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  Okay, welcome to control of non-linear dynamical systems.  We are already in the second 

week, right?  And we have already started some more serious material.  So last time we 

started looking at stability, okay.  And how we started talking about stability was of course 

first by fixing a system initial  conditions, defining what is the solution.  We also spoke a 

little bit just to spark our interest on the notion of the flow, yeah,  which essentially sort of 

tells you how a bunch of initial conditions map to some final  conditions after a certain 

amount of time, okay.  So beyond that we started talking about the notion of equilibrium, 

alright, and how we  sort of care about isolated equilibrium, yeah. 

 

  And we of course gave an example of non-isolated equilibrium, very easy to construct.  

Yeah, I also showed you this pen which is rolling on a surface, yeah.  It is completely non-

isolated equilibrium because every point is an equilibrium.  Without disturbance you do not 

move from any point at all, okay. 

 

  So once we have the notion of equilibrium, all notions of Lyapunov stability are defined  

with respect to an equilibrium, alright.  No equilibrium, no notions of stability, okay.  So this 

is how Lyapunov stability works, yeah.  There is of course Lagrange's notions which we do 

not really talk about but there you  do not particularly need notions of equilibrium there.  

You are talking about boundedness, ultimate boundedness, uniform boundedness and 

things  like that, okay. 

 

  So slightly different notions which do not particularly talk about stability in the sense  of 

Lyapunov.  Here we need an equilibrium.  So we started with the definition of stability.  So 

obviously you start seeing the equilibrium point appearing everywhere here, yeah.  And 

stability essentially is an epsilon delta definition the way we understand it, yeah. 

 

  It just codifies the fact that if you start close to the initial condition, sorry, if  you start close 

to the equilibrium, you are expected to remain close to the equilibrium  for all time, alright.  

And that is codified as given an epsilon, there is a delta such that if you have, if  you start 

within a delta ball, you remain within an epsilon ball, okay.  So we of course understood this 

a little bit better hopefully, yeah.  We sort of tried to compare it with boundedness and we 

sort of understood that it does not  really compare with uniform boundedness well at all, 

yeah.  One does not imply the other. 

 

  Then we went on to talk about uniform stability which is just t0 removed, okay.  So the 



delta does not depend on the initial time anymore.  And we clearly said that whenever we 

talk about uniformity in this course, we are always,  you know, talking about uniformity 

with respect to time, okay.  So whenever we say uniformity, time is involved, okay.  So that 

is the idea, alright. 

 

  And then we of course looked at this very very nice example.  Why is it a nice example?  

Because we can actually construct a solution here, yeah, and we can look at some 

interesting  properties and we in fact saw that this system is stable but not uniformly stable, 

okay.  So we will of course explore more properties of this system as we go along and make 

more  definitions, alright.  So we will explore further properties of what this is but for now 

we know that this system  that we have looked at is stable but not uniformly stable, okay.  

So what we do today is we continue to talk about more properties and we move towards  

asymptotic convergence or asymptotic stability, okay. 

 

  So that is the idea for today's lecture at least, yeah.  So we start by assuming that the 

equilibrium is the origin.  Yes, please.  So the equilibrium is simply any point in the state 

space where from which you never  move under ideal circumstances, okay.  That is you do 

not deviate from an equilibrium unless there is a disturbance present or anything  like that, 

okay. 

 

  So the equilibrium is simply a point on the state space from which there is no movement,  

okay.  The states never move from there, okay.  And how we compute it is pretty 

straightforward.  We just equate the right hand side to zero.  That is it, okay. 

 

  That is how we compute it.  That is how we did it for this example also, alright, okay.  Great.  

So for the rest of the presentation we assume that the equilibrium is in fact the origin,  yeah.  

So it is not difficult to shift the origin so that you can ensure that your equilibrium  is always 

the origin. 

 

  You just do a simple change of coordinates like this.  Yeah, we are very used to doing this 

whenever we are talking about the tracking problem  for example, right.  Whenever we are 

doing tracking we always do some kind of a subtraction to make sure that  we are always 

talking about going to the origin, okay.  This is what we are comfortable with.  It is as simple 

as that, yeah. 

 

  Also makes our notation simpler.  I don't have to keep writing X, E everywhere, alright.  So 

from now on assume that the equilibrium is the origin, okay, 0, 0 in the state space,  alright.  

Great.  So we talk about the notion of attractivity now, okay, because this is the next 

important  notion, alright. 

 

  So what is attractivity?  For all t0 there exists a delta.  Again possibly depending on t0 such 

that if you are within a delta ball of the origin  or the equilibrium in this case as you can see 

then as t goes to infinity you approach  the origin, okay.  So this is simply attractivity the 



way you would understand it.  The only difference is you can see that it is defined locally, 

yeah.  It is a local definition because it is saying that if you give me a initial time or t0 I  will 

give you a ball of certain radius within which you have to start if you want to get  here, okay. 

 

  If you start beyond it we cannot guarantee anything, okay.  So that is the important thing to 

remember.  The notion is local because I start within a delta ball.  I have to start within a 

delta ball. 

 

  That is it, okay.  Then obviously we try to strengthen these notions, right.  There is the 

notion of uniform attractivity.  Remember that I said that whenever we talk about 

uniformity it is always with respect  to time.  So the only thing that depends on initial time 

here is this, right.  So for uniform attractivity this delta is independent of t0. 

 

  That is it, okay.  As simple as that.  So very similar to stability, uniform stability.  The delta 

was depending on t0 and then it does not depend on t0.  So you can see the same thing 

happening here, okay.  I hope that is clear, alright. 

 

  Make sense?  Okay.  Then specialize further.  So attractive strengthened to uniform 

attractive, further strengthened to globally uniformly  attractive.  What is that?  The delta 

goes away completely.  You can start at any initial condition, any initial time and you 

approach the origin as  t goes to infinity, okay.  So you are strengthening the definitions as 

you go down here, okay. 

 

  So remember that when we spoke about stability one of you even asked I think that is 

there,  is it local or global?  Stability has no notion of local or global.  Stability is just stability.  

If you notice there is no, if you give me an epsilon I give you a delta, okay.  It is not local or 

global there. 

 

  There is nothing local global.  But here there is, okay.  Very clearly.  Convergence is local or 

global.  So it is or attractivity in this case.  It is a parallel notion to convergence for series. 

 

  So attractivity is local or it is global, okay.  That is it.  Stability is a, there is no local global 

there.  So remember this, okay.  So we have strengthened sufficiently I guess. 

 

  Now the rest of the definitions are very simple.  It is just a combination of these two 

properties, right.  What is the combination?  First we again start with the weakest notion.  

Asymptotic stability, okay. 

 

  Acronym A.S.  Alright.  We use these acronyms a lot of times because they are very long 

sentences to say.  So asymptotic stability requires a combination of stability and attractivity, 

okay.  That is it.  You already know what is stability. 

 

  You already know what is attractivity.  If you have both properties for a system, it is 



asymptotically stable, okay.  See I no longer require any more epsilon delta definition.  In 

books of course you can, if you go to Vidya Sagar and you go to some other texts, they  will 

probably formally tell you the definition of each of these.  So then it is not required, okay.  

You have already defined stability, you have already defined attractivity. 

 

  If you have both the properties, then it is asymptotically stable, okay.  And unfortunately 

different books have slightly different definitions, yeah.  I would stick to what we are talking 

about here, okay.  In most cases they are identical, okay.  You can prove that one implies the 

other and so on and so forth, alright. 

 

  So don't worry about the slight differences.  For example, if you look at Khalil, you might 

find a slightly different definition.  If you look at the Vidya Sagar book, you might see a 

slightly different definition, yeah.  Let that not, you know, sort of worry you. 

 

  One typically implies the other, alright.  Then we have uniform asymptotic stability.  Here I 

just qualify each property with uniformity here, okay.  So I need uniform stability and I need 

uniform attractivity, okay.  So this is just uniform asymptotic stability, alright. 

 

  So this is a pretty strong property, yeah.  In fact, one of the strongest properties you can 

have for non-linear system.  More often than not this is where you stop, yeah.  Then neither 

of these or none of these conditions actually talk about any rate of convergence,  alright.  

You, you can never, in fact in most non-linear systems you cannot actually say how fast you  

are going towards the origin, okay.  It may be linear, it may be sub-linear, it may be 

logarithmic, whatever. 

 

  It could be very slow, okay.  So you cannot actually guarantee but in some cases where you 

can, you can define the notion  of exponential stability.  Why exponential and nothing else?  

Exponential is the holy grail because linear systems give you exponential stability, right.  

Any linear system if you say it is stable, it is exponentially stable.  It is nothing less, okay, 

alright. 

 

  Well, linear time invariant systems, alright.  So what is exponential stability?  There exists 

constants R, A and B positive such that this sort of a equation is followed,  okay.  Again 

vector norms, huh.  Basically norm of xt is less than equal to A times norm of x0 times e to 

the power minus  bt minus t0, okay.  So this is the typical exponential decay and this is, this 

is to hold for all t t0 greater  than equal to 0 and for all x0 less than R, okay.  In fact you can 

probably write this slightly better and say that this is t greater than  equal to t0 greater than 

equal to 0, yeah. 

 

  And for all initial conditions which are starting within a R ball, okay.  So this is actually a 

local definition, right.  Whenever you are requiring your initial conditions to start within 

some ball of some radius,  okay, then it is a local condition, okay, because you are requiring 

initial conditions  within some set, okay.  Only then you converge is what you are saying 



here.  If you start beyond that set you are not guaranteed anything. 

 

  All such properties are local property where your initial conditions are in fact required  to 

start within some kind of a ball.  You can again strengthen this to global uniform asymptotic, 

oh sorry, I apologize.  This is actually a strengthening of this guy, yeah.  So strengthening of 

this is the global uniform asymptotic stability. 

 

  Remember that there is no global local here.  So this remains as it is, yeah.  But this 

property there is possibility of a global counterpart.  So you say that you require global 

uniform attractivity, okay.  So all these other properties beyond stability, uniform stability 

and attractivity they are  just a combination of these properties, okay, which is what makes 

things relatively easy  in terms of at least writing the definitions, alright.  So slightly off 

sequence I guess but anyway you had asymptotic stability, then you went  to uniform 

asymptotic stability, then you went to global uniform asymptotic stability. 

 

  This is the strengthening, okay.  Why the exponential stability in between is also makes 

sense, yeah, because exponential  stability is also local, okay.  So now I can move from 

exponential stability to global exponential stability.  What would be the difference?  This 

will go away, right.  That is the only thing that is sort of keeping things local for you, right. 

 

  So this will go away.  So that is what you see.  There exists constants, now only two 

constants because R is no longer required, right.  Only two constants here such that the 

same thing happens.  Again I would say, yeah, T greater than equal to T0 greater than 0.  

Same thing happens but for all initial conditions now, okay.  No longer requiring any 

restriction on the initial conditions and hence global, okay. 

 

  So what the exercise that is mentioned here is essentially to prove that exponential 

stability  is stronger than UAS, okay.  That is exponential stability implies uniform 

asymptotic stability.  This is an exercise, yeah.  And similarly global exponential stability 

implies global uniform asymptotic stability,  okay.  So you have to prove that this guy 

implies this guy and that this guy implies this guy. 

 

  Only one way, not the other way of course.  They are not equivalent, okay.  So what we are 

trying to say is that exponential stability gives you something more than uniform  

asymptotic stability.  And similarly global exponential stability is something more than 

global uniform asymptotic  stability.  So that is what you have to prove, okay.  So you have to 

start by assuming that you have this kind of a condition and then you  have to prove 

uniform stability, you have to prove uniform attractivity, okay. 

 

  Alright.  Okay.  Any questions?  Yes.  Yes, if whenever global is not written, you will assume 

that we are talking about local,  okay.  Many books do write local, use the word local but 

more often than not we don't.  We don't say local uniform asymptotic stability, local 

asymptotic stability and all that.  We just say asymptotic stability.  If the qualifier global 



does not appear, then you assume it is a local requirement, okay. 

 

  That is standard.  Yes.  Is there an attractive system that is not stable?  We will see.  So it is 

a good question.  If there is an attractive system that is not stable, stable system not 

attractive.  Stable system not attractive is very easy. 

 

  Any example of stable system not being attractive?  Oscillator.  Oscillator, yes, standard 

oscillator, spring mass damper, no damper, spring mass, standard  spring mass system, 

oscillator, they are all you know non-attractive.  They are stable, non-attractive, yeah.  

Linear oscillator, let's stick to linear oscillator.  Non-linear oscillators, funny things might 

happen. 

 

  But what you are asking is the other way around.  If there is an attractive system that is not 

stable.  So we will see examples, we will see very interesting examples, yeah, alright.  I will 

immediately went to the example.  I want to go back first to this system, okay. 

 

  The system we considered, okay.  Now let's look at this system and I really hope that you at 

least remember what happened  here.  So if you look at this system, we wrote the solution in 

this form, right, where gamma  is of course a function of initial time, right, and this is the 

initial condition, yeah.  But this is the basic evolution, okay.  Can you tell me if this system 

has any of the, so you already know that it is stable  and not uniformly stable, okay.  Does it 

have any attractivity property?  Is the system attractive or does it have any attractivity 

property?  Because that is what we need to claim asymptotic stability or something like that, 

right. 

 

  But do you think it has any attractivity property, just looking at this solution?  What does 

attractivity require?  If you start with a norm less than delta, then you converge to the 

origin, okay.  So if you start with norm less than delta, you converge to the origin.  Do you 

think that is going to happen here with this system?  Yes, why?  T squared.  T squared, 

absolutely.  Once you fix the initial time, yeah, then because of T squared, because T 

squared, we  discuss this, right. 

 

  In fact, this is the picture.  Beyond a certain time, whatever is in the exponent, this guy, is 

going to become negative.  And negative exponential means what?  Dk, right.  You are going 

to go to the origin.  So exponential of negative quantity, in fact, fast decreasing negative 

quantity is going  to go to the origin, okay. 

 

  Okay, great.  What is delta in this case?  What is the restriction on initial condition?  I said 

norm x0 less than delta implies you converge to the origin as T goes to infinity,  right.  And 

you are right, as T goes to infinity, obviously converges to 0.  What is the delta?  What is the 

bound on initial condition that is required?  M. M is somehow the bound on this guy, right. 

 

  So M is you are saying the supremum of this.  But why?  How do you, but it is on an 



exponential, right?  First of all, you are taking exponential of this guy, first of all.  What is f 

now?  There is no f.  I have an exponential of this guy, remember. 

 

  I do not have any general function here.  It is a very specific function here.  And M is the 

upper bound of this term here.  So let us look at the definition again.  You want this for 

attractivity, right. 

 

  Start in a delta ball.  If you start in a delta ball, you converge to the origin.  What is delta?  

You converge to infinity. 

 

  Absolutely.  There is no delta.  So trick question, alright.  But there is no delta.  You give me 

any initial condition.  How does it matter?  You give me any x T 0.  The exponential, this 

exponential is once you fix T 0, so gamma is fixed.  This exponential is always going to push 

me to 0 irrespective of what my initial condition  was. 

 

  You can give me x T 0 as 10 to the power 10, irrelevant.  This exponential is definitely 

going to, it is a constant.  Whatever it is, it is a constant.  This is also a constant. 

 

  So both of these are just some constants.  Even if they are huge, it is irrelevant, right.  

Because this exponential is going to go down really fast as T goes to infinity.  It is going to go 

to 0.  So it is going to get rid of whatever these guys are.  If you get 10 to the power 10 here, 

it will become less than 10 to the power minus 10  after a certain time. 

 

  You can always find that time also, alright.  So in fact this is, then what?  Globally attractive.  

Okay, great.  So it has global attractivity. 

 

  Okay, excellent.  What about global uniform attractivity?  Yes, no.  Because there is no 

delta.  So uniformity only require delta to be independent of T 0 and all that.  But there is no 

delta requirement at all.  So it is globally uniformly attractive.  Okay. 

 

  So what property does this system have now?  It has stability and global uniform 

attractivity.  So what does the combination give me?  GAS. 

 

  Does not give me GUAS.  Okay.  Because I don't have uniform stability.  This is not there.  In 

fact, let's look at, yeah. 

 

  So this property is not there.  So uniformity, no.  Instability, no.  But we have this guy.  

Okay.  So the best property we have is something that I have not written here.  It is 

something that I usually write here somewhere in between.  GAS is stable plus globally 

attractive. 

 

  Okay.  So it has a property that I have not mentioned here in this list.  But you understand 

how it is coming. 



 

  It is not such a complicated thing.  Alright.  So basically it is stable plus globally attractive.  

Okay.  So it is globally asymptotically stable.  That's it.  It is not globally uniformly 

asymptotically stable because that would require uniformity  for stability which I don't 

have. 

 

  Alright.  That's the idea.  Great.  Any questions?  So that's what it says here I believe.  Did I 

say it somewhere here?  Yeah.  Yeah.  So I have actually said it here.  Yeah.  Globally 

asymptotically stable and not globally uniformly asymptotically stable.  Alright.  Thank you. 


