Design of Mechatronic Systems
Professor Prasanna S. Gandhi
Department of Mechanical Engineering
Indian Institute of Technology, Bombay
Lecture No 21
Interfacing Actuator using PMW in Tiva Microcontroller
So, next class, today's class, we will look at this microcontroller interfacing, specifically, the

PWM interface. So, last class we have already seen some kind of a basic philosophies of
these interfacing. Now, we will go a little bit more specific into the aspects of somewhat
hardware kind of aspects, at more like a philosophical level and not really talking of all the

details of the things, but getting the concept like how do we think through like the way things

can be implemented in microcontroller. That is a kind of idea that we will slowly evolve.

2

(Refer Slide Time: 01:18)

PWM: Central idea

@ Pulse Width Modulation: Power supply regulated by
varying the on-time of a digital signal

On time comresponds to
Time DUTY typically given in %

g =

Average voltage
‘seen’ by the motor

P S Gandhl, gandhi@me.litb.ac.in

So, let’s begin with that. So, as you all know this PWM Central Idea is pulse width
modulation just to flash this thing to make sure like you are recollecting your memory that
PWM has this kind of a feature. It has some kind of a time period and some duty, which is
one can change that in operation. So, this is how like, you see basic PWM signal. Now, we
want to generate such signal. And what is a way one can think off in microcontroller to
generate such kind of signals.

(Refer Slide Time: 01:54)

Pulse Width Modulation

" Defined by two parameters: Frequency, Duty (changing)

& Signalis shown in the figure below for: various values of
duty cycle

& Applications: switching power supplies, motor control,
servo positioning and lighting control.

0% Duty Cycle

é’;%. Dury% Cycle ;)

= I .

50% Duty Cycle 7 Voltage
SRR R

75% D\ltY Cycle

3 5 [R5 5 A B

100% Duty Cycle

So, there are mainly two parameters here for PWM. One is frequency, and other is a Duty.
So, the frequency parameter usually is fixed parameter, and the duty is what changes
continuously during operation. Like you want more power to be delivered or depending upon
what your control input is or control computation is then you change this PWM duty cycle,

and you can see here signals for different, different duty cycles, how they look like.

So, this is a 0 level here and this is 1 level here and 75 percent of the time this would like on
time is 75 percent of the total cycle time. And then that is how you drive some kind of

average voltage into the application. So, that is what would happen.
(Refer Slide Time: 02:49)
Why PWM?: Uses and
Advantages

& Voltage regulation in actuators

& No effect of low amplitude noise (robustness)

& Ease of digital control implementation: just by
changing the duty cycle of PWM control
power input can be changed

& Q: How canit be generated by
microcontroller?

NPTEL P S Gandhi, gandhi@me.litb.ac.in

Now, we already have talked about these. Why we need PWM and all these details to make
their advantages, because it is a digital signal and there are no noise effect that would come.
We are just reiterating some of these things that we have already seen. Now, the question is
how this PWM can be generated by a microcontroller?

(Refer Slide Time: 03:12)

PWM interface

Use: Motor power control in a digital way, Clock
generation for external application, etc.

Typically will have its own user configurable clock to
setup clock frequency and a cotnter that can be
loaded by user specified value to downcount and set
the PWM frequency.

Another counter or some other mechanism for setting
up PWM duty.

More details we will look at with reference to|
board

PRASANNA § GANDHI,
gandhi®me,Iith,ac.In

So, we start off with a microcontroller clock. So, PWM signal is some kind of a periodic
signal. So, clock is the best thing to begin with. So, the clock’s frequency is if you scale it
down you will get a PWM signal or you get a some kind of a frequency controlled signal of a
clock or frequency controlled clock or clock at PWM frequency, like that. But is that

sufficient?

(Refer Slide Time: 03:52)

Philosophy of Generating
R
& PWM

& System clock signal is used to get the clock for PWM by
scaling (shown below for:scaling factor 4)

Sys Clk

PWMCI

& How can we get PWM signal using PWM clock?

& (Canwe scale PWM clock further? What duty PWAA wawill
produce then?

& How can we get general duty value we need?

So, say for example, you start off with the system clock and scale it down. See, here you can
see that this is a system clock coming, and | have here 4 kind of a clock pulses covered in one
cycle. So, | just put some kind of a scaling factor of 4 and I get this PWM clock signal. So,
this is one of the ways to kind of produce the clocks or produce some signals, which are at a
lesser frequency than the clock frequency, you use some kind of a scaling factor. Now how

that happens at hardware and all we are not getting into the details.

Now, the question is, once you have thissome kind of a clock signal for PWM, then how do
you get a duty cycle for that? So, that is what is can you think about like just a minute we will
pause here and think about it and then like you proceed. You can pause here and think about.
Suppose you have this PWM clock signal, which is running at a frequency which is some

kind of a clock frequency for PWM interface. This is not really PWM frequency.

So, we want to kind of get two things. One is a PWM frequency out of this PWM clock so
PWM clock will typically be running at very high kind of a frequency. So, system clock for
example in TIVA is 80 megahertz, so, PWM clock will be scaled down maybe by a factor of
4 or 6 or 32 but some factor. So, that will generate PWM clock. Now, using that clock, we
want to kind of get our PWM frequency and somehow that duty cycle. Can you think of a
way to do that?

So, see, because if we just scale this clock further down, and get PWM frequency clock
signal that will have a fixed duty, that will have 50 % like a duty cycle. So, scaling may not
be a way, directly. Because scaling will kind of give you only a 50 % duty cycle value. So, let

us proceed with and see, now, what is that we can do?

(Refer Slide Time: 06:19)

Philosophy of Generating (%
)
» PWM

& PWMclockis further scaled to get PWM frequency using
countdown of:a counter.and a part is used for PWM duty

Counter Loaded with = 10 Duty count = 3

ok (AR NN ONNNAN

PWM I '
30 % duty cyclé Resolution 10 %

R —

& Signal can be left or right justified, some contr@
provided. Counter can be only down count or d
count and some such options could be there

. . . :%\%
Programming PWMin Tiva %=

& Two methods (in general for all interfaces)

& 1, Using directly registers to be set
& Control registers
& Working registers

& 2. Using API or library function already defined
(also defined in ROM of Tiva for fast execution)

& We will focus on 2" method

PRASANNA § GANDHI gandhi@me,litb.ac.in

So, here, you can see that, this is our PWM clock signal. So, this is already scaled kind of a
clock signal. So, I have drawn this scale in a different kind of manner here. So, our clock
signal was looking like this, but now, our PWM clock is looking like this. So, as we said time

scaling is done here to kind of illustrate the aspect.

So, now, you start off here with a counter, which is a counting pulses. It counts 1, 2, 3 like
that it counts, and it counts with say 10 pulses, and then you do something. You say that is
your period for PWM. So, the okay signal clock period will be something like 10 counts of
the clock here. And then, further if you say my duty will be out of these 10 pulses, like duty
will be 3 pulses, so then | can get like a 30 % duty cycle kind of a value. So, | need these two

numbers once we have a PWM clock.

One is like the value which will be corresponding. So, this is somewhat kind of a scaling
factor you can say. | count these many numbers of cycles to generate one PWM cycle. So, 10
PWM clock cycles will give one PWM cycle. And out of that 3 counts or 3 cycles will
correspond to a particular duty.

So, so here now, since | am using this number 10 here my resolution of PWM. Can you think
like what is the resolution that is happening here? The resolution here you can see that, | can
have only one clock cycle as a duty, as a minimum count for the duty. And it will correspond
to out of 10, 1 that means it is like a 10 % resolution. So, | cannot say, | want PWM signal of
5 % duty cycle. No, | cannot produce with this particular kind of a thing. Then what I will
need to do is, | will need to kind of increase this factor.

So, this is a very important understanding of basics that look, if you want higher resolution
what you are supposed to do. So, if you want, given some kind of a scenario and we say that,
in this scenario, | want the best possible resolution. What should | do? So, | need to kind of

then have this PWM clock’s frequency much higher value.

So, we see, if it is higher value, then | will have a lot of numbers because PWM, frequency of
PWM is fixed even by the application. So, to have more cycles in the same kind of a period
of the PWM frequency | will need a clock, PWM clock frequency to be higher. So, like that

one can start thinking. So, this is basic kind of idea.

Then you can have additional controls that you have left or right justified signals or the signal
is delayed by some with respect to some other signals something like that, then counter can
be only counting down or counting up or all those kind of things can be possible. So, this is
counter-loaded with 10. Now these 10 can be counted up or content down. And then depend
upon that something will happen, but basic concepts is basically these for getting the PWM

signal produced in the system.

(Refer Slide Time: 09:53)

Programming PWMin Tiva

& Two methods (in general for all interfaces)

& 1, Using directly registers to be set
& Control registers
& Working registers

& 2. Using API or library function already defined
(also defined in ROM of Tiva for fast execution)

& We will focus on 2" method

NPTEL PRASANNA § GANDHI gandhi@me.itb.ac.n

So, for programming, if you go into now a little bit more programming details like if there are
two methods. So, again, we have talked about this philosophically in general. But with
respect to Tiva also you can have direct programming by control registers. This XCP 100
code, we write based on like the registers. So, you fill in these registers with some values, and

then like something will get executed.

So, there are these two types of registers that we have seen, control registers and working
registers. For each interface there will be some control registers, which you need to be
initiated for configuration. They are just initiated once, and then working registers are maybe
getting continuously updated by, say for example, in the PWM case, PWM frequency is
fixed. So, it is a part of that control register setting. And then working register is PWM duty,
which is changing as per the control competition, every sampling instance. So, that will be

like a working register.

And then second philosophy of method of having the programming done is using API or
library functions that are already defined or already given by this Tiva ware. So, you have
seen that Tiva ware library has a lot of these functions written. The header files some
variables are defined and then some functions addition as functionalities can be directly used.
So, there is a manual which gives you the details of how these functions are and which is

already posted in Moodle.

So, some of these functions are also defined in the ROM of a Tiva for execution, which is
going to be very fast. Because then the compiler will not have to face these functions from

your hard disk and then compile and dump this entire compilation to Tiva memory. You will

save some memory if these functions on the ROM are directly used, because they are already

there in the Read-Only Memory part of the Tiva board.

So, if you have started using those functions, then, you do not need to download these
functions again during compilation and put them onto the Tiva board or a memory of the
microcontroller. So we will focus on the 2nd method, but we will get into some kind of
insights into how this module particularly in Tiva is configured or working. So, you can
understand, we will not get into control and working registers in detail, but just get a just kind

of a feel for how this is till it done in Tiva.

(Refer Slide Time: 12:55)

Programming PWMin Tiva

& TM4C123 microcontroller contains two PWM modules: PWM o0 and PWM 1

% Eachmodule has 4 generators generating 2 independent PWM signals
each, (Thus total 16 PWM signals can be generated, However we do not
have all pinouts accessible on TIVA launchpad board)

Each PWM Generator has following features:

One fault condition handling input to prevent damage to the motor
being controlled.

One 16-bit counter

Two PWM comparators

PWM signal generator : Generates PWM signal based on timer and
PWM comparator results]

Dead-band generator: Generates 2 PWM signals with pros
dead-band delays suitable for driving half H-bridge circuf

NPTEL PRASANNA § GANDHI gandhi@me.ith.ac.n 9

So, Tiva, like if you see the datasheet you will see that it has two PWM modules, PWM 0 and
PWM 1, correspondingly there will be pins which are named, and each module will have 4
generators, generating 2 independent PWM signals. So, how many total PWM signals will be
there? 16 PWM signals can be generated there. So, 2 modules, 4 generators and each
generator generate 2 signals. So, 8 signals is what will be generated by one module and you
have two modules each module has 4 generators. So, you have a 16 PWM signals that can be

generated.

And, although, 1 must caution you that all 16 may not be available for the Tiva launchpad that
we have been working with. Because only some few signals will be available for
programming different interfaces, because otherwise there will be too many pinouts that have
to be done on the board and that will be too cumbersome for the board.

So, it has like some kind of a bare minimum base minimum functionalities that they have
provided out. Although the chip that is there existing on the board will have all this capacity,
but the hardware pins that are gotten out from the board will not be all the pins. There will be
some selected pins have been taken out. So, then, each PWM generator has all these kind of

features. So, you can read through these and see, if these things can make sense.

(Refer Slide Time: 14:31)

[] PowerPoint Side Show « (11, mue PWMTive]

Programming PWMiin Tiva %=
% Each PWM Generator Block diag

& Think for example what you can do and cannot do? With rezf
typical PWM generator

vu/u.muxf.)r./wmu gandhine, tb.ac.in 10

i)

Programming PWMin Tiva ﬁ;

TM4C123 microcontroller contains two PWM modules: PWM o and PWM 1

Each module has 4 generators generating 2 independent PWM signals
each, (Thus total 16 PWM signals can be generated, However we do not
have all pinouts accessible on TIVA launchpad board)

Each PWM Generator has following features:

One fault condition handling input to prevent damage to the motor
being controlled.

One 16-bit counter

Two PWM comparators

PWM signal generator : Generates PWM signal based on timer and
PWM comparator results

Dead-band generator: Generates 2 PWM signals with prog
dead-band delays suitable for driving half H-bridge circuf

NPTEL PRASANNA § GANDHI gandhi@me.ith.ac.in 9

So, how do you kind of make sense of these things? So, to make sense of like some of these
write-up or functionality details, you need to refer to the block diagram. This is a block
diagram of this. You see this PWM generator block. So, this is a block diagram for this PWM
generator block and in that there are these different- different kinds of components here.

There is a timer, there is a comparator, then there is something called signal generator, and

then dead band generator and then you will get your PWM signals out for these particular

generator block.

So, each module, you remember, has 4 such generator blocks. We are just looking at one
generator block, which will generate these two PWM signals A and B. And input, it will take
as a PWM clock. So, by seeing this diagram you should think what you can do, what you
cannot do. Can you think about that, pause for a moment and think about what you can do,

and what you cannot do?

So, one can see that the PWM clock is same for one particular PWM generator block or for
that matter this clock may be going in other blocks also in the same way. So, you cannot have
independent clock for these PWM A and B signals. Because the PWM clock will be same for
both the signals or for that matter all the generators. So, like that, one can start kind of like

concluding some things.

Then there is some kind of a timer, which will do some further kind of a timing for this clock
and then there will be comparator, so we will see how these things work. So, the signals will
go typically, like, this is a flow of the signals then you need to start with a timer and then

timer.

These signals will go to comparator or some timer signals will also go to the signal generator.
And then from comparator you have these two outputs coming compare A compare B and
they use some kind of a timing part here also and produce this PWM A and PWM B signals
and then those signals are further processed by these dead band generator block and here. So,
this is a kind of a signal flow is what one can understand. So, like that you can think about,
and you can have your own conclusions drawn. Some of these conclusions | have written in

the next slide.

(Refer Slide Time: 17:07)

(] PoverPoint Side Show « (11.muc PWMTive]

Programming PWMin Tiva £

% Each PWM Generator Block diagram=» What can be done cannot be
done?

% Forexample:

% For.each generatorthere Is only1 PWM clock so for two signals coming out
of same generator the PWM clock frequency Is same

% PWM signals however can have Independent frequency If the count is
specific to a channel

& Think for example what you can do and cannot do? With red
typical PWM generator |

PRASANNA § GANDHI gandhi@me, ith.ac.in

| need to get this pointer again here. So, you can read through the some of these conclusions.
So, PWM signals can have independent frequency or PWM A and B signals that are coming
they would have, if the count is specific to the channel. So, you need to check whether there
is count for the specific channel is same or same count is given for both channels something
like that if you check that data, and you will be able to see PWM signal frequencies can be

changed by changing the count for each specific channel.

(Refer Slide Time: 17:54)

o PoweiPoint Side Show » (11, mue PWMTival

Functional Description PWM

® PWM Clock: Can use system clock itself or apply pre-divisor to system clock
to obtain PWM clock, Clock source is selected by programming Run-Mode
Clock Configuration (RCC) register.

PWM Timer: PWM Timer has two modes; Count-Down & Count-Up/down

& In count-down mode, timer counts from load value(predefined) to zero and Immediately
goes to load value and continues the cycle, Used for Left or Right aligned PWM signals,

& In count-up/down mode, timer counts from load value to zero, then zero to load value and
continues the cycle, Used for center-aligned PWM signals

Timer has 3 output signals

1, Direction Signal: 1 when counting up an o when counting down

2. Load Signalh Becomes 1(for single clock cycle perlod) when timer Is at load value
3, Zero Signal: Becomes o (for single clock cycle period) when timer s at zero value

PWM Comparators: Each PWM generator produces 2 PWM comparator
signals i T

& Used to monitor counter value
& When either of the comparators matches with counter, It produces high p:
single clock cycle period)
PRASANNA § GANDHI gandhi@me.ith.ac.in 12 What this means

L~

\

|
|
|
|
|

‘Programming PWM in Tiva

Each PWM Generator Block diagram=»

& Think for example what you can do and cannot do? With re ‘
typical PWM generator

I'IIAV\NHX,P\’MDHI gandhi@ie,lit.ac.in 10

So, these are some functional descriptions that will be given. So, these are directly taken from
their datasheet, and you can see whether these things make sense to you. You can read
through. So, this is just to kind of give you some feel of the typical interspaces will have this
kind of description, and how to make sense of this description to see how things are working

inside internally.

Say, for example, if you are directly focused on the API's and functions you may or may not
need to know so many details. You will be able to kind of program even without knowing
these details. But we need to know some of these to do little finer programming. So, once you
have some things going you want little more finish control signals that are generated. You

need to understand these and then see what is possible, what is not possible.

So, if you understand this. For example, there is, these modes of timer, which has countdown
timing a timer mode or count up and down timer mode. So, in count down mode, it will only
count down and then at the end of the count or wherever this count becomes 0, it will again

the load the same value and again start counting from that to 0.

So, this kind of things is one kind of a mode of operation for timer. Other mode, we will start
off with counting up and then again in count down. Again, count up from 0 and then again
count down, like that it will start. So, how do you, how do they use this further, then it will

have some more kind of a details that are given.

Then there is a direction signal for counting up and down. So, this signal will be useful
typically when we are doing count up and down mode, so that you know, which is a direction
getting going ahead with so that signal will be coming out of the block.

So, if you see there will be some direction signal coming out to the counter block somewhere.
See, this is a direction signal from the timer. So, like that you can look at the diagrams with
respect to the description that is given. So, let us now get into a little bit more kind of a
meaning of some of these things in terms of how things happen inside the timer.

So, this is like functional description for different-different blocks now, we are going through
details. And first is a timer block, and timer block has these two modes of operation. And
then there is a comparator block, which will keep, like, whenever this count happens to be the
value which is given in the comparator block then it will produce some kind of a pulse that is
what a function of comparator block is. This will be more, clear, when we see the actually the
figure of this.

(Refer Slide Time: 21:03)

Programming PWM in Tiva

% Each PWM Generator Block diagram=

Think about the flow of signals timer output goes through ¢

block and so on..
INA § GANDHI gandhi@me,iitb ac.in 13

So, we are looking at these two blocks the timer and comparator, they are typically working
in sync with each other. The timer keeps on like giving the count, which is kept on reducing
as for every PWM clock cycle. So, PWM clock cycle takes and the counter reduces by1. Next
tick the counter reduces it by another value. Like that, it keeps on decreasing successively the

value of the count.

And when the count becomes equal to say, this PWM compare A signal then some kind of a
pulse will be produced on this compare A output, and same thing will happen with this

beyond. What is the signal that will look like on these lines, is that what we will look now.

Can you think typically, suppose, | am having a down timer, then like, if | say, when the

countdown value becomes equal to this particular value PWM CMPA then | get some small

clock pulse on these compare A signal, otherwise this compare A signal is going to be 0.
Given this description, can you think and plot, for example, how these signals are going to

look like? That is exercise.

(Refer Slide Time: 22:40)

| ‘Tlmer and Comparator’ in n
| I PWM in T|va

PWM Count-Up/Down Mode

Timer Outputs:
A Inputs dir; Direction Signal
& LOAD: Load value In PWMNLOAD regster loxd: Load Sixml“
& COMPA: Value In PWMNCOMPA register 2ero: Zero signal
.
:

COMPB: Value In PWMnCOMPB reglster Comprator Outputs:
012ero value cmpA and cmpB

PRASANNA § GANDHI gandhi@me. iith.ac.in

So, this slide now actually gives you this data. So, this is a value that is loaded, some value
which is loaded in the counter and it starts counting it down every clock cycle one countdown
will happen. And then it goes to 0 and again it starts adorning the same value, so this is like a
countdown mode-only. You are not counting up any time. Only loading the fresh value, and

again counting down, loading fresh value and again counting down.

So, a similar kind of thing happens when we go for the count up and down. Where A is here
now, you will have a count up. First, you have reached a load value then you start counting

down, and these signals are going to look like that.

Now, whenever this compare A and compare B values are hit during the countdown process,
of course, for that, compare A compared B values have to be lesser than this whatever value
you have loaded in the counter. If it is more than that, I mean there will be some error that
will be popped up or it may consider the highest value here. So, we do not know what is (I
mean) that must be, like, we need to see through the details of the datasheet to kind of see

what happens in under such kind of scenarios.

Now, what happens when these compare A signal is reached by the counter the CmpA on that

signal you will get these little pulse, clock pulse, and same thing happens with compare B

signal. On the compare B signal you get this little clock pulse. And now these clock pulses

are used further for processing and generating PWM.

But you can see that, similar kind of thing happens with the PWM countdown. So, wherever
this counter hits on the up count it will generate pulse, and on the down count also it will
generate pulse on these CmpA, CmpB signals. So, these are the kinds of signals that will be
getting generated. And then this is a direction counter. So, this is a direction counting up, is

positive, and in counting down is 0. So that is how these things work inside.

(Refer Slide Time: 24:59)

° PowerPoint Side Show ~ (11,1mue PWMTive]

Programming PWMin Tiva

Each PWM Generator Block diagram=»

& Think about the flow of signals timer output goes through ¢

block and so on.,
PRASANNA § GANDHI gandhi@me,iitb ac.in 15

e PoworPoint Bide Show - (11 rmue PWMTive]

‘Timer-and Comparator”in
. PWMin Tiva)

PWM Count-Up/Down Mode

/|

wrw

Timer Outputs:
dir; Direction Signal
load : Load Signal

Inputs

A

& LOAD: Load value In PWMNLOAD reglster -— -
& COMPA: Value In PWMnCOMPA reglster zero: Zero signal I‘ -
& COMPB; Value In PWMNCOMPB reglster Comprator Outputs: § I |
& o:zerovalue cmpA and cmpB il

PRASANNA § GANDHI gandhi@me. iitb ac.in

Now you are using these further in this block, which is signal generator block. So, these

signals are going into signal generator block. And this signal generator is using like some of

these and converting that into this PWM A and B signals here. So, how that happens? You
can see here.

Say for example, if you have this kind of pulses coming, how can | generate PWM out of
these pulses? So, say for example, this load corresponds to like some kind of a frequency that
could be my PWM frequency. And then this compare A value whatever | am writing that can
kind of give you some kind of a handle over what should be my PWM duty cycle, things like
that. So, one can think about that kind of a logic to do the signal generation in the signal
generator block. So, you can see here what is happening now in Tiva.

(Refer Slide Time: 26:04)

PWM ‘Signal Generator’«=

& |ttakes load, zero, cmpA and cmpB as input and generates
two PWM signals pwmA and pwmB

% |t uses events such as zero, load, match A up, match A
down, match B up, match B down depending on the
mode(count-down or count-up/down

o
c
8
£
c
E
)
8
2
()

:
:
5

pasamasowor, Similar exercise in cour;(l down mode and then figu
gondhiGme.ith.ac.in Will be the duty cycle 4

So, you can see in signal generator whenever this compare B is reached B signal that pulse
now is getting converted into a trigger, which will make this pwmB signal go high. So, this
value is low, this signal goes high. And when this same value is reached on the down count

then again this value is made low.

So, that is how this compare A, compare B signals work and produce pwmB signal in the
signal generator block. So, those little pulses that are produced by the comparator block are
used in some way to create some kind of a logic circuit, which will get this PWM signal B
out in such a way that moment if this value is compared matches, count value matches pwmB

signal is made high.

Same thing for PWM signal A. Whenever the value matches from 0 the pwmA signal will be
turned to 1 and then whenever on the down count the value matches this signal will be turned

to 0, if this logic is used. Now, you do an exercise. Now same logic if it is happening for the

sawtooth waveform, which was like no countdown signal-only. So this was a countdown kind

of a signal-only then what is going to happen. So, you can think about.

What kind of logic needs to be there, such that, like compare A value will be somewhat
changing this binary signal from 0 to 1 or 1 to 0 or whatever. So, you think about that, and
think what kind of logic can be there? So, we will leave it right now. | am not going to
explain you that, but using the same, extending the same concept one can think about, (why)
what will happen to these pwmA and B signals in the countdown mode alone. And that is
what probably we will be using for our PWM generation.

(Refer Slide Time: 28:24)

Programming PWMin Tiva

Each PWM Generator Block diagram=

Think about the flow of signals timer output goes through

block and so on.,
INNA § GANDHI gandhi@me.Iith ac.in 17

So, that is what is that we need to think about. And then there are these additional facilities
that dead band generator. Suppose you want to have some dead band introduced in the signal
at the start or falling edge of the of the PWM signal then how do you do that. Normally, if
this is not enabled this signal directly comes as output pwmA and pwmB signals.

So, for one generator you get now this complete flow from timer to comparator to signal
generator, and then your actual signal now. So, this particular part will not get into more
details here. There are some things, which probably we may not be needing to use, but you
can kind of go through the datasheet and like a little bit kind of understand how this control

and the interrupts in PWM 1 if fault conditions also can be can be displayed.

So, you can go and look at that those details if at all you are interested in more into that, but
we may not need that PWM interrupt kind of mode of operation of PWM. What we want to

kind of do is, generate these PWM signals and be able to control the duty cycle continuously,

so that, we can deliver in the actuator in mechatronic systems, right amount of energy that is

needed.

(Refer Slide Time: 29:58)

] PowerPoint Side Show - (11, muc PWMTive]

& Ifdisabled, then pwmA & pwmB signals will be forwarded
without modification

Dead-Band Generator

% Ifenables, then pwmB signal is lost and pwmA signal is
used to produce new 2 signals (pwmA’ and pwmB’) by
adding programmable delays as given in figure.

— (— — f
Rising Eqge Falling Edge
Delay Delay

This understanding along with knowledge of correspo’

{
"’:ﬁmﬁnr you will need to get for regjster level programming! B !
& APIs instead to begin with &

[PowerPoint Side Show « (11, mue WM Tive]

& Ifdisabled, then pwmA & pwmB signals will be forwarded
without modification

Dead-Band Generator

% If enables, then pwmB signal is lost and pwmaA signal is
used to produce new 2 signals (pwmA’ and pwmB'’) by
adding programmable delays as given in figure.

pPWMA,

pwmA'

pwmB’ !_

— e P

Rising Edge Falling Edge
Delay Delay

w9l This understanding along with knowledge of correspo’
PRASANNA n you will need to get for register level programming! B !

gandhi@me

APIs Instead to begin with

So, this is a dead band generator with a little more details about, you can go through. So, if it
is disabled and you do not have these shifting of the signals happening, but if there is enabled
and then they depend upon the value that is given in some registers, you will have some delay

produced in pwmA prime signal, which is the actual output of the PWM.

So, these signals will get delayed a little bit. So, this is like a, this part is called a dead band.
So, you can have a rising edge delay or you can have a falling edge delay and it can bring
some signals. So, this much understanding along with some kind of a particular knowledge of

some registers. So, this register knowledge will be given in this, if you see this datasheet.

Home Tools L200_H.D. L208N Mo, Tiva,_Fune TMAC123. 1239, ¥ L1.vama. 0] Sign In
d®H QO O N L IEUONO) woe R ¥ £ A B %
Comment BZTITDBTLTHLZ @ & & 4 Close
specific value 10 be phaced on the wa i signals during a faull condiion, that value is inverted If
”.» Bookmarks X e COmesponaing bi In this fegister 1s set a
f @ WM Output Inversion (PWMINVERT)
®- A =
H &
Recolver v A et 0600000
» " u u__» “ v)
Tranamitter T eyt e
AR | j / J
v [- roresprefrsmfmpisfrand]
R 16, Inter e et ¢ e W v ¥ <
Intograted Ciroult
[[e Rmet Ossogton
12C) Intorface
B 17 Controter " iosarvm RO 0000000 Sofwre shoukd ol oy 00 he vomof 8 resarved B T provide
Aroa Notwork resnrve ac1oms 8 eably wrke vt 0
(CAN) Module 1 AN " 0 v ! g >
[18 Universat Vabe Descryon 0
Serlal Bus (USB) 0 The uaree) sgnal not nverted
Controllor ' o gl vried)
[N
[10, Analog
/\! Comparators ‘ MO " 0 vt s g
s 2180 4 2704 1 o

) %] tméc123ghbpm.pdl

Homo Tools L2001.6, L208N Mo, Tva_Fune TMAC123, o129, X Li.vama, 0] Sign In

B QAo ‘ AOO® v K B &S 4B L

Comment B /2T THLTHZ @ & & 4 Close

[Tva™ THAC12)GHEPM Microcontroler

) urew e TR g — »
' GLOBALSYNGY R 0 Updele AWM Gererlr |
) e Deserighon
0 teetw .

1 Ay o e 14 B o Compmrokr oo M
ool 110 s B e e P ctmngoreh cxrir

T 0 by o whon o oo v Gt carecd
o oared Uy sotwws.

0 OLOBALSYNCO 1N 0 Updele WM Generoi 0

yT——— 0
0 Noetet
1 Ay o e 1 4 o ComprnkrFogler i M =
e 00 agghed P s e P Gt eng
Leconen ren

T 04 ity oo whon ol ave competed d carrct A
o oy s

® 0 [+] tméc123ghbpm.pdl
Home Tools 20040, L208N Mo, Tiva_Func TMAC123, 01239, % L1_vama, 0]
® 8 Qo O ' hMEG® w v+ WM. 8 4 H 4 B
Comment @ Z T T T [l 72 & & - Close
Bookmarks X)
@ v
5 [l =)
0 B & 5
Recoivor \
@ Transmit 2
(UARTs
W1 hronous
Serlal Interface
(5SS
H 16, Inter ¢ P
Intograted Circult
(12C) Interface P
-
[17. Controller
Aroa Notwork June 12, 2004 1240 0
(CAN) Modulo Toxas Insuruments-Production ata v
[18 ur mn
Sorlal Bus (USB) .
Controllor)
178
{ 19, Analog Pulse Width Modulator (PWM)
\ Comparators =
{5 8 2180 5 270 4 mn

NPTEL

0 [¥] tmac123ghbpmpdt

Home Tools L2080 M., L208N Mo Tiva_func TMAC123. 1m40123g.., ¥ L1, vama, ® Sign In
YO QOO @ I RMO® wv - B P & H G4 B %
Common t B ZTTNDHMTL TIEZ @& & & & Close
OCA PAMINTEN W[o000 f
+ | Bookmarks X R
H'] 008 PWACIIS "o 0400000000 P) 4]
[] < PWMIC L 0x0000 0000 "wn
A3 =
A 0000 PWMALOAD WO 000000000 n o
0000000 # " \
® 0
& W 0v0000 0000 1200
"
»

KW | 0100000000

W 0400000000

W 000000000

0OFC PWNOMINFLTPER w 040000 0000 WM Minimunm F st Period " (‘ ‘
o0 pcr | owotmor e o “
oo PowonTEn | 000000 Pyt et e T Entie "

ovn owaows no | ocomom 2

A o e wwic | oasoncon o
”

. 0] tméc123ghbpm.pdf
Home Tools L2080 H.B. L208N Mo, Tiva_Fun TMAC 123, 1401239, X L1 vama. @ Sign In
DB QDO e RMDO® wn- R P & D 4 B %
Comment B ZTTDHTTIIMCZ & & & & Close
0 Bookmarks X Table 20-2. PWM Register Map (continued) B
Yoo
®- B Type oot e =
[+]
H ™| oomom ¢
Rec \
n [
@)
1
e
m
0]
00000000 P " ¢
W 0x00000000 1200
1 1
W | 000000000 1201
| 000000 " »
-
0064 PWMIOEND W 000000000 P
[KW | 000000000 WM Do Band Conrol 120 0

ouoe WM200 54 KW | 000000000 PWM2 Do 0and Foming-Lge Dol
0 WM200 KW | 000000000 IAWWM2 Doad Dand Fating e Delay %
OF4 PWNDFLTSRC W 040000 0000

o WMFLTIRC w 040000 0000

0N0FC PWAMINFLTPER W 040000 0000

In the datasheet, you can get all the gory details about say registers. Say for some examples
of this register block you can take and from this previous block diagram, and then search for
those names, you will get these register details. So, as you see these master-controlled
registers. So, a lot of many, many different registers will be there and each research all the

details will be given.

So, this is like a registered map, all the registers are given here. So, you can go through these
registers and make some familiarity. If, you directly want to use these registers in program,
great. You can do that thinking if I understand all the registers. Now that | understand its
main philosophy, if | further understand the register details, 1 will be able to control this

register-based programming or | will be able to generate this PWM signal at the register kind

of a level.

This is how, we will go about programming for the register level. But we will do the
programming, mainly, in API's to begin with. So, later, we may not need also to get into the
register level programming. But maybe as a part of some academic exercise, we can take
some simple thing to do program by using the register level details, so that we have that grip
over the programming of this maximum controller. So, for typically for using this API or
library for programming, we will need to do something some process needs to be followed or

some steps need to be followed.

(Refer Slide Time: 32:54)

) PowerPoint Bide Show « (11,mue PWMTival

Other Blocks 3

Interrupt and Trigger Generator:

% It takes load, zero, cmpA and cmpB as Inout to generate an Interrupt or
ADC trigger

& |t can elther use any one of the event (load, zero, matchA up etc)
directly or some set of these events as a source for Interrupt or ADC
trigger.

Fault Conditions:

& Itsignals the controller to stop PWM functions and set PWM signal to
safe state,

& Two bascl situations causing fault conditions:

& 1. Microcontroller Is stalled and cannot perform the necessary
computation in the time required for motion control,

& 2, External error or event Is detected

Output Control Block:
& This take cares of final conditioning of signals pwmA’ and pv |
before going to the pins i
-

PRASANNA § GANDMI,

QandhIGme.ith.ac.in 19

B

So, we will look at those steps now. These other block details, | will leave it to you to kind of
go through and understand, if at all, the situation or needs comes in your project this may be

useful.

(Refer Slide Time: 33:08)

0 PowerPoint Side Show « (11, mue PWM Tive]

Steps for programming
WIth APIib functions

Include library files. (driverlib/pwm.h) and Initialize variables to be
used

Initialize hardware

% Configure system clock frequency. SysCtIClockSet()

% Enable PWM Module to be used

% Enable Port corrsponding to the targeted PWM Module

Configure PWM Module

% Configure PWM Clock using SysCtIPWMClockSet()

Make the corresponding pins type as PWM module.
GPIOPInTypePWM()

& Configure each pin as channel A or B or Index.
GPIOPinConfigure()

PRASANNA § GANDHI,
gondhi@me.ith.ac.in

So, these are the typical steps that are there for the programming with the library functions.
So, you need to make sure, that your, these header files are there in the library. So, in driver
library, you will have pwm.h and pwm.c files, they will be there, and they will initialize a lot
of variables that are needed for this. So, the register level programming will, you will need to
know some of the base addresses and the values of the hardware register addresses, which
will be already put in this some of these header and library files, then you do not need to

know those detailed names and description.

So, you just need to know, these are some of these functions, how they work and things will
be fine. So, this function description is given in the other file that is given to you. All these
functions are given, their description is given. Maybe, we will see, if we can figure out one of

the, such files.

(Refer Slide Time: 34:20)

Home Tools L200_H._B.
® 0 Qo O

Gomment B Z T %
5 Bookmarks X

]

3@ 8- B

TRe

£53 Recelvers

5.,5: Transmittors

Elg (VARTY)

EEY "

Evg A 1.

R4

%A% aan

ki (88)

§ [16, Intor ‘

& Intograted Circult

IS

-

o

B4

£

Aroa Notwork
(CAN) Module

W 18, Universal
Sorlal Bus (USB)

Controller

> [10, Analog

L208N Mo Tiva_Fune TMAC12 mie12% L1_vama 0]
@/ RO OO wn P 4D A
T THZ @ & & &
Table 20-2. PWM Register Map (continued)

Ottt Hame ™ Roset ODescription hed

oo
BOCO PWMICTL W | 00000000 WM Cored 204
OOCH PWMRINTEN oW 000000000 W2 Ittt and Trgger Enatée un
0e0CH PWARNS L #0000 0000 WM Haw vtorngpl Satis e
00CC PWMNSC RWiC #0000 0000 WML Interrupt Status and Crear e
0000 PWMLOAD W 0x0000 0000 PWM2 Lowd wn
0004 PWARCOUNT L4 040000 0000 PWM2 Counter un
000 PWMICHPA | 0000000 PWW2 Compare A)
040C PAARCHI | 000000000 WM Conpwe b 0
008D PWAROENA " 020000 0000 WM Generstor A Control e
006 PWNRCEND W | 00000000 PWW2 Genareke B Conol 8
0088 PWMRDOCTL W #0000 0000 WM Dot Dand Conrol e
OOEC PANCOORISE W | OAI000000 PWML2 et Barnd o Eign Doley "
0e0F0 PWM0DFALL w 040000 0000 WM Doad Dand 1 gL dge Doty 20
00M PWACATIACO | 0000000 PWW2 A Seurca 0 o
OOF8 PWARFLTSACY W 0x0000 0000 WM Pt Souree | w
OOFC PWADMINGLTPER W 0x0000 D000 VWM M | st Porior AF)

8ign In
B &

Close

Home Tools

@

L200_H.0.
® B Q ™ ©

X

-‘: Bookmarks
G
5 [
> | 15 Hibernation Module

> [16 Inter-Integrated
Circult (12C)

17 Intorrupt Controller
(NVIC)

1 181LCD Controller
(LCD)

19 Momory Protection
Unit (MPU)

1 20 1-Wire

or Module

[21 Pulse Width
Modulator (PWM)
A

ght 2007, 2014 Texas Instruments Incoepora

2 Quadrature Encoder
(QE

H 23 sHAMDS

> [1 24 Synchronous Serlal

Interface (881)

Tiva, Functions, Syntax.pdl

L20BN Mo, TvaFune,., % TMAC123, 101239 L1 vama, ® Sign In
mim R ®OO R P @ & B %
21 Pulse Width Modulato @
Introduction [5
API Functions . =]
Programming Example 0
2]

21.1 Introduction
o

Each instance of a Tiva PWM module provides up to four instances of a PWN
an output control block, Each generator block has two PWM output signals, w
independently or as a pair of signals with dead band delays inserted. Each
has an interrupt output and a trigger output. The control block determines the
signals and which signals are passed through to the pins.

Some of the features of the Tiva PWM module are:

u Up to four generator blocks, each containing
+ One 16-bit down or up/down counter
+ Two comparators
+ PWM generator

N

=

LIS

Home

1]

Tools L208_H.0.

&8 Qo

X

Bookmarks

[

> | 16 Hibernation Module

3
i@

> (1 16 Inter-Integrated
Cireult (12C)

17 Interrupt Controller
(NVIC)

18 LCD Controller

(LCD)

19 Memory Protection

Unit (MPU)

Copyright 2007, 2014 Texas Ins

3> [21 Pulse Width

F Modulator (PWM)

22> [22 Quadrature Encoder
; (QEY

3) [238HAMDS

£ 5 [24 Synchvonous Sod
."/, Intorface (85I)

1

1.2

Tiva_Functions_Syntax.pd!
L208N Mo Tvafune.. X TMAC123, mde123g L1_vama. ®
" hMO G nP B b

+ Doad band generator
u Control block

+ PWM output enable

+ Output polarity control

+ Synchronization

+ Fault handling

* Intorrupt status

This driver is contained in driverlib/pwm.c, with driverlib/pwm.h con
larations for use by applications,

API Functions

Functions

u uint32_t PWMClockGet (uint32_t ui32Base)

u vold PWMClockSet (uint32_t ui32Base, uint32_t uid2Config)

n void PWMDoeadBandDisable (uint32_t ui32Base, uint32_t ui32Gen)

u void PWMDeadBandEnable (uint32_t ui32Base, uint32_t uid2Gen, uint16,

2160 %2704

-

(G I N

|+

Home Tools L200_H.0.
Bw®d QO
-f Bookmarks X
4

2@ R

> | 15 Hibernation Module

> [1 16 Inter-Integrated
Cireult (12C)

[17 nterrupt Controllor
(NVIC)

[18LC0 Controtier
(LCD)

> [1 10 Memory Protection

4
:
-
<
2 Unit (MPU)
8
5
;?4 § Master Module
£ 39> [1 21 Pulse Width
% Modulator (PWM)
S > [22 Quadrature Encoder
(QEN)
[23 8HAMDS

Tiva,Functions_Syntax.pd!

L208N Mo TvaFunc.., X TMAC12), o123 L1_vama ® 8ign In
© mim KAODOO w - P B 4 B &
This driver is contained in driverlib/pwm.c, with dri
larations for use by applications, y
s B
[=]
&]
API Functions ‘
2
Functions
w uint32_t PWMClockGet (uint32_t ui32Base) (B
s u void PWMClockSet (uint32_t ui32Base, uint32_t uid2Conlig) A
» void PWMDeadBandDisable (uint32_t ui32Base, uint32_t uid32Gen)
u void PWMDeadBandEnablo (uint32_t ui32Base, uint32_t ui32Gen, uint16_t ui16F 2
ul16Fall) A
u void PWMFaultintClear (uint32_t ui32Base) 0
w vold PWMFaultintClearExt (uint32_t vi32Base, uint32_t ui32Faultints)
n vold PWMFaultintRegister (uint32_t ui32Base, void (spinintHandler)(void))]

u void PWMFaultintUnregistor (uint32_t ui32Base)

e 0

Home Tools L2080 H.D.

By ®B QO

[lg Bookmarks X
@ B
> W 15 Hibernation Module
> [16 Inter-Integrated
Cireult (12C)

> [1 17 Interrupt Controller
(NVIC)

[181C0 Controtler
(LCD)

[19 Memory Protection

Copyright 2007, 2014 Texas Instrur

'L Unit (MPY)

F

23 A

3 W

134 Mastor Modulo
3> [21 Pulse Width
Ez Modulator (PWM)
82> [1 22 Quadrature Encoder
g (QEI)

S > [238HAMDS
2.5 [24 8ynchron

£ Intorfng

Home Tools L208_H.0.

By ®B QO

[lé
4t

Bookmarks X

@ R

> W 16 Hibernation Module

> [1 16 Inter-Integrated

Clreult (12€)

> [1 17 Interrupt Controller

3
g
g
g8
-t (NVIC)
£ 2% > [1 18LC0 Controler
w88
§ 28 (LCO)
v 38
= E2 > [10 Memory Protection
< 8¢
35t Unit (MPU)
£
N azg "
N [20 1.wire
g Mastor Modul
% 8 Mastor Modulo
£ 3% [21Pulse Width
§ 2 Modulator (PWM)
3
S 22> [1 22 Quadrature Encoder
g (QEN)
S [23 sHAMDS
El 0
!

Tiva,_Functions_Syntax.pd!
L208N Mo TvaFunc., ¥ TMACIZ) tmo1239 L1, vama. ® 8ign In
©@ mim KAOOO® wm - K P B 4 B &
ML vaavavnie
ol
Functions B B
® uint32_t PWMClockGet (uint32_t ui32Base) 5
w void PWMClockSet (uint32_t ui32Base, uint32_t uid2Config)
u void PWMDeadBandDisable (uint32_t ui32Base, uint32_t ui32Gen) (2N
n void PWMDeadBandEnable (uint32_t ui32Base, uint32_t ui32Gen, uint16_t ui16Ris
uit6Fall)
u void PWMFaultintClear (uint32_t ui32Base) o
‘< w void PWMFaultintCloarExt (uint32_t ui32Base, uint32_t ui32Faultints) P v
u void PWMFaultintRegister (uint32_t ui32Base, void (spinintHandler)(void))
u void PWMFaultintUnregister (uint32_t ui32Base)
4
. 0
|+

2180 %2704 v

L208N Mo, TvaFunc.. X TMACIZ) mo1239 L1_vama. ®

©® o om RO O® m - R P B d

' Pulse Width Modulator (

Introduction .,
API Functions
Programming Example ..,

.1 Introduction

Each instance of a Tiva PWM module provides up to four instances of a PWM gor
an output control block. Each generator block has two PWM output signals, which
independently or as a pair of signals with doad band delays inserted, Each gon
has an interrupt output and a trigger output. The control block determines the pol
signals and which signals are passed through to the pins,

Some of the features of the Tiva PWM module are:

u Up to four generator blocks, each containing
+ One 16-bit down or up/down counter

Sign In

So, let us see it here. The Tiva functions here. So, these pulse width modulation if you see
this base, they have all API functions given, and then programming example also is given.
So, you can use that to get started with this. So, see this driver is contained in this pwm.c and
pwm.h file. So, there are a lot of functions. These functions directly, reading those function

details you may not get to this procedure.

So, for procedural aspect what functions to be used and when or what is the sequence of
using some functions, that is a little bit tricky to figure out. But you may be able to figure out
based on the block diagram understanding that | need to first initialize this, first initialize that
and then do this, then do that or you can say, see the directly here the examples that are given,
programming examples that are given, that will kind of give you a better understanding.

(Refer Slide Time: 35:44)

L) P

Steps for: programmmg
wnth API lib functions

Inciude Borary files. (driverit/pwm.h) and initiakize variables to be
used

Initialize hardware
& Configure system clock frequency. SysCtiClocSet()
& Enable PWM Module to be used

& Enable Port corrsponding to the targeted PWM Module

Configure PWM Module
& Configure PWM Clock using SysCHiPWMC
¢ P"ut hc 0 mmdm, pins type as PWM vmdb e.

So, here, | am just giving you some kind of a detailed steps for the programming this PWM
interface. So, you need to initialize the hardware, so, clock frequency needs to be set and
enable some PWM model that are to be used and enable the port corresponding to the target
PWM module. So, these are kind of steps.

Now, | will not give you the entire thing here. So, you need to figure out based on some of
the steps that are listed here, and the understanding that is given in the PWM. So, it is a little
bit of a skill or art to master like seeing appropriate information at appropriate place. See, if
you start reading the datasheet or the entire chapter on PWM things will become too lengthy
procedure and you may not need a lot of such things.

So, once you are given a task that we have specified in our assignment 2 where you want to
run a motor by using PWM, so to get to that task you need to generate PWM signals on two
signals, two pins actually. And one pin will be connected to one of the motor inputs and other
pin will be connected to other motor inputs. There are two motor digital inputs that are to be

given for the motor driver.

So, the motor driver datasheet also will be uploaded. So, these are different, different things.
The important part here is, you need to configure this PWM module. There are many
different kind of aspects of configuring. So, configuring the clock, so we saw that block

diagram needs a clock, so this is done by this command.

Then, you want to this pin size, as you have seen in the couple of last classes also, same pin is
used for many different purposes in Tiva. So, in Tiva our many microcontrollers is for that
matter. So, you need to specify that, | want now to use this pin as for the PWM kind of a
generation. So, | will say, is a pin as a part of GPIO, but | want to use it for PWM purposes.
So, that you need to specify somewhere. So, that is where you need to make the pin type as
like PWM pin.

So, once you configure this as a PWM pin. | mean, you typically will not use this as a input
output pin again in that application. Because, your hardware is connected to this pin now. So,
you cannot say | will now make it use in my same program. Once sometimes it is used as a
PWM pin and sometimes it is used as a digital input, output pin, that may not happen here
because your hardware is fixed there.

So, you need to kind of make a choice of which PWM modules you need to use or given the
number of pinouts and model application needs, we need to kind of make a choice of which
PWM model you need to use and which kind of pin you need to configure as PWM pin. So,
that those decisions are fairly simple you will be able to see the pin maps and from that maps
you will be able to match your application needs versus module which pins are available.

Then, you need to configure pin for channels, different channels.

(Refer Slide Time: 39:28)

Steps for programmin gg

with API lib functions

% Configure QEI Module

% Configure PWM generator to be used in program using
PWMGenConfigure()

% Set the period for the PWM using PWMPeriodSet()
& Enable PWM Output state using PWMOutputState()

% Enable PWM Generators using function PWMGenEnable()

& Configure PWM Output

& Setthe width of PWM signal to get desired output. This can
take value from zero to PWM period, and it will decide the
duty cycle

PRASANNA § GANDH,
gondhieme.ith.ac.n

And then, so it is PWM generator configuration, so now we know what is PWM generator in
the block. So, in that, you need to configure it PWM generator. So, it will typically have
whether this will have a count up or count down, those kinds of things will be somewhere
specified. These are QEI module. This is PWM all these are function for PWM modules.

Set the period of the PWM, and then you enable finally the PWM. So, like that you will have
these different kinds of functionalities which are regarding the configuration of module, and
then you need to have some functionalities which are regarding some output of the PWM. So,

like that you set a PWM period, we set somewhere PWM duty and get your program going.

So, | will leave you with this kind of understanding. And you can see now, the example
program and other thing to figure out how things are really working. What are this each of
these functionalities might be doing. You play around with the parameters and see, how they
are affecting your PWM generation signal and all those kind of things you can play around
and do it yourself.

So, that is where we will stop here now. And then, so further we may look at a little bit like
this a little more details about quadrature encoder interface as well, because these are the two
primarily important interfaces for us, to use from Tiva system, so we will do this small kind

of a presentation for quadrature encoder interfaces as well.

And then we will start off with the modeling part of the thing. And while modeling we will
start exploring how these models really work in practice. So, that is our future direction to go.

So, here we will start getting basic understanding about how to run the motor. Once we are

starting running the motor, then we will have understanding about how to read the motor

position by using encoders.

So, now you will get really-really high-fidelity position output from the position sensor. Now,
we want to use this for further control. So, this is how, we will proceed. So, before going into
control, we will start sensing this position and use it for some identification of parameters of
the system. Particularly, we will look at friction identification in the motor system. So, this is
how this future direction is what we will go. So, we will proceed like that, and I will stop here

for now.

