the states is too large then you 

do not come back and fall into the ground, but if your  velocity is smaller than this particular 

number so one of the states is small then you do come  back yeah yeah maybe if I model it 

appropriately it will probably exhibit this behavior.  So the model I mean I am wondering 

the model also has to exhibit this behavior physically  yes absolutely yeah physically yes so 

yeah I mean you can always I mean if you can think of it then  you can model it so I guess 

you can have such an example also yeah. So non-linear systems very very  wide variety of 

behaviors you cannot say that in general ok. Alright any other questions?  Ok good this is 

one of the simplest examples of course right this is the global exponential  stability this is a 

linear system right like I said linear system linear time invariant system  especially it is like 

exponential stability is sorry any stability is exponential stability ok  nothing less than that 

speed whatever very fast, but again linear time varying systems that may  not be the case so 

it is a very fragile sort of a thing which works only for linear systems and  not more alright. 

So like I said for linear systems in general uniform asymptotic stability  and exponential 

stability are also the same are the same yeah so there is no difference really. 

 

  In fact how do you evaluate it you just look at the matrix eigenvalues and so on and so 

forth  yeah I mean pretty simple all of you understand how to do it you can also do the 

Lyapunov tests  and all this usual things that we have been doing, but you do not have to but 

we will look at those  conditions yeah in order to look at those conditions we have sort of 

redefined these  matrix norm notions, but I am not going to repeat them I believe you 

already know them yeah just  the notion of the induced norm repeated here then how to 

evaluate some induced norms again  repeated here just the formulae and then these 

inequalities which are yeah which are just the  induced norm inequality right this inequality 

is coming from the induced norm definition itself  right because induced norm is the 

supremum yeah therefore, A x divided norm A x divided by norm  x is always greater than 

norm A ok because it is the supremum right. So for all values of x norm A  x divided by norm 

x has to be greater than equal to norm of A I hope that is evident right because  sup is 

basically a extension of the maximum right and that is how you get this ok. Did I say this  

correctly I said it the other way around sorry from here you have norm of A is always 

greater  than equal to norm A x divided by norm x yeah just by virtue of the fact that I took a 

supremum here  from here I get this sorry I said it the other way around yeah. So just the 

norm inequality induced  norm inequality and this is the Cauchy Schwartz like inequality 

like that we sort of proved for  general vector spaces last time ok. So when do we say that ok 

this is a little bit of proof so  anyway that is fine. 

 

 So one of the conditions for stability is this guy for linear system so this is  a general time 

varying linear system ok with some initial condition because I have time dependence  so 

therefore my initial condition is also at a particular initial time not necessarily 0 alright.  So 

the condition for stability is something like this ok basically what is this notation I hope all  

of you know this notation this phi capital phi by the way is the state transition matrix yeah 



or  the fundamental matrix whatever you want to say yeah and you also know that the 

solution at any  time can be written as in this way yeah this is how you use the state 

transition matrix in fact  the state transition matrix describes the flow for the linear system 

yeah because it tells you  map the if you fix the t it tells you how you map initial conditions 

right different initial  conditions I can take different initial condition I keep multiplying with 

phi I get a flow how my  initial conditions are getting mapped ok. This is just a linear 

equivalent of whatever the flow  in fact that is why you see the similar notation getting used 

there it was a small phi here it is  a capital phi yeah so what we say is the condition for 

stability is that the norm  of this matrix is bounded by some function of initial time ok.  

Thank you. 


