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So, today's class we are going to look at simulation and animation of dynamics using MATLAB 

for mainly ordinary differential equations. How do you simulate ordinary differential equations 

and do their animation? Very interesting way, we can do very nice stuff using MATLAB 

function called ode45. 
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So, before going to, through these like, so we need some representation of a system for the 

simulation. But I would say before going through this part, you may look at actually the 

MATLAB help on ode- function. So, for that maybe I will show you first what it produces and 

then like maybe we can come back.  

So, we will go to this window and look at, see, this is, these are command I have showed here, 

help ode45. And it gives all these kind of non-stiff differential equation and so you just kind of 

read through all these things and then maybe we can come back and then whatever I am talking 

here will make much better sense to you. 

So, let us come back here. So, you can read through this help. You can pause and read through 

or you can have your own MATLAB software and go through. So, let us come back now to the 

simulation here or PPT here. Now, so for this you can see now that this MATLAB ode function 



will be able to solve the Ordinary differential equations which are represented in the, in this 

specific form. This form is like this, where this x here is a vector function and it is only first 

derivative is here is equal to f of x, t and f is some general non-linear function of x and t. 

So, and again this is a function of x as a state coming up here. So, whatever state it is a function 

of it is giving the derivative of the state up here that is what is a meaning of this equation. And 

this equation is what we need to convert all our systems to this form of equations. And we will 

see how we do that by an example. So, if you have a system of the kind simple spring mass 

damper system so 𝑚𝑥̈ 𝑐𝑥̇ and kx are three terms is equal to 0. So, this is not in this form, 

because this has two derivatives up here. So, we need to kind of convert to this form, we need 

to do something. 

So, what do we do? Think about this. What can be done to get into this form? Pause for a while 

here and see what comes to your mind and then we can see the next. What we can do is we 

introduce this additional states into the system. Since this is double derivative here and I want 

only single derivative of here, but many different kinds of variables can be possible.  

So, I define these additional variables here x1 and x2 are the two states. They are defined such 

that when x1 is equal to x and x2 is equal to x dot, so when I take derivative x1 dot it will be 

equal to 𝑥 ̇  here and 𝑥̇2 will be equal to 𝑥̈. And that is how I can get this state derivative here. 

Now, I want to represent the state derivative in the, in this form here. So, how do I represent 

that? When I take  𝑥 ̇ , you can see that 𝑥̇1 is equal to 𝑥̇. Now, I cannot use x variable, because I 

have to convert, I have already transform this system into these two additional variables. So, I 

will use now 𝑥̇ I know is to be defined as, is defined as x2. So, 𝑥̇1 is equal to x2 will form my 

first equation.  

And then 𝑥̇2 is equal to again this expression comes from this equation. And here again, I 

cannot use x, I have to substitute them with either x1 or x2 which is done here. So, this is how I 

can get this function defined. So, this is my f1 here in this equation, and this is my f2 in this 

equation and this function is now ready for coding or for doing the ode solver. 
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So, now, we will see these for, applied for the spring pendulum kind of a system example. So, 

again the ordinary differential equations we simulate which were, which will come for the 

spring pendulum system, I will show you what these equations are in a minute. But just to give 

settings like this is a pendulum is considered as rigid body and it has its own inertia of rotation 

about the z-axis and radius of gyration or mass moment of inertia will be coming from the 

radius of gyration is given as r. So, mass moment of inertia is mr2 for this bob around CG, axis 

passing through CG and z-axis, perpendicular to this page. 

Then the spring is like considered as a stiffness, non-linear stiffness. Why, because typically 

like for the actual example or actual practical case, this can be a rubber like a string and rubber 

as it stretches, its stiffness starts increasing. So, it has some kind of a cubic non-linearity which 

will be increasing the stiffness as the stretching happens. So, that will, that is also incorporated 

in the equations. So, considering this non-linear spring and important other thing is this L is 

unstretched length of this spring. This unstretched length is L. And then beyond that the stretch 

x is deformation that happens. 

With this kind of setting these are the equations of the system that are obtained. So, now you 

can see there are two equations which are second order equation, 𝑚𝑥̈, equation in the direction 

of this L. It moves like up and down like that here. And then like there is a equation in the 

direction of 𝜃. So, 𝜃̈ direction, 𝜃 is another kind of degree of freedom. So, 𝜃 is a degree of 

freedom, x is another degree of freedom and you have this two degrees of freedom system with 

the two differential equations governing that dynamics. 
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Now, the question is how do we convert them into our form, which, will you remember the 

form, is 𝑥̇ is equal to f of x and t. So, again now we need to define like new vector of four 

variables. So, what is the variable of your choice? Here since we have these two degrees of 

freedom x and 𝜃, naturally we use them in the, their derivatives in the, in defining this vector. 

In the similar way as we did for the simplest pendulum system. 

So, 𝜃̇ we say as y2 variable, 𝜃 as y1 variable, then y3 is x, y4 is 𝑥̇. And now if we see the derivative 

of this state, it is having like this 𝑦̇1, 𝑦̇2, 𝑦̇3, 𝑦̇4. Now, 𝑦̇1by definition is 𝜃̇ here and 𝜃̇ by 

definition is y2, so this becomes y2. Like that y2 dot by definition becomes 𝜃̈2, 𝜃̈ and 𝑦̇3 becomes 

y4 and 𝑦̇4becomes 𝑥̈. Now, this 𝜃̈ and 𝑥̈ can be obtained from these previous equations of 



dynamics that you saw here, these equations of dynamics. This will give you the 𝑥̈ and this 

equation will give you 𝜃̈.  

So, how do you obtain them by using moving all these terms on the other side and then dividing 

that by m, you will get 𝑥̈. Moving all these terms on the other side and dividing them by this 

term, you get 𝜃̈. And then we substitute them here and our function f1, f2, f3, f4 is ready for 

simulation in MATLAB. Now, how do we code them? So, this is first function, like we have 

to code this function. And how to use this function in the ode45 command is what we will see 

actually on the, in the program. 
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So, player for, so now how do we develop this code. So, I would suggest like you do not see 

this code first. You just go ahead and like write your own way this code. Assuming that this 

state is given, this vector is given, so if the function f you have to write for which the arguments 

are t and y. So, you are given y as a vector quantity. That is we have to keep in mind that it is 

coming in argument as a vector quantity and then you know this y1, y2, y3, y4 and from this you 

need to produce like their derivatives 𝑦̇1, 𝑦̇2, 𝑦̇3, 𝑦̇4 by using this part and these equations as 

we explained. 

So, this is how you will write a code. And once you write a code then so pause it for now here, 

write your own code and then like when you come back then you will find like your mistakes 

or your understanding is missing somewhere that will open up like that becomes like a firm 

understanding within you. So, do not go to the next part unless you have written the code 

yourself. 

Now, we will go to the next slide and see this code. So, here now I am defining all these terms 

in some kind of fashion, whatever some kind of a physical quantities and then writing, like so 

I am assuming like that for this function y is coming as an argument in vector form. So, y1, y2, 

y3, y4 will be my four states, y of 1, y of 2, y of 3 and y of 4 like that. And then so these, how 

it is used here. And then I need to produce a derivative. 

So, dy, derivatives of these states, so dy1 is equal to y2, dy3 is equal to y4 and dy2 is, as I explained 

from this formula now wherever there is a 𝜃 you substitute corresponding y and then you can 

kind of get your equation coded. So, this is the equation for 𝜃 and this is the 𝜃̈ and this is the 

equation for 𝑥̈. This is how like you write this code and this function ends here. Once this 

function is written now that is see how we can go ahead and simulate it. 

So, let us switch back to the MATLAB window. Now, here we have this function written in 

MATLAB. I will show you already different function here. This code gives you the function 

written as we have seen the slide. And now you can see all these arguments and functions 

written properly and you can write whatever comments that you want to write. How to use this 

function? 

Now, once you write this function then let us save it. You use it in the ode command like this. 

So, for ode command, you need to define these initial conditions. Initial condition in this case 

are taken 𝜃 is equal to minus 𝜋 by 2 and x, some deformation is given to the x to begin with 



some spring is deformed by some amount and then time is defined for which you want to 

produce this output. 

And then you can see that this time and initial conditions are going as other arguments to this 

ode45 function along with the function that you have written. So, this will output the state 

evolution y in the same order, y is in the same order as you have coded this function. It will be 

output here and then time will come as a…  

So, this is like a time trajectory of all the states that is coming up here. And then you have the 

animation creation up here. So, you define, create some figure and in that figure you draw these 

lines and this bob of the pendulum is drawn as a simple point or a circle with the size of the 

circle big enough for us to visualize it nicely. 

So, that is how like these two, these things are plotted and you plot it, delete the plot and again 

replot it for the next update of the time like that you can do in the loop and create this animation. 

There are many different other ways also of creating animation. You may find some more links 

on the YouTube or the MATLAB website and you can create different, different kind of ways 

animations can be created. So, if you run this file now, you will find it produces this nice 

animation of the pendulum. 

So, you can see that this pendulum is oscillating and at the same time it is having the vertical 

or the radial direction stretching and unstretching happening for the spring. So, of course, here 

we are not modeling it as a string. So, for example, like if the compressive force becomes too 

high like string cannot get compressed, but spring can get compressed.  

So, if it is a rubber band like a string then it will just simply not get compressed further, but we 

are not like capturing that part here. So, if the spring force is always positive like there is some 

stretching in the spring always there then you will have no issue like this will be realistic kind 

of a simulation happening in the system.  

Then I would like to kind of give you a little bit more attention to this other, I will close this 

window, part of the files. This latex.fig is a file that is written for setting the global variables 

of figure that can be controlled in a nice way. So, as to create a figures which are good for the 

latex document or their manuscript or paper that you write. So, this file will be of immense 

help if you run this file, then and then use figure command in MATLAB to plot any or plot 

command in MATLAB to plot any figures. Then all the settings will be done nicely for say 

latex kind of a document. 



And you have other file where PPT underscore pip kind of name is given. This file when you 

run and plot your any of the figures then this will create a setting which is good for PowerPoint 

presentations. So, you may use these files in a way to, for your future activities as well. This is 

very interesting nice way to kind of create environments for you and you do not have to worry 

about like somebody pointing that where pics are looking so small, I cannot see them and those 

kind of things will not come into picture when you start presenting with this using each of these 

files. So, we will come back to our presentation now here. 
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So, one more case we need to discuss here before we close is the case of systems where you 

have the couple dynamics coming up here. A couple in the sense that it has a double derivatives 

couple. So, you have this d11 𝑞1̈ and d12 𝑞2̈ coming in the same equation. So, far we had systems 

where like only one double derivative was there in one equation. There are now these two 

different quantities double derivatives are coming. How do you handle such case? So, how do 

you basically now represent this system in the form that is required for the ode solver to have? 

Like you remember that form, vector 𝑥̇ is equal to f of x and t. So, we want to kind of get the 

system in that form. Other quantities will not bother us because they are all coming as 𝑞̇ only. 

There is no any double dot terms anymore here. So, how do you handle such case, how do you 

do, what do you do, how do you transform. Think about that. And then you go to the next slide. 

Pause here and then go to the next slide. 
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Now, here what we see, what we do here is basically convert the system into matrix form. This 

is like a matrix vector form. This is a matrix here. This is a matrix here, with g is a vector of 

this 𝜕v by 𝜕q1 and 𝜕v by 𝜕q2. So, that g forms a vector, 𝜏 forms a vector of 𝜏1 and 𝜏2. So, what 

we do here is to get 𝑞̈ as isolated like the vector here, 𝑞̈ consists of 𝑞1̈ and 𝑞2̈. So, this is D 

matrix that is multiplied here. So, we need to transfer these terms on the other side as we did 

for other cases also, but now instead of dividing we take a inverse of D matrix here. 

D(q), this is typically a function of variables of the system. Not dot variables like 𝑞̇ here, only 

q. So, this D(q) inverse multiplied with your transfer terms here, these are now forming a vector 

here. So, that will give us 𝑞̈. And once we obtain 𝑞̈, our job is easy for us to kind of code this 

for the ode solver. So, you go through, like you can solve such examples also then very easily. 

With these we can solve n degrees of freedom robotic manipulator equations and simulate them 

in MATLAB for whatever purposes, that makes and control purposes that you want. 

This is how like this leaves you pathway for like multiple degrees of freedom system simulation 

by using ode45 solver. There are like some more issues that may come up regarding similarities 

or some cases where your slopes are very high or your derivatives are becoming very high, 

those cases we need to handle separately to make sure that there are some kind of other solvers 

called step solvers that can be used. So, these are like, that is a kind of a future pathway for us 

to get to.  

For now, you can like look at many different parameters that ode function gives you to play 

around with and change to look at setting, different settings of solving. So, you can play around 



with that. That is all given in the MATLAB help. We will not get into that here. But that is a 

kind of a forward path to look for. 
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So, you can also see the demo ode45 in MATLAB and like see, play around with different 

things in the ode function to get a good grasp of like what you want to do. So, we have already 

seen the animation code. So, we will stop here for now and you enjoy coding with this 

background, many different systems and assignments and things like that. For your future 

research also this may be of quite help. So, thank you and bye for now. We will stop here. 


