Design of Mechatronic Systems
Professor Prasanna S. Gandhi
Department of Mechanical Engineering
Indian Institute of Technology, Bombay
Lecture 35
Mathematical representations of systems for control

We start with now little bit of a revision and some kind of a consolidation of some of the concepts
and we will see how things are for the mathematical representation of control systems. So, we have
found like we have already done some of the parts, but now we are just consolidating these in some
way. This has been done some part of, this has been done already in the past in your classes. So,

we just recall some of the concepts and move on from there.
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Outline

* Some properties of system
*  Linearity
* Time invariance

= Different ways of representation
» Ordinary differential equation form
* Transfer function form
» State space form
» State form for nonlinear systems

= Solution of systems to get the response
* ODE solution- analytical / numerical
» Transfer function: Using Laplace and inverse
» State space: Using eigenvalues
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We will get going with this kind of outline. We will see some of these properties of the system,
the linearity, time invariance. Then we will see these three major different ways of representation
and fourth one comes for the non-linear systems. For linear systems, you have ordinary differential
equation form, transfer function from and state space. These are the three major forms and then
how do you get solutions in each of these forms. So, these are the concepts that we have already
seen.

The non-linear systems one is what we are dealing probably with new. Some of you might have

done some non-linear systems handling in system control kind of courses. So, we will not get into



too much of a depth, but again here idea is to kind of see from mechatronics application

perspective, how we can deal with these different concepts.
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System Properties

* Linearity (VIMP)
* Principle of superposition

u Y = Power ODE Is one & linear terms
Example; Pendulum system

* Time Invariant

Y1 = Start at t=0 or any other t, from same initial
y conditions = the response Is same

= Constant coef for TI systems
uytu, YitY, = Time dependent coef: time varying system
Example; space vehicle

LTI system: linear time invariant
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So, we begin with the simple properties which you all already know. So, the linearity of a system,
the principle is important first like many systems. This principle of superposition is valid for the
linear systems. Meaning like the input, if a system is given input u, and produces output y; , input
u, and output y, then if these inputs are scaled and added or subtracted correspondingly the outputs

will get scaled and added and subtracted that is a kind of a concept that you have here.

Time invariance is another very important concept. If you start at t = 0 or any other time for the
same initial conditions then your response is same that is what your time invariant principle says.
So, these coefficients typically would be constant for time invariant system and in time varying
systems the coefficient will be functions of time. So, if you see carefully your regulation problem
or tracking problem, regulation problem does not change the system property of time invariance
actually, but tracking problem introduces the time trajectory the 6 esireqd OF Xgesireqa Kind of a

trajectory which is explicit function of time in the system.

So, the moment you start talking about the tracking problem in control, it will have a time varying
system considerations to be given. So, you have other examples also for a time varying system
apart from this tracking problem is space vehicle. Many of the, mass of the space vehicle is

changing with respect to time. Those kind of things we will have to deal with a little bit in a



mathematically different form than usually we handle the time varying system, time invariant

systems.
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Types of Systems

# Linear time invariant: represented by a linear
ODE with constant coefficients

& Linear time variant: represented by a linear
ODE with time-dependent coefficients

# Nonlinear: represented by nonlinear ODEs

& SISO - Single-input single-output
& MIMO - Multi-input multi-output

& LTl - Linear Time Invariant
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There are these kind of different types of systems, | mean, in there are kind of more kind of name
that is given or definition that is given. So, linear time invariant system typically are represented
by linear ODEs, so LTI systems. Then you have time dependent coefficient for a linear time
varying systems. Then you will have these single input single output systems. Again, they are
typically terminology in the linear system domain. And multiple input multiple output kind of
systems MIMO systems, SISO systems, and then you use this LTI term for linear time invariance.
And the non-linear systems are typically represented by non-linear ODEs or the state form of the
representation that we have seen for getting the MATLAB numerical simulation going.
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Control System
Representation

Different ways to represent
Differential equation form: equations governing system dynamics
Transfer function

obtalned by using Laplace transforms (linear systems)
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X=Ax+ Bu

State space form: y=Cx+Du

obtained by reducing diff, Equations by defining appr
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x = f(x,

State form for nonlinear systems
P S Gandhi, gandhi@me.litb,ac.in

So, this representation of the systems in different forms is what is important for development of
control. So, first is like our differential equation form which we already seen in feedback lecture.
You start with a differential equation form and start applying some of the control fundamentals
and analysis of control in that form only.

Then we consider the transfer function form where you have poles and zeros defined for the system
and based on the poles and zeros you kind of look at the open loop kind of a stability of a system
and we look by many, many different ways you look at the closed loop stability of the same system
by considering say, for example, a root locus kind of analysis or bode plot kind of analysis,
frequency domain methods those are all kinds of things which you have part of like these Math
codes in theory that you have studied some of these kind of tools and techniques.

So, we will not get into the details of those tools and techniques. You maybe if you want you can
just little bit kind of a refresh them. We will not get into a lot of depth of those. We see some of
the applications if at all about those techniques, especially in the case of lacing the pole at

appropriate location kind of problems.

Then you have a state space methods. So, state space kind of a form is this =Ax + Bu and y = Cx
+ Du. This form is used typically. So, now, this A, B, C, D matrices are basically as you know all
constant matrices. And now how do you solve system in each of these forms is the next question.

And how do you obtain this form this again you are aware about like you have seen already in the



MATLAB kind of simulation. While doing the simulation we anyway need to get the system

represented in this x = to fx form.

When the system is linear and this part here f of x of u and t will reduce to some matrix A and B
and can be separated out in like x related terms and u related terms. So, that is how like these
different forms of the representation of the same system can be there. And you can choose to kind
of, if you have a linear system, you can choose to work with any of the forms that you wish for
development of control. And we are just going to see now a little bit of a brief or revise the little
bit of a brief of this Laplace domain representations and state space domain representations and
then we will see how do you solve the systems in these different domains and that will conclude
this part of the lecture.
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More on Laplace
Transform
Discussion on the following

& Definition
& Standard tables of transforms

& Some important properties

@ Derivative
@ Final value theorem
& Convolution integral
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So, we use the Laplace transform standard tables of transforms are basic fundamental properties
to get Laplace domain representation done. So, you need to revise this definition of what is the
Laplace transform and how do you kind of take Laplace transform of a given system and things
like that. And some properties of the transforms and some kind of, these are all also properties like

the final value theorem and convolution integral.

This convolution integral is an important concept to be looked at. Although we may not use like
for purpose of application or development of control. We may not use this convolution integral
too much. But if you want to have a solution of Laplace transform system done, you may need that



convolution integral concepts. For a given, any given general input is there you may need. It is not

mandatory, but you may need that.
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Example: spring mass

system
Zero initial conditions

i A * Differential equation form:

A * mi+ci+ke=u(t) Newton's method
M » Transfer function: Input u(t), output x(t)
X(s) ‘

)= - G(s)= —
Gls)=== ®) ms’ +es+k

s
Usually: zero initial conditions
» State space form:

X=Ax+ Bu
y=Cx+ Du

X=X H=X 0
X=X Xy = : (""‘: 'k‘{?):
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So, this is an example of our standard differential equation of spring mass damper system. And
you use a Laplace transform here considering, so for Laplace transform you need to kind of define
what is your input and what is your output. These input output definitions are your own definitions
like you need to define or whatever requirements our system will dictate what is input and what is
output. Then you take Laplace transforms and represent like this is output of the Laplace transform
divided by input of the Laplace transform of this system will give you this kind of a transfer

function.

And usually in transfer function we assume 0 initial conditions. Suppose there the initial conditions
are non-zero then you cannot get this transfer function form. This is very important, because it
comes from the definition of or the property of Laplace transform for a derivative. So, typically
the derivative will give you some kind of, derivative Laplace will give you some kind of a non-
zero initial condition representation in the transform. So, to avoid that we assume initial conditions
to be zero and then like the system has this kind of a nice form of like just Laplace division of two

Laplace and polynomials.



To convert this system into state space form you need in this kind of a form you need to define
states first x = x, x1 = x and x1, x2 = x . So, x¥;= x2 and x2 dot will be equal to based on this

equation 1 uponm times minus ¢x2 minus kx1.
X, =—(—cx, — kx
2 ( 2 1)

So, this is a typical process for getting the state space form. You define the states, because state
space form has only single derivative but of a vector. So, you need to kind of add, introduce more

variables in the system to represent the system into this form.

So, this is how like you represent system in these different forms in Laplace transform form and
then the state space form. And then you can handle this system in either way. There are control
tools and techniques available in each of these domains to think of the system properties and

develop control or propose control algorithms further.
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Example: spring mass

Nonggosiﬁiteimonditions

» Differential equation form:

Ay / h
mx+cx+kx=f(t) Newton' s method

= Transfer function: input u(t), output x(t)

mi + cx+kx= f(t)
ms® X(5) = msx(0) = mx(0) + csX(s) = cx(0) + kX (s) = F(s)

X(s)= ‘_F(s) _ +r_n[.s‘.:cx(O)_Jf,z(())]Jf f"‘(())
ms‘+es+k  oms'res+k  oms'+estk

Gls)= ) = Transfer function representation r#
(

F(s) non-zero initial conditions
X=Ax+Bu
PS?n_dWr)?hEﬂc.mb»c,m » State space form: No problem

So, this is some kind of example of a non-zero initial condition. So, you can see how they show
up in the Laplace transform stuff. So, you can get a solution with non-zero initial conditions no
problem by using Laplace transform that is no problem at all. You can use this kind of a method,
Laplace transform method to get a system solved. But if you see here, you cannot represent it as a
transfer function. So, only when the initial conditions are 0, this part will go to 0 and then you will



have this input can be brought here to kind of define a transfer function. But in state space form

there is no problem of these zero initial conditions. So, that is how things go.
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Finding solutions to
systems represented
in the forms discussed

Discussion on the following

& ODE solving : Basic mathematics
@ Inverse Laplace transforms: Standard tables of transforms
& Using matrix exponentials for state space systems

I
& Nonlinear systems : closed form solution maY (o)

exist so we need to resort to numerical simulati

techniques for dynamics apd Lyapunov theory f

¥
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Then next thing is finding a solution to these different forms which we have discussed. So, ordinary
differential equation solving again | do not realize here the basic mathematics of ODE solving.
You all know that | presume from the previous background. So, if you not like we can just finish
up some of the fundamentals of homogeneous part of the solution and particularly integral and that
those kind of things.

Then for Laplace transform representation you typically like substitute whatever is input that is
given like Laplace transform the input and get the expression for Laplace transform output in the
Laplace domain. And once that expression is available, you apply the inverse Laplace transform
by method of dividing the polynomial into its roots. So, multiplication of multiple roots is a
denominator and you represent these each of the roots separately. And you then use the standard

tables to do the inverse transform.

So, this method you, I am presuming you all know this and you can go ahead and revise if you
want to. Then the exponential for the state space representation of the system x dot is equal to Ax
plus Bu, you typically use the matrix exponentials. So, we will go into a little bit more details about

this method. And then for non-linear systems, typically, some systems you may get a closed form



solution by using this typical ordinary differential equation solving methods. But many systems

may not admit that kind of a closed form solution or it may be too tough to get that.

So, under this scenario, we can we will resort to the numerical simulation that we have seen and
use those simulation techniques for understanding the dynamics and further for developing of,
development of control one can use this Lyapunov theory. So, we will go partly through this
Lyapunov theory and come up with some kind of universal controller for mechanical systems. So,

we have seen the mechanical systems in, with Lagrange formulation.

So, for those kind of systems, rigid body mechanical systems, we can get a very interesting like a
controller which is applicable for all systems of that sort. And that is for the tracking kind of a
problem. So, regulation is very kind of a specific case of the tracking problem and one can kind of
attempt to develop. So, one can have that controller used and all the rigid body control problem
would be solved. So, this big domain of systems we can do the control of these non-linear systems
by using some Lyapunov theory based techniques. So, let us get into a little bit more of this state

space system solution.
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Solving State Space
form
Similar to a first order system solution

x=Ax+Bu

y=Cx+Du
# Homogeneous part L= M x(0)

% SS model

t
' A — A(r=
& Particular solution X, = Je “OBu(t)dr
0

& Complete solution 3 ! \’]
X()=x,+x, X(t)=¢€ X(0)+Jc" [

Pt oneioaciMore i the fcture to follg
So, you use what, you use matrix exponential. See if you see here the homogeneous part, so as we
know for linear systems or any differential equations solution have a homogeneous part and a
particular solution. In this case, the homogeneous part will be given as e4t.x(o). This is zero

initial, this is like an initial condition. So, if these initial conditions are 0 in the state space case,



then this homogeneous part will be 0. But in general it will be like represented in this kind of

fashion.

Now, this is like exponential of a matrix here. So, we will see how to get to that. And then particular
integral or particular solution will have this kind of a form, e to the power A times t minus tau. So,
this is like a convolution integral with the control input of the homogeneous part of the solution.
So, this is e4t~%. Bu, Bu is like your control, I man, the non-homogeneous part or control input
part. So, these are the, this is like will, this, addition of these two will give you this complete

solution of a state space system and you use this finally for the state space system solution.

So, we will use this also for in the case of digital systems. When we talk the sampling of the
systems we may come back to this form a solution. So, this is important for you to kind of know

this form of a solution would exist. And now how do you find e“t.
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o How to determine € ??
» Method 1: Using Laplace transform

At _ r-l -1
e =L {(sI-A)"}
o Method 2: Using Caley-Hamilton theorem

More discussion in lectures to follow
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Solving State Space
form

Similar to a first order system solution
X =Ax+ Bu

y=Cx+Du
% Homogeneous part X, = M x(0)

% SS model

t

Particular solution X, = Je”"”Bu(T)dr
0

' Complete solution A ! .
XO)=x,+x, XO=e"x(O0)+ e
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Example: spring mass

Non§e¥osiﬁiteimonditions

4 » Differential equation form;

Wyl s N g h
‘. mi+ i+ ke = £(1) ewton’ s method

» Transfer function: input u(t), output x(t)

mi + cx+ kx= f(t)
ms’ X(5) = msx(0) = mx(0) + csX () = cx(0) + kX (s) = F(s)

L) )
ms“+es+k  omsHes+k  omsT+es+k

Gls)= )  Transfer function representation r

F(s) non-zero initial conditions
X=Ax+Bu
P Gochirgpnghigeitbacin ® State space form: No problem

So, that is here. So, how to determine this form e4t? The first method is like you use Laplace
transform. So, if you take a Laplace transform of the system which is having like the homogeneous
part here, this control input is zero so x=Ax and then look at this. So, what you need to look at is,

so there are some steps involved here beyond these. So, let us, we will not get into that.

But finally what you get, see this x will give you Si here. So, see although there is no i here, we
have to kind of, when we start subtracting we need to assume that there is i here. And also it will
give you this by the way up derivative property, you will get this kind of initial condition zero

initial condition into the system when you take Laplace transform of x.



So, by simply taking that and doing some kind of a mathematical simplification of homogeneous
part of this solution you can arrive at this formula. So, you get a Laplace transform solved and then
like you need to kind of bring that Laplace on the other side and then you will get this solution.
So, you try it out and then like if you get into any trouble like we will see again in the class if at
all. So, this is a typical kind of a form that you get for doing the, obtaining this e4t. So, you can

use this.

So, if you see that this is particular matrix which is which typically we use for Eigen solutions and
that matrix inverse times that matrix, you need to invert that matrix and get its Laplace inverse.
Then this method 2 is based on Caley-Hamilton theorem. So, this Caley-Hamilton theorem you
need to again devise. It basically allows you to express any higher power of A to the n, A to the
power n which is higher than the dimensions or n and, suppose n is a dimension of a matrix n by
n. So, A to the n and its higher powers are expressible in the form of a polynomial up to A to the

power n minus 1. That is what this theorem says basically.

So, this comes from the fact that every matrix A satisfies its own characteristic equation. So, you
know characteristic equation of a matrix which you will get by AI — A . So, that is a characteristic
equation in terms of A. Now, if you replace by A A then that equation is also satisfied. That is what
the Caley-Hamilton theorem says. And based on that you get this property which I said that A™ or

A™1 or A™+2 everything can be expressed as a polynomial up to A™1,

So, if you see this exponential by the way of series expansion, you have this a lot of like this can
be expressed as a powers of generally like the infinite series, polynomial series with different
powers for n, different powers for A and we use Caley-Hamilton theorem to kind of express this
as a summation of powers up to, the coefficients will be different from what you have seen for the

exponential series expansion.

So, we use the general coefficients and then coefficients are to be determined. How do we
determine coefficient by using like, so that equation whatever you get will also be satisfied by
when you substitute lambda there. So, we use like the property of Caley-Hamilton theorem only
that, this equation will be satisfied by if you are expressing this A equation then it will be satisfied

by the lambda also like the Eigen values also.



So, by using Eigen values in the equation which expresses e4t e to the power At in the form of
say like series or polynomial up to A", one can now get the coefficients, n coefficients which
are determined by substituting n Eigen values in this algebraic equations. And once you get those
coefficients substituting them will give you the value of e4¢. So, you try it out and check it out
actually for some simple system and that will kind of develop more understanding. So, these two

ways are there for solving, getting the e to the power, matrix power.

(Refer Slide Time: 25:03)
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Concept of stability

@ Very important characteristic of the transient
performance of the system.

& An LTI system is stable i the following two
notions of system stability are satisfied:

(i) When the system is excited b( a bounded

input, the output is bounded (BIBO).

(if) In the absence of input, output tends towards
zero (the equilibrium state of the system
irrespective of initial conditions( this iy
called as asymptotic stability).
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Then there are these concepts of stability we need to talk about or understand. So, for any of these
forms you have a definition for concepts of stability. For system which is LTI, this is basic
definition of stability, the one of the notions is, so this is like a fundamental notion. When the
system is excited by a bounded input, the output remains bounded that is one notion of the stability
for, especially for linear domain systems. And other kind of a notion is in the absence of inputs

output tends towards zero or equilibrium state of the system irrespective of any initial conditions.

So, this is like kind of a notion of some kind of asymptotic stability. So, there are many, many
notions or definitions of stability you will find. So, for linear system typically like basic
fundamental definition is bounded input bounded output and from there one can derive the
conditions for stability. So, this concept or notion of stability and then conditions of stability they
are two different kinds of things. You do not say we get the conditions by applying these basic

fundamental mathematical notions of stability.
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More tangible conditions =4

% |f all the roots of the characteristic equation
(poles) have negative real parts, the system is
stable,

& [f any ONE root of the characteristic equation
has a positive real part orif there is a repeated
root on the jw-axis, the system is unstable.

& |f the condition (i) satisfied except for the
presence of one or more non repeated roots on
the jw-axis, the system is marginally stably i
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So, when we apply these notions, for example, for linear system, we can get like these more
tangible conditions. So, the conditions are like roots of characteristic equation or poles, you know
the poles of a system with the Laplace transform representation you can define poles and zeros of

the system. And when the poles have negative real part, the system is stable.

So, if any one even only, even one root of this characteristic equation has positive real part then
the system is unstable. And so system is marginally stable if these roots are under imaginary axis.
So, we will see like a little bit more about how this relationship between the system response and
the location of poles has, so this you need to have some kind of a feel for these relationships that

will be good.
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So, these are the more details about poles and zero definitions which you | presume you already
know. And then pole zero plots and animations you can see some of the websites are given here to

try out. And | have some kind of things plotted here for you. So, let us, we will go through that.

(Refer Slide Time: 27:50)
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Effect of Poles on system
response oy

@ The nature of impulse response g(t) depends on the
poles of the transfer function G(s) which are the roots
of the characteristic equation

& These roots may be both real and complex conjugate
and'may have multiplicity of various orders.

& The nature of responses contributed by all possible
types of poles are shown in the following slides.

& |n each case find whether the system is stab! .~ A
with the help of BIBO condition (i.e check wh
arez; under the absolute-valued impulse curv,
not).
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So, effect of polls is there on the response. So, we will see the cases, different cases of these how
these poles individually or like or two or three poles affect the response of the system.

(Refer Slide Time: 28:13)



Systemwith single real pole
in left half s-plane.

B Impulse response is exponentially decaying
output)
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So, let us see it here. First you have a single real pole which is on the negative part of the real axis.
This real axis is for the Laplace s. S is imaginary number. Its real part is here and like imaginary
part is here. So, when S is equal to minus a, then it can be represented on this complex S plane in
this kind of a form. And with that typically you get the impulse response. So, all these are like

impulse responses which we have plotted here which is bounded or decaying exponentially.

So, the same kind of impulse response now we are going to observe for different, different
locations of poles. So, just to get a feel for like, when the location is here or location is somewhere
else, how the response is typically going to look like. See for example here real axis poles, you

will not have any oscillations of that behavior.
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System with single real pole
inright half s-plane.
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M Impulse response is exponentially growing (un! /
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But the moment you introduce the two poles on the, off the axis, real axis, you will get oscillatory
behavior. Imaginary axis, imaginary part will be there for the S, then you get oscillatory behavior.
So, here now we see that when the pole is shifted to the real side, positive real side, then your

system response exponentially increases.
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Systemwith single real pole

in left half s-plane.

B Impulse response is exponentially decayiﬁg.
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And this is a case where like you have two poles which are having both real parts and imaginary
parts. When the imaginary part is added to the system, of course, you will need to consider, these
poles will always exist in the pair by the way. You cannot have only one kind of pole shown up
here and no pole corresponding that scenario is not there. So, you will get this kind of oscillatory

behavior in this case.

See other thing is like if these poles are further shifted towards left side then these oscillations will
start decreasing. These oscillations will decrease little faster than this. And if the pole is on the real
axis then the exponential decay also will be faster. It is far away in this plane then exponential
decay also will be faster. So, if you see here, this exponential decay is proportional to this e to the
power At times, like, so A is larger you will get like the decay which is faster. So, this decay will

be faster and faster happening if the pole is far away shifted from here to like negative side.

Now, these are very interesting connotation or influence or implication in thinking about multiple
poles. So, if you have multiple poles coming up on the, on this side negative real axis which will
be there for many kind of real life systems, the poles which are far away would contribute lesser
to the response than poles which are close by. So, if the poles are place or they are far away in the
system, one can understand that those far away poles will not have much of influence on a response
of a system. The response because of those will decay faster than response, because of the poles
which are close to the imaginary axis. That is the kind of important understanding we should take

away from these discussions.
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Then pole shifted to the right half like you will see that this response will be kind of continuously

growing with oscillations. So, imaginary part of solution is also there.
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Then poles are on the imaginary axis, you will find that this is sinusoidal kind of oscillations,
harmonic systems basically without damping.
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Then double poles there on the imaginary axis. Amplitude of the oscillations will keep on growing.

So, that is what happens.
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Then you have a single pole at origin, you will get this kind of a straight line behavior in the

response, constant behavior. Impulse response is a constant.
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So, then if you have the double poles then the input again goes unbounded and then this is unstable

system.
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So, now if you add zeros to the system like the response will have some small variations that is
happening.
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So, this is, now we are considering this system with this kind of oscillatory behavior. We have a
zero added. So, without zero and with zero added you see hardly any change in the response, only

this amplitude here changes when the zero added on the left half.
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And then when you add zero in the right half then there is some kind of a small deviation of this
one, but the overall behavior of the system does not change. So, these zeros they do not affect the
stability of a system that we all know that mathematical property, but this is just to kind of see
what is the effect of zero is typically for second order system.
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So, then other important idea that you already have probably studied and maybe we need to recall
here is about the first and second order system standard kind of response. So, every system like

system can be looked at purely from a mathematical perspective without kind of giving | mean the



keeping the physical kind of interpretation apart for a while. So, what if you are able to see the
system from that perspective, then like the basic mathematical principles that are there for the

systems as a standard kind of a system responses they are applicable.

For example, we have seen our motor. So, motor with the speed as an output is a first order system.
And if you know the first order system response behavior, you can get to this directly the some of
the interesting parameters for the, especially the time or the characteristics time for the system
immediately seen and can conclude about like whether that dynamics is important to be considered

or not important to be consider all those kind of things we can we can talk about.

So, we are not then there we are not specifically like dealing with a motor system alone. Now, for
the same kind of concepts would be applicable for, remember, this tank filling system with the
flow input with a tank and then some kind of a drain output. So, that kind of tank filling system
also is a first order system. Then heat transfer systems, they are all first order systems. So, first

order systems you have some kind of characteristics response known.

For example, when you run a fan with a motor, the fan will not go to the speed more than the
maximum speed and then come back to the maximum speed that kind of a oscillatory behavior
would not be observed in the first order system response. So, this is, these are some of the very
important kind of concepts from the understanding of the system from purely mathematical kind
of a perspective and then interpretation in terms of physics that can be done very nicely if you, at

least this behavior of the first and second order standard systems.
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So, this is a first order system impulse response behavior. So, now this is given in terms of these
characteristics time T. And this T comes in transfer function in this kind of a form. So, if you have
some other kind of a terms on the top, you just kind of divided them on the bottom side and like
produce this part, sorry, wait, not on a top side, you need to have Ts + 1 form here first.

So, this, whatever is, if this term is non-zero you divide it by this term and this term. So, you get
this kind of a, some kind of a scalar multiple here. So, that will you multiply this response here.
So, this, otherwise this will be 1 over T value. But if you have some scaling factor here in place of
1, it will be like that scaling factor times 1 over T. That kind of scaling will happen to the response

also. That is the only kind of a difference.

So, this is how one can get, your any kind of a first order system transform into this form and
observe the behavior and see what is this time T. So, you can see that at some one kind of a time
T the response goes down by roughly about 66 percent. So, this is important kind of understanding
can come up with these time constraints. So, characteristic time constraints for different systems
you can see and then see what is the dynamics that is of importance, what is dynamics, what is of

not so much of importance, and then like we can take some call to simplify the system behavior.
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For this same first order system this is step response, sorry, 66, 63.2 percent it is going. So, similar,
I do not know in impulse response also there will be some value. | think it will be similar 63.2
percent. So, this is, these are some of the important things to kind of note that the response you
know already if you know the system like that. You do not need to solve the system. If it is a first

order system with this particular kind of representation then this is a response for that system.

So, this response characteristic we will be able to use in the sense of this characteristics time
constraints and other kind of parameters which are defined for different, different order systems.

So, first order system has this T as a characteristic time constraint.
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If you come to the second order system, so this is you can go through a little bit more detail for

ramp response of the first order system. Some of kind of a response would be shown here.
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For second order system you have many more parameters to define. And those again you will
consider the standard form of this kind omega n square upon s square plus 2 zeta omega n s plus

omega n square.



w2

s?2 + 28w, + w2

This is a standard form of a second order system. So, if your system is not in this form, you
basically like do some division and multiplication whatever you want to do and get it into this
form, then you may find some scaling factor may exist on the top that can be scaling the response.
Instead of 1 this value will be that scaling factor.

And you have these different cases coming up here. So, this is typically for an under damped
system you will get this kind of response. And then there are formulae directly for maximum
overshoot and this rise time, so 0.5 or 50 percent of the maximum value that it is reaching in the

rise time. So, these are some of the specifications that are important from control perspective.

One may say okay | want to get my system settled in the, in say the settling time is specified to be
say five seconds or two seconds or whatever or | do not want any overshoot for my system. For
example, robotic systems we do not allow any overshoot typically. The system should like you
can see that okay your arm should go finally and stay there. It is very like annoying to see that arm
is going like this and then settling to the prime position and again going like this and settling to

the prime position.

So, that is, so that to avoid that like you will have to have the specifications given in terms of the
second order system response. Although robotic system is like a non-linear system, you can give
the specifications of these and then like see how we can match those specifications.
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And then these are like some of the formulae I will get for this. So, standard formula you can check
some books and our website also this form would be available. And we can use this to design the
system to satisfy some of these kind of constraints that are given. And typically this transient
response time will be specified in terms of like 5 percent or 2 percent of maximum value if you

want to settle into that how much is time. That is how one can define.
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So, these are like, in summary, some kind of important concepts. So, what is a feedback is, so not
summary of this lecture, but I am saying generally these are the important concepts to ponder over
or like understand before we kind of start applying the, these techniques and tools to actually



designing control for mechatronic system. So, feedback is important which we have already seen.

Then you know what is open loop versus closed loop kind of a behavior or system.

And the other thing is how do you process this desired feedback quantity. So, we have partly seen
that in terms of like the simple PD control for ODE based system and how do you analyze it and
things like that to come up with different kind of a control methods or algorithms. And then this is

important. Like what is if the goal is given, how do you decide what should be control algorithm.

So, you use all these techniques and like see okay which of these representations you want to use
or it is applicable for a given scenario and then choose a proper control algorithm to try it out and
do the analysis and get okay this is satisfying my system response. You go ahead with algorithm.
Otherwise you like iterate this process. You choose some other kind of control algorithm and then

go ahead with that.

And this is another important thing is like you need to look at control input what is needed to
achieve your goal. So, in mechatronic system typically you will have a limit on this control input.
So, you need to kind of make sure that we look at this control input and especially if the control
input is too high then the system response will get modified when the saturation is put on its control

input.

So, like that we will look at some of these in little more detail for the especially like when the goal
is given how do you choose what kind of control algorithm that we will discuss further in the linear
domain, non-linear domain and take these discussions forward. So, this is what we will conclude

for this part of the lecture and then we will continue. Thank you.



