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Mathematical representations of systems for control 

We start with now little bit of a revision and some kind of a consolidation of some of the concepts 

and we will see how things are for the mathematical representation of control systems. So, we have 

found like we have already done some of the parts, but now we are just consolidating these in some 

way. This has been done some part of, this has been done already in the past in your classes. So, 

we just recall some of the concepts and move on from there. 

(Refer Slide Time: 00:57) 

 

We will get going with this kind of outline. We will see some of these properties of the system, 

the linearity, time invariance. Then we will see these three major different ways of representation 

and fourth one comes for the non-linear systems. For linear systems, you have ordinary differential 

equation form, transfer function from and state space. These are the three major forms and then 

how do you get solutions in each of these forms. So, these are the concepts that we have already 

seen. 

The non-linear systems one is what we are dealing probably with new. Some of you might have 

done some non-linear systems handling in system control kind of courses. So, we will not get into 



too much of a depth, but again here idea is to kind of see from mechatronics application 

perspective, how we can deal with these different concepts. 
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So, we begin with the simple properties which you all already know. So, the linearity of a system, 

the principle is important first like many systems. This principle of superposition is valid for the 

linear systems. Meaning like the input, if a system is given input 𝑢1 and produces output 𝑦1 , input 

𝑢2 and output 𝑦2 then if these inputs are scaled and added or subtracted correspondingly the outputs 

will get scaled and added and subtracted that is a kind of a concept that you have here. 

Time invariance is another very important concept. If you start at t = 0 or any other time for the 

same initial conditions then your response is same that is what your time invariant principle says. 

So, these coefficients typically would be constant for time invariant system and in time varying 

systems the coefficient will be functions of time. So, if you see carefully your regulation problem 

or tracking problem, regulation problem does not change the system property of time invariance 

actually, but tracking problem introduces the time trajectory the ϴ𝑑𝑒𝑠𝑖𝑟𝑒𝑑 or x𝑑𝑒𝑠𝑖𝑟𝑒𝑑 kind of a 

trajectory which is explicit function of time in the system. 

So, the moment you start talking about the tracking problem in control, it will have a time varying 

system considerations to be given. So, you have other examples also for a time varying system 

apart from this tracking problem is space vehicle. Many of the, mass of the space vehicle is 

changing with respect to time. Those kind of things we will have to deal with a little bit in a 



mathematically different form than usually we handle the time varying system, time invariant 

systems. 
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There are these kind of different types of systems, I mean, in there are kind of more kind of name 

that is given or definition that is given. So, linear time invariant system typically are represented 

by linear ODEs, so LTI systems. Then you have time dependent coefficient for a linear time 

varying systems. Then you will have these single input single output systems. Again, they are 

typically terminology in the linear system domain. And multiple input multiple output kind of 

systems MIMO systems, SISO systems, and then you use this LTI term for linear time invariance. 

And the non-linear systems are typically represented by non-linear ODEs or the state form of the 

representation that we have seen for getting the MATLAB numerical simulation going. 
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So, this representation of the systems in different forms is what is important for development of 

control. So, first is like our differential equation form which we already seen in feedback lecture. 

You start with a differential equation form and start applying some of the control fundamentals 

and analysis of control in that form only. 

Then we consider the transfer function form where you have poles and zeros defined for the system 

and based on the poles and zeros you kind of look at the open loop kind of a stability of a system 

and we look by many, many different ways you look at the closed loop stability of the same system 

by considering say, for example, a root locus kind of analysis or bode plot kind of analysis, 

frequency domain methods those are all kinds of things which you have part of like these Math 

codes in theory that you have studied some of these kind of tools and techniques. 

So, we will not get into the details of those tools and techniques. You maybe if you want you can 

just little bit kind of a refresh them. We will not get into a lot of depth of those. We see some of 

the applications if at all about those techniques, especially in the case of lacing the pole at 

appropriate location kind of problems. 

Then you have a state space methods. So, state space kind of a form is this =Ax + Bu and y = Cx 

+ Du. This form is used typically. So, now, this A, B, C, D matrices are basically as you know all 

constant matrices. And now how do you solve system in each of these forms is the next question. 

And how do you obtain this form this again you are aware about like you have seen already in the 



MATLAB kind of simulation. While doing the simulation we anyway need to get the system 

represented in this 𝑥̇  = to fx form. 

When the system is linear and this part here f of x of u and t will reduce to some matrix A and B 

and can be separated out in like x related terms and u related terms. So, that is how like these 

different forms of the representation of the same system can be there. And you can choose to kind 

of, if you have a linear system, you can choose to work with any of the forms that you wish for 

development of control. And we are just going to see now a little bit of a brief or revise the little 

bit of a brief of this Laplace domain representations and state space domain representations and 

then we will see how do you solve the systems in these different domains and that will conclude 

this part of the lecture. 
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So, we use the Laplace transform standard tables of transforms are basic fundamental properties 

to get Laplace domain representation done. So, you need to revise this definition of what is the 

Laplace transform and how do you kind of take Laplace transform of a given system and things 

like that. And some properties of the transforms and some kind of, these are all also properties like 

the final value theorem and convolution integral.  

This convolution integral is an important concept to be looked at. Although we may not use like 

for purpose of application or development of control. We may not use this convolution integral 

too much. But if you want to have a solution of Laplace transform system done, you may need that 



convolution integral concepts. For a given, any given general input is there you may need. It is not 

mandatory, but you may need that. 
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So, this is an example of our standard differential equation of spring mass damper system. And 

you use a Laplace transform here considering, so for Laplace transform you need to kind of define 

what is your input and what is your output. These input output definitions are your own definitions 

like you need to define or whatever requirements our system will dictate what is input and what is 

output. Then you take Laplace transforms and represent like this is output of the Laplace transform 

divided by input of the Laplace transform of this system will give you this kind of a transfer 

function. 

And usually in transfer function we assume 0 initial conditions. Suppose there the initial conditions 

are non-zero then you cannot get this transfer function form. This is very important, because it 

comes from the definition of or the property of Laplace transform for a derivative. So, typically 

the derivative will give you some kind of, derivative Laplace will give you some kind of a non-

zero initial condition representation in the transform. So, to avoid that we assume initial conditions 

to be zero and then like the system has this kind of a nice form of like just Laplace division of two 

Laplace and polynomials. 



To convert this system into state space form you need in this kind of a form you need to define 

states first x = x, x1 = x and x1, x2 = 𝑥̇  . So, 𝑥1̇= x2 and x2 dot will be equal to based on this 

equation 1 upon m times minus cx2 minus kx1.  

𝑥2 =̇
1

𝑚 
(−𝑐𝑥2 − 𝑘𝑥1) 

So, this is a typical process for getting the state space form. You define the states, because state 

space form has only single derivative but of a vector. So, you need to kind of add, introduce more 

variables in the system to represent the system into this form. 

So, this is how like you represent system in these different forms in Laplace transform form and 

then the state space form. And then you can handle this system in either way. There are control 

tools and techniques available in each of these domains to think of the system properties and 

develop control or propose control algorithms further. 
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So, this is some kind of example of a non-zero initial condition. So, you can see how they show 

up in the Laplace transform stuff. So, you can get a solution with non-zero initial conditions no 

problem by using Laplace transform that is no problem at all. You can use this kind of a method, 

Laplace transform method to get a system solved. But if you see here, you cannot represent it as a 

transfer function. So, only when the initial conditions are 0, this part will go to 0 and then you will 



have this input can be brought here to kind of define a transfer function. But in state space form 

there is no problem of these zero initial conditions. So, that is how things go. 
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Then next thing is finding a solution to these different forms which we have discussed. So, ordinary 

differential equation solving again I do not realize here the basic mathematics of ODE solving. 

You all know that I presume from the previous background. So, if you not like we can just finish 

up some of the fundamentals of homogeneous part of the solution and particularly integral and that 

those kind of things. 

Then for Laplace transform representation you typically like substitute whatever is input that is 

given like Laplace transform the input and get the expression for Laplace transform output in the 

Laplace domain. And once that expression is available, you apply the inverse Laplace transform 

by method of dividing the polynomial into its roots. So, multiplication of multiple roots is a 

denominator and you represent these each of the roots separately. And you then use the standard 

tables to do the inverse transform. 

So, this method you, I am presuming you all know this and you can go ahead and revise if you 

want to. Then the exponential for the state space representation of the system x dot is equal to Ax 

plus Bu, you typically use the matrix exponentials. So, we will go into a little bit more details about 

this method. And then for non-linear systems, typically, some systems you may get a closed form 



solution by using this typical ordinary differential equation solving methods. But many systems 

may not admit that kind of a closed form solution or it may be too tough to get that. 

So, under this scenario, we can we will resort to the numerical simulation that we have seen and 

use those simulation techniques for understanding the dynamics and further for developing of, 

development of control one can use this Lyapunov theory. So, we will go partly through this 

Lyapunov theory and come up with some kind of universal controller for mechanical systems. So, 

we have seen the mechanical systems in, with Lagrange formulation. 

So, for those kind of systems, rigid body mechanical systems, we can get a very interesting like a 

controller which is applicable for all systems of that sort. And that is for the tracking kind of a 

problem. So, regulation is very kind of a specific case of the tracking problem and one can kind of 

attempt to develop. So, one can have that controller used and all the rigid body control problem 

would be solved. So, this big domain of systems we can do the control of these non-linear systems 

by using some Lyapunov theory based techniques. So, let us get into a little bit more of this state 

space system solution. 
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So, you use what, you use matrix exponential. See if you see here the homogeneous part, so as we 

know for linear systems or any differential equations solution have a homogeneous part and a 

particular solution. In this case, the homogeneous part will be given as 𝑒𝐴𝑡. 𝑥(𝑜). This is zero 

initial, this is like an initial condition. So, if these initial conditions are 0 in the state space case, 



then this homogeneous part will be 0. But in general it will be like represented in this kind of 

fashion. 

Now, this is like exponential of a matrix here. So, we will see how to get to that. And then particular 

integral or particular solution will have this kind of a form, e to the power A times t minus tau. So, 

this is like a convolution integral with the control input of the homogeneous part of the solution. 

So, this is 𝑒𝐴𝑡−𝜏. Bu, Bu is like your control, I man, the non-homogeneous part or control input 

part. So, these are the, this is like will, this, addition of these two will give you this complete 

solution of a state space system and you use this finally for the state space system solution. 

So, we will use this also for in the case of digital systems. When we talk the sampling of the 

systems we may come back to this form a solution. So, this is important for you to kind of know 

this form of a solution would exist. And now how do you find 𝑒𝐴𝑡.  
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So, that is here. So, how to determine this form 𝑒𝐴𝑡? The first method is like you use Laplace 

transform. So, if you take a Laplace transform of the system which is having like the homogeneous 

part here, this control input is zero so 𝑥̇=Ax and then look at this. So, what you need to look at is, 

so there are some steps involved here beyond these. So, let us, we will not get into that. 

But finally what you get, see this 𝑥̇ will give you Si here. So, see although there is no i here, we 

have to kind of, when we start subtracting we need to assume that there is i here. And also it will 

give you this by the way up derivative property, you will get this kind of initial condition zero 

initial condition into the system when you take Laplace transform of 𝑥̇. 



So, by simply taking that and doing some kind of a mathematical simplification of homogeneous 

part of this solution you can arrive at this formula. So, you get a Laplace transform solved and then 

like you need to kind of bring that Laplace on the other side and then you will get this solution. 

So, you try it out and then like if you get into any trouble like we will see again in the class if at 

all. So, this is a typical kind of a form that you get for doing the, obtaining this 𝑒𝐴𝑡. So, you can 

use this. 

So, if you see that this is particular matrix which is which typically we use for Eigen solutions and 

that matrix inverse times that matrix, you need to invert that matrix and get its Laplace inverse. 

Then this method 2 is based on Caley-Hamilton theorem. So, this Caley-Hamilton theorem you 

need to again devise. It basically allows you to express any higher power of A to the n, A to the 

power n which is higher than the dimensions or n and, suppose n is a dimension of a matrix n by 

n. So, A to the n and its higher powers are expressible in the form of a polynomial up to A to the 

power n minus 1. That is what this theorem says basically. 

So, this comes from the fact that every matrix A satisfies its own characteristic equation. So, you 

know characteristic equation of a matrix which you will get by 𝜆𝐼 − 𝐴 . So, that is a characteristic 

equation in terms of λ. Now, if you replace by λ A then that equation is also satisfied. That is what 

the Caley-Hamilton theorem says. And based on that you get this property which I said that 𝐴𝑛  or 

𝐴𝑛+1 or 𝐴𝑛+2 everything can be expressed as a polynomial up to 𝐴𝑛−1. 

So, if you see this exponential by the way of series expansion, you have this a lot of like this can 

be expressed as a powers of generally like the infinite series, polynomial series with different 

powers for n, different powers for A and we use Caley-Hamilton theorem to kind of express this 

as a summation of powers up to, the coefficients will be different from what you have seen for the 

exponential series expansion. 

So, we use the general coefficients and then coefficients are to be determined. How do we 

determine coefficient by using like, so that equation whatever you get will also be satisfied by 

when you substitute lambda there. So, we use like the property of Caley-Hamilton theorem only 

that, this equation will be satisfied by if you are expressing this A equation then it will be satisfied 

by the lambda also like the Eigen values also. 



So, by using Eigen values in the equation which expresses 𝑒𝐴𝑡  e to the power At in the form of 

say like series or polynomial up to 𝐴𝑛−1, one can now get the coefficients, n coefficients which 

are determined by substituting n Eigen values in this algebraic equations. And once you get those 

coefficients substituting them will give you the value of 𝑒𝐴𝑡. So, you try it out and check it out 

actually for some simple system and that will kind of develop more understanding. So, these two 

ways are there for solving, getting the e to the power, matrix power. 
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Then there are these concepts of stability we need to talk about or understand. So, for any of these 

forms you have a definition for concepts of stability. For system which is LTI, this is basic 

definition of stability, the one of the notions is, so this is like a fundamental notion. When the 

system is excited by a bounded input, the output remains bounded that is one notion of the stability 

for, especially for linear domain systems. And other kind of a notion is in the absence of inputs 

output tends towards zero or equilibrium state of the system irrespective of any initial conditions. 

So, this is like kind of a notion of some kind of asymptotic stability. So, there are many, many 

notions or definitions of stability you will find. So, for linear system typically like basic 

fundamental definition is bounded input bounded output and from there one can derive the 

conditions for stability. So, this concept or notion of stability and then conditions of stability they 

are two different kinds of things. You do not say we get the conditions by applying these basic 

fundamental mathematical notions of stability. 
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So, when we apply these notions, for example, for linear system, we can get like these more 

tangible conditions. So, the conditions are like roots of characteristic equation or poles, you know 

the poles of a system with the Laplace transform representation you can define poles and zeros of 

the system. And when the poles have negative real part, the system is stable. 

So, if any one even only, even one root of this characteristic equation has positive real part then 

the system is unstable. And so system is marginally stable if these roots are under imaginary axis. 

So, we will see like a little bit more about how this relationship between the system response and 

the location of poles has, so this you need to have some kind of a feel for these relationships that 

will be good. 
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So, these are the more details about poles and zero definitions which you I presume you already 

know. And then pole zero plots and animations you can see some of the websites are given here to 

try out. And I have some kind of things plotted here for you. So, let us, we will go through that. 
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So, effect of polls is there on the response. So, we will see the cases, different cases of these how 

these poles individually or like or two or three poles affect the response of the system. 
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So, let us see it here. First you have a single real pole which is on the negative part of the real axis. 

This real axis is for the Laplace s. S is imaginary number. Its real part is here and like imaginary 

part is here. So, when S is equal to minus a, then it can be represented on this complex S plane in 

this kind of a form. And with that typically you get the impulse response. So, all these are like 

impulse responses which we have plotted here which is bounded or decaying exponentially. 

So, the same kind of impulse response now we are going to observe for different, different 

locations of poles. So, just to get a feel for like, when the location is here or location is somewhere 

else, how the response is typically going to look like. See for example here real axis poles, you 

will not have any oscillations of that behavior. 
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But the moment you introduce the two poles on the, off the axis, real axis, you will get oscillatory 

behavior. Imaginary axis, imaginary part will be there for the S, then you get oscillatory behavior. 

So, here now we see that when the pole is shifted to the real side, positive real side, then your 

system response exponentially increases. 
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And this is a case where like you have two poles which are having both real parts and imaginary 

parts. When the imaginary part is added to the system, of course, you will need to consider, these 

poles will always exist in the pair by the way. You cannot have only one kind of pole shown up 

here and no pole corresponding that scenario is not there. So, you will get this kind of oscillatory 

behavior in this case. 

See other thing is like if these poles are further shifted towards left side then these oscillations will 

start decreasing. These oscillations will decrease little faster than this. And if the pole is on the real 

axis then the exponential decay also will be faster. It is far away in this plane then exponential 

decay also will be faster. So, if you see here, this exponential decay is proportional to this e to the 

power At times, like, so A is larger you will get like the decay which is faster. So, this decay will 

be faster and faster happening if the pole is far away shifted from here to like negative side. 

Now, these are very interesting connotation or influence or implication in thinking about multiple 

poles. So, if you have multiple poles coming up on the, on this side negative real axis which will 

be there for many kind of real life systems, the poles which are far away would contribute lesser 

to the response than poles which are close by. So, if the poles are place or they are far away in the 

system, one can understand that those far away poles will not have much of influence on a response 

of a system. The response because of those will decay faster than response, because of the poles 

which are close to the imaginary axis. That is the kind of important understanding we should take 

away from these discussions. 
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Then pole shifted to the right half like you will see that this response will be kind of continuously 

growing with oscillations. So, imaginary part of solution is also there. 
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Then poles are on the imaginary axis, you will find that this is sinusoidal kind of oscillations, 

harmonic systems basically without damping. 
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Then double poles there on the imaginary axis. Amplitude of the oscillations will keep on growing. 

So, that is what happens. 
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Then you have a single pole at origin, you will get this kind of a straight line behavior in the 

response, constant behavior. Impulse response is a constant. 
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So, then if you have the double poles then the input again goes unbounded and then this is unstable 

system. 
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So, now if you add zeros to the system like the response will have some small variations that is 

happening. 
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So, this is, now we are considering this system with this kind of oscillatory behavior. We have a 

zero added. So, without zero and with zero added you see hardly any change in the response, only 

this amplitude here changes when the zero added on the left half. 
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And then when you add zero in the right half then there is some kind of a small deviation of this 

one, but the overall behavior of the system does not change. So, these zeros they do not affect the 

stability of a system that we all know that mathematical property, but this is just to kind of see 

what is the effect of zero is typically for second order system. 
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So, then other important idea that you already have probably studied and maybe we need to recall 

here is about the first and second order system standard kind of response. So, every system like 

system can be looked at purely from a mathematical perspective without kind of giving I mean the 



keeping the physical kind of interpretation apart for a while. So, what if you are able to see the 

system from that perspective, then like the basic mathematical principles that are there for the 

systems as a standard kind of a system responses they are applicable. 

For example, we have seen our motor. So, motor with the speed as an output is a first order system. 

And if you know the first order system response behavior, you can get to this directly the some of 

the interesting parameters for the, especially the time or the characteristics time for the system 

immediately seen and can conclude about like whether that dynamics is important to be considered 

or not important to be consider all those kind of things we can we can talk about. 

So, we are not then there we are not specifically like dealing with a motor system alone. Now, for 

the same kind of concepts would be applicable for, remember, this tank filling system with the 

flow input with a tank and then some kind of a drain output. So, that kind of tank filling system 

also is a first order system. Then heat transfer systems, they are all first order systems. So, first 

order systems you have some kind of characteristics response known. 

For example, when you run a fan with a motor, the fan will not go to the speed more than the 

maximum speed and then come back to the maximum speed that kind of a oscillatory behavior 

would not be observed in the first order system response. So, this is, these are some of the very 

important kind of concepts from the understanding of the system from purely mathematical kind 

of a perspective and then interpretation in terms of physics that can be done very nicely if you, at 

least this behavior of the first and second order standard systems. 
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So, this is a first order system impulse response behavior. So, now this is given in terms of these 

characteristics time T. And this T comes in transfer function in this kind of a form. So, if you have 

some other kind of a terms on the top, you just kind of divided them on the bottom side and like 

produce this part, sorry, wait, not on a top side, you need to have Ts + 1 form here first.  

So, this, whatever is, if this term is non-zero you divide it by this term and this term. So, you get 

this kind of a, some kind of a scalar multiple here. So, that will you multiply this response here. 

So, this, otherwise this will be 1 over T value. But if you have some scaling factor here in place of 

1, it will be like that scaling factor times 1 over T. That kind of scaling will happen to the response 

also. That is the only kind of a difference. 

So, this is how one can get, your any kind of a first order system transform into this form and 

observe the behavior and see what is this time T. So, you can see that at some one kind of a time 

T the response goes down by roughly about 66 percent. So, this is important kind of understanding 

can come up with these time constraints. So, characteristic time constraints for different systems 

you can see and then see what is the dynamics that is of importance, what is dynamics, what is of 

not so much of importance, and then like we can take some call to simplify the system behavior. 
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For this same first order system this is step response, sorry, 66, 63.2 percent it is going. So, similar, 

I do not know in impulse response also there will be some value. I think it will be similar 63.2 

percent. So, this is, these are some of the important things to kind of note that the response you 

know already if you know the system like that. You do not need to solve the system. If it is a first 

order system with this particular kind of representation then this is a response for that system. 

So, this response characteristic we will be able to use in the sense of this characteristics time 

constraints and other kind of parameters which are defined for different, different order systems. 

So, first order system has this T as a characteristic time constraint. 
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If you come to the second order system, so this is you can go through a little bit more detail for 

ramp response of the first order system. Some of kind of a response would be shown here. 
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For second order system you have many more parameters to define. And those again you will 

consider the standard form of this kind omega n square upon s square plus 2 zeta omega n s plus 

omega n square.  



𝜔𝑛
2

𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔𝑛
2
 

This is a standard form of a second order system. So, if your system is not in this form, you 

basically like do some division and multiplication whatever you want to do and get it into this 

form, then you may find some scaling factor may exist on the top that can be scaling the response. 

Instead of 1 this value will be that scaling factor. 

And you have these different cases coming up here. So, this is typically for an under damped 

system you will get this kind of response. And then there are formulae directly for maximum 

overshoot and this rise time, so 0.5 or 50 percent of the maximum value that it is reaching in the 

rise time. So, these are some of the specifications that are important from control perspective. 

One may say okay I want to get my system settled in the, in say the settling time is specified to be 

say five seconds or two seconds or whatever or I do not want any overshoot for my system. For 

example, robotic systems we do not allow any overshoot typically. The system should like you 

can see that okay your arm should go finally and stay there. It is very like annoying to see that arm 

is going like this and then settling to the prime position and again going like this and settling to 

the prime position. 

So, that is, so that to avoid that like you will have to have the specifications given in terms of the 

second order system response. Although robotic system is like a non-linear system, you can give 

the specifications of these and then like see how we can match those specifications. 
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And then these are like some of the formulae I will get for this. So, standard formula you can check 

some books and our website also this form would be available. And we can use this to design the 

system to satisfy some of these kind of constraints that are given. And typically this transient 

response time will be specified in terms of like 5 percent or 2 percent of maximum value if you 

want to settle into that how much is time. That is how one can define. 
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So, these are like, in summary, some kind of important concepts. So, what is a feedback is, so not 

summary of this lecture, but I am saying generally these are the important concepts to ponder over 

or like understand before we kind of start applying the, these techniques and tools to actually 



designing control for mechatronic system. So, feedback is important which we have already seen. 

Then you know what is open loop versus closed loop kind of a behavior or system.  

And the other thing is how do you process this desired feedback quantity. So, we have partly seen 

that in terms of like the simple PD control for ODE based system and how do you analyze it and 

things like that to come up with different kind of a control methods or algorithms. And then this is 

important. Like what is if the goal is given, how do you decide what should be control algorithm. 

So, you use all these techniques and like see okay which of these representations you want to use 

or it is applicable for a given scenario and then choose a proper control algorithm to try it out and 

do the analysis and get okay this is satisfying my system response. You go ahead with algorithm. 

Otherwise you like iterate this process. You choose some other kind of control algorithm and then 

go ahead with that. 

And this is another important thing is like you need to look at control input what is needed to 

achieve your goal. So, in mechatronic system typically you will have a limit on this control input. 

So, you need to kind of make sure that we look at this control input and especially if the control 

input is too high then the system response will get modified when the saturation is put on its control 

input.  

So, like that we will look at some of these in little more detail for the especially like when the goal 

is given how do you choose what kind of control algorithm that we will discuss further in the linear 

domain, non-linear domain and take these discussions forward. So, this is what we will conclude 

for this part of the lecture and then we will continue. Thank you.  


