Design of Mechatronic Systems
Professor Prasanna S. Gandhi
Department of Mechanical Engineering
Indian Institute of Technology, Bombay
Lecture 19
Microcontroller Programming Philosophy

(Refer Slide Time: 00:11)

Lecture No. 19

Microcontroller Programming Philosophy

In today's class, we will start continuing further our discussion on microcontroller
architecture and programming details. So, let’s begin with the programming philosophy as we

discussed in the last class also, this philosophy would center around registers.

(Refer Slide Time: 00:49)

~ Programming
~ philosophy

& Assembly level:
Use details of architecture to achieve the tasks by assembly
language program.
Most fundamental way of making mups work.

& Machine level programming outdated these days.
Programming in Cand compilers are used instead

Higher level programs:

& Registers in microcontroller available as variables
& Programming amounts to understanding functionality of

register and writing appropriate values in registers taszas
desired task done, T |
& Typical starting point is a simple working program of g

program provided by the manufacturer

NPTEL PRASANNA § GANDHI gandhi@me.itb.ac.in 15 _—

So, we have seen there are different levels of programming and each one has like different

ways to access different registers in the microcontroller platform. And these registers are

basically at their fundamental level, they are flip flops. So, you can see hardware has these
different layers, one can understand the hardware in different layers, or and one can

understand the software also will have like as we will see different levels of programming.

So, the base level is the assembly language where you can access each of the registers by
directly assembly language. And we will see how you do that with some examples of some of
the hardware of basic fundamental microprocessor 8085 system. And then, we will move on
to like the more advanced system and see some examples of programming there and we will

move to further advanced system, which is on ARM technology.

We have seen in the last class, general philosophical description or motivation, for which
ARM technology was developed. And it has a lot of usages in the modern mechatronic
systems. So, that is why | like it is good to study ARM kind of technology and its

applications or its interfaces that it provides and things like that.

So, this way you will be able to develop your own mechatronic products in the future, if need
be, very easy. And you know what is the state of the art that is happening. So, that is why we
will work with this Tiva microcontroller and the Tiva microcontroller will give us lot of

understanding about ARM technology.

(Refer Slide Time: 03:09)

Example assembly language o

Programming 8085 =

#| Instruction format (mnemonics)
® Opcode
» Operand
= Example
Opcode Operand Description
MOV GA Move contents of register A to C
ADD B Add contents of B to accum
CMA Invert each bit in acc I SSE

=

PRASANNA § GANDHI gandhi@me.lith,ac.In

Now, we will move on to little bit more details about programming. So, if you go to basic
fundamental assembly level language, say 8085 system, the programming would have this

something called opcode which is the instruction for, as in C you have some instructions like

that, you will have some instructions in the assembly level programming, which is given in

some kind of MOV, ADD these are very short instructions are there.

This MOV as the name suggests it moves contents of register A to registers C, these are, A
and C as we saw are registers in architecture of 8085 system somewhere. So, A is a special
register called accumulator in that system. So, these are descriptions of these all things will
be given in the datasheet and even these commands and their meaning will be given in the

instruction manual for the microcontroller or microprocessor in this case.

So, this is most fundamental level programming that one can do, where you actually write
assembly language code, nobody does that these days actually. It is just for the sake of
academic understanding that, oh look finally whenever we assemble our C code, it finally

gets into this program and this program gets executed in its own way.

So, finally, each of these commands also will have some hex code associated with that. So,
that is how that code will be loaded into the, into their respective registers. And then based on
the timing and control circuitry that one-by-one lines of code will get executed and that is
how likely your operation happens. So, this goes for fundamental level understanding of how
things happen at a hardware level.

Say, for example, when | say moves contents of register A to register C, there are some
hardware pins to be enabled and then needed to made high. So, that contents of the register A
are available on the data bus. And then, you enable some other pins so that the contents from
the data bus are transferred to register C, these are micro instructions, which will be

associated with each of these so-called opcodes.

And number of these micro instructions will determine how much time would take, how
many clock cycles in particular would be required to execute this command MOV here. So,

that is understanding here so for any command.

(Refer Slide Time: 06:02)

)) Appendi-FH086.pdf
Hor Append|-FE0BS pdt X MCOS12XEP100P. Tiva_Functions S TMAC123G._ Laun, 0 Sign |
\ n \ o 0 o # 4 & 0
»PE QOO LRV O] AT RB2aD 4B
@
ACl: Add Immediate to Accumulator with Carry
H | B BootPOF A
g Opcode Operand Byles M-Cycles TStates | Lo ¥ v
) ACL $bitdata
Adobe Export POF
§ Descr e
5 Flags All flags ddition f Filo
£ Example the pre)
; 4 the Carry flag, ad
e Insts I Hex Cox L
3 Addi
A): 26H » () 011
Data): STH=0 | (1
(a4 | dgn ¥
TEHwO0 111 o
i 0 Ze0 Al
Pel CYu0
Comments ' m
P !
| !) |
0) Appendi-F 8006 pdf
Home Appendl-FB085 pdf % MCOS12XEP100P. Tiva_Functions 8. TM4C123G_Laun. Q@ Sign
A \ o 0 W, o 4 & D |
r ® B Q0O O OO ® * B % R 7 a D 4B
o Example d the p
= the Carry flag, add
I 157 Hex € Cr 5 Exp A
4 Addi
Adobe Export POF
5 A 2600010 011¢ =55
z Datak STH=0 101 0111
2 Yl |
3 BH«0 111 (POF
3 Flags 2e0 Al
g y
£ Pal CYs0
K |
- (
£ |
g |

So, in the instruction set you can observe now that there aremany different instructions that
will be given. So, for example, this is instruction ACI. So, description is add immediate to
accumulator with carry. This accumulator is this register A. So, if you have no understanding

of architecture, then these commands will not make much sense.

But, if you have understanding that look this is accumulator and this command as this opcode
and operand and then number of times state it takes is 7, or t-states cycles, number of cycles
of the clock it will take to execute this command is 7 here. Like that this, all these details will
be given and this instruction has hex code this CE 57.

So, olden days, you do not have this, the computer or keyboard to program these 8085

systems. So, what you do is, you will have this ADD display in which there are only like 8

fields. So, 4 are, 6 are, there are only 6 fields, there are 4 of them are address field, and 2 of
them will be data field. So, you start at any address and you start coding these hex codes into

these different memory locations. And that is how you start writing the program.

So, which was quite cumbersome to create right now, we have done that in our
microprocessor course or lab that | was when | was MTech. student here, | did that in one of
the labs actually. So, it is quite a time-consuming process. Also, in my B tech. project | did
that actually. So, it is very interesting, now if | think about how this, so much of a drudgery to
code this and then make sure that they execute properly and run your motors or any other

applications.

(Refer Slide Time: 08:34)

o o X Appendi-F 6085, pdf
Home Tools Appendl-FB0BS.pAt X MCOS12XEP100P Tva_Functions 8 TMAC123G, Laun 0] Sign In
® 8 Q0 d » O OO CRP B 4 2 B &
10000011 A 8 1,0, 1,0, O/F
@
CALL: Unconditional Subroutine Call
A Opeode Operand Bytes MCycles T-States Hex Code B export POF A

CALL 16:bi 3 § 18

Adobe Export POF

Flags No flags are affected
Example Write CALL fnstry

ted st 2050H. Explain the »
|

yright 1987 |

Cop

Memory Hex
Address Code Moemonics

D CALL 2000 forma & agreements
)

o
Home Tools Append|-FE08S pdf X MCOS1ZXEP100P.) 8ign In

\ A \ \ f 4 &N Y

» B QOO 5 2460 48 %
« 1 X
ONC Dé
o 7]
o 1 K DY f A
M 1 B
CPo 4
%4 (Adobe Export POF
ONZ ¥]

CMA: Complement Accumulator
Opcode Operand Byts M-Cycles T-States Hex Code

CMA None | ' " | Microsoft Word (4

Copyright 1987 Intel Corporation

Description The cos

Flags No flags are af

Example Complement the accumulator, which has data byte $9H. torma A agroements

Instruction: CMA Hex Code: 2F

So, it will have all the instructions that are available for 8085 system to go, they will be all
there in this. So, there are some conditional instructions, unconditional call will be there.
There will be some if-else statements how do they execute that you will get to know say for
column positive. So, if something is positive, then you will shift the address, next address
which will be from where the programming execution will restart. Like that you will have
some kind of nesting loops possibility and things like that, by using this basic fundamental

level commands.

So, nowadays, all modern microcontrollers you just say if-else in C language and your job
will be done. But in olden days there is no command if you will find in this whole set of
instructions for this, there is no command- if or there is no command- while. So, there are
these commands called call on positive, call on carry or call on 0. So, that means when the
flag, you have seen the flag we studied in the last class, when the 0 flag and that flag register
becomes 1, then the program some sub-routing will be called for the program and that is how

this instruction works actually, call.

So, this is how olden days this is programming used to be, and that is what is done now also,
but it is all the compilers to do that targery. So, human beings are spared from that. So, we as
a programmers for hardware programming write all the codes in C language and they get

executed. So, that is how things happen there.

So, main understanding here is that this 8085 system or any microcontroller system will
ultimately have the program in the assembly language that will be downloaded to
microcontroller and each of these instructions of course, they will have associated some hex
code with that and given higher level program that you will write in C, the assembler will, or
compiler will compile this program and generate these opcodes and then generate a code,
which will be only with respect to these opcodes and that is a code which will be downloaded

microcontroller memory that is how the things are going to happen.

And you will see later when we see the interface of Tiva microcontroller, we will be able to
see that some of these opcodes or some of the assembly level parts of the code which are

there in the microcontroller.

(Refer Slide Time: 11:55)

Fundamental Operations in
} 2
Microprocessor

Internal data transfer operations

Arithmetic operations

Logical operations

Branching operation

& Microprocessor initiated: JNZ, JMP, JZ, JC commands in assembly
language

& Externally initiated: Interrupts

Computing and interfacing using these operations: IMP fzam
control implementation perspective

These are done in modern microcontrollers using C prog

PRASANNA § GANDHI gandhi@me,litb ac.in 17

These are fundamental operations that will happen in microcontroller at the assembly level.
So, all these operations are that way universal | would say, but one can see there are some
opcodes or instruction sets which are in the assembly level for each of these fundamental
operations. There are some logical operations, there are arithmetic operations, we saw this

command ADD, then internal data transfer, we saw this command MOV.

So, like that there are this branching operation there this call command or jump or jump on
carry, jump on 0, these are commands, which are for branching. So, you are executing some
series, the commands, and from here now based on some condition, | want to execute
something else, | will jump from there to something else execute that and come back and
keep doing that. That way, you will have a facility to create loops and you have facility to

create if-else statements and things like that as | said earlier.

So, these are the ways in which things actually happen at the assembly level. So, we do not
need to get into whole lot of details here. But we need to have the sense that look, whatever
commands | am writing here in the higher-level language, they will have, compiler will
actually compile them and convert them into these opcodes. And then, those opcodes will be
finally executed automatically right now.

(Refer Slide Time: 13:38)

Programming hardware ¢(%
Yo

Mg@‘*"’ interfaces

& Special registers (variables in C) have certain
functionality associated with them
& Control registers

Bits of control register control the operation:

for example register DDRA in Difo interface of XEP 100 controls if various
pins of register A would act as input pins or output pins

& Working registers

Working of interface and role of registers in this
working needs to be understood for programming

& More details : See in the datasheets and sar
Erograms of various microcontrollers you ha
andled

PRASANNA § GANDHI gandhi@me,lith,ac.n 18

Now, let us move further for little bit higher level microcontroller. So, if you see your
Arduino microcontroller or your XEP 100 their philosophy is (I mean philosophy) is the same
you need to have a finally convert those codes into the assembly level language. But to access
the registers, you do not have these register names A, B, C, D as you had in the 8085 kinds of

a system, you will have these registers access there in a different way.

So, these registers are available as a variables in C, some variable in C. These variables
would be defined in the datasheet of the microcontroller. And also, they will have header files
provided to you in which those registers are mapped into, those variables are mapped into
certain memory locations or registers finally. So, when you write to that variable, it will go to
appropriate register in the microcontroller system, that data value whatever you have written

in that variable, it will go to that particular register.

And there are two types of such registers, one is control register, and other is working
register. Control registers for any interface, there will be these two kinds of registers. So, we
will see some examples. Say for example, maybe | will explain first what this function is and

then we will take a example.

So, control registers set up your interface for particular or configures your interface for a
particular operation to happen and working register actually supply the working values which

will be continuously changing.

So, control registers you set up only once in your program and then working register you may

keep on changing based on whatever closed loop operation that you are carrying out. For

example, if you remember or some of you might have already done this programming of XEP
100 in that this DDRA register was there, DDRA variable was defined.

So, the call is DDRA now register only although it is a variable in C you would because this
is mapped to a certain register which is fixed in the computer or a microcontroller memory, it
can be referred to as DDRA register. So, say this register DDRA in digital input output
interface in XEP 100 it controls as the name suggests direction definition register.

So, DDR is direction definition register. So, it defines the direction for the data transfer in
this register pins of register A and this is A port that is available on the hardware pins of this
microcontroller. So, this all will be given in the datasheet. We will look at this XEP 100 data
sheet also in a minute. But this DDRA that way happens to be a control register then, you do

not keep on changing the data directions typically in the register.

So, once you define, I am using this register as an output register and the pins are connected
to some output LEDs, | will not change the direction now, once it is set, we will execute that
for say some display of some numbers or dancing LEDs or some LED to glow for to indicate
some operation happening that is the functionality that will built into the microcontroller

program.

So, that way this DDRA register is a control register. Now control register will just set up the
things, it will not put values into any of the functions actually. So, for that you need a
working register that is working registers will actually start putting values in that and

outputting something that you want to execute in your final program.

So, for example, DDRA will set this register to have an output definition for pins of port A
and you actually write to this port A some data and then like that data will be displayed if it is
output port, that is how you have written this program. So, we will see that now in a datasheet

of this microcontroller. So, let us switch to that.

(Refer Slide Time: 18:33)

D) 1A MCOS12XEP100PS0. pol

Home Tools Append|-F8085 pat MCOS12XEP100P,,. % Tiva_Punctions S.., TMAC1230_Laun,.. @ A Signin
we e Q ©@ 1w [R DOO s T B2 - 4 B %
Bookmarks X

[Bpotpor A

> [Chapter 1 Davice
Ovorview MCOS12XE
Family

MC9S12XEP100
Reference Manual

Adobe Export POF
Covers MC9S12XE Family

Convert POF Fles 1o Word

om/docs/en/data-sheet/MC9512XEP100RMV 1. pdf

> R Chaptar2Pon or Exce O
Inteoration Module
S!za PMX Select POF File

> [Chapter 3 Memory MOOS12X.. 0P80 pdf
Mapping Control >
(812XMMCVA) Convert o

> [l Chapter 4 Memory Microsoft Word (" docx)
Protection Unit
(812XMPUV1) Document Language

8> [Chaptor § Extornal Bus

Copyright 2008, 2013 Freescale Semiconductor Inc.

Debug Module
(812XBOMV2)

g Interface (S12XEBIVA) Craate, o0t and wgn POF
g > [Chapter 6 Interrupt forme & agreements
2 (B12XINTV2)

FY) [Chapter 7 Background

2

So, this is XEP 100 reference manual. Now, if you see this manual, it will have 1324 pages.
So, we do not get into reading all these manuals to start putting programming. So, we want
see this the module that is responsible for actually doing this data input output, is this port

integration module and we can directly go to see what is there in that module.

(Refer Slide Time: 19:01)

D) A MCOS12XEP100PSG.pdl
Home Tools Append-FE085, pdt MCOSIZXEPIO0P... X Tiva Functions. .., TMAC1230, Laun... ® A& sl
A, " Y
OB AOO wimu KhDOO en- K- FT B 2 4 B %
Chapter 2
Bookmarks X Port Integration Module (§12XEPIMV1)
© phpbpanctortd
i@ R =
A3 ad |_7‘° Export PDF A
> [Chapter 1 Davice w !
Overview MCOS12XE Adobe Export POF
Family n
- Convert POF Fies to Word
3 [1 Chapter 2 Port hit o Excel Onkne
g m’) Select POF File
£ [Chapter 3 Memory MCOS12X.. 0P80 pof
Mapping Control ‘ ’
k- (S12XMMCV4) Corwert to

> [Chapter 4 Momory Microsoh Word (' docx)

g Protection Unit

3 (S12XMPUVY)

£

> [l Chapter § Extornal Bus
Interface (S12XEBIVA)

> [Chaptor 6 Interrupt
(S12XINTV?)

> [Chapter 7 Background

Dobug Module

(S12XBOMV2)

Document Language:

Croate, 0kt and wgn POF
forms & agreements

Copyright 2008, 2013 Freescale Semiconductor Inc. G,

DO 5 MCOS12XEP100PS0.pal
Home Tools Append-FB085.pd! MCOSIZXEPIO0P... X Tiva_Functions.S... TMAC1230, Laun.. ® & sl

OB ADO v KARMOO® v B P B L 4 8 &%

Bookmarks X

1.pdf
2
=

[epotpor A
> [Chapter 1 Device

L = I

Overview MCOS12XE © Pl o VACAN | € sl it e o Adobe Export POF
3 Family e
Convert POF Fios 10 Word
a’ [Chapter 2 Port o Excel Onkne
] Integration Module
3 (S12XEPIMVY) Select POF File
2> [1 Chapter 3 Memory MCOSIZX. 0PS0p X
Mapping Control »
3 (S12XMMCVA) S—— Comvetto
> [Chapter 4 Memory [T —— Microson Word (. doex)

Protection Unit
(S12XMPUV1)

> [l Chaptor § Extornal Bus
Interface (312XEBIV4)

) D Chapter 6 Interrupt

i o 1 e s

Document Language

m/doc

Create, ocit and wgn POF
forms & agreements

Copyright 2008, 2013 Freescale Semiconductor Inc.

2 (B12XINTV2)
P [Chapter 7 Background
Z Dobug Module

(812XBOMV2)

e 0 |4 MCOS12XEP100PSG pf
Home Tools Append!-F8085 pdt MCOSIZXEPIOOP,.. X Tiva_Functions.8... TMAC1230, Laun... ® A& Ssgam
YO8 Q® @ »/a 1) @ O ® ww - tg- P B2 - 4B %

o Bookmarks X
ni @R

g [epotpor A

> [Chapter 1 Davice

@ Ovorview MCOS12XE- wop
; Fami
£ <t Convert POF Fies 1o Word
5 2 [Chapter2Pont o xcel Ol
£ 8 intogratonModue
g 2 (S12XEPIMV1) Select POF File
£ 2> [Chapter 3 Memory MCOSIZX. 0PS0p X
& Mapping Control ‘ >
3 (S12XMMCVA) Convertto
2 5> [1 Chapter 4 Momory Microsoft Word (" doex)
3 Protection Unit
3 E (S12XMPUV1) Document Language:
g 9 [Chapter & Extornal Bus
g Interface (S12XEBIVA) oo o0 0 o PO
£ %> [Crapter 6 Intorupt forma & agroaments
§3 maNw
S 2> [Chapter 7 Background

£ DobugModule

(S12XBOMV2)

DO 5] MCOS12XEP100PS0.pal
Home Tools Append!-F8085.pdf MCOS1ZXEPIO0P... X Tiva Functions.S.., TMAC123G_Laun... ® & s
OO QADO » ADOO sv- B-P B 2 4 B %

(D Bookmarks X
@ R
S
A B epotpor A
> [Chapter 1 Device
@ Ovorview MCOS12XE- Adobe Export POF
¥
iatd Convert POF Fies 1o Word
25 [Chapter2Port orxcel O
& Integration Module :
2 (S12XEPIMV1) Select POF File
£ [1 Chapter 3 Memory MOOSIZX. OPGPI X
Mapping Control P <
2 (S12XMMCV4) Convert to
> [Chapter 4 Memory Microson Word (" docx)

Protection Unit
(S12XMPUV1)
> [Chapter § Extornal Bus
Interface ($12XEBIV4)
> [Chaptor 6 Interupt
(B12XINTV)
> [Chapter 7 Background
Dobug Module
($12XBOMV2)

Document Language:

om/docs,

Craate, 00t and wgn POF
forma & agreements

Copyright 2008, 2013 Freescale Semiconductor Inc.

And you can see that you can read through some of these details as is port A port B
something is given then there are these different variables will be given. Then number of pin
definitions will be given like that all these things are given. So, you can, if you know this
name of some registers, you can look for those registers as there can say control find and look

for these registers.

(Refer Slide Time: 19:38)

D) 4] MCOS12XEP100PSG.paf
Home Tools Append-F8085 pat MCOS12XEP100P,,. % Tiva_Functions S TMAC123G._Laun, @ A Signin
A ° m 4]
NOEBAOO wiw KRDOO wn-{ T B LZ 4 B %
o Bookmarks X [— d
ORA [
m L
18- B e
ne e « 0 et [epotpor A
> [Chapter 1 Device ol gl O B e
@ Overview MCOS12XE Sf=]=T=]~]~]~]~T~] Adobe Export POF
g Family ::'————————| =
£ T — Convert PDF Fies 1o Word
5 §>Dm2|’oﬂ ..f....]...la.},-. ‘.-.l ..I...]..| o Excel Onkine
0 == 1e] s
2 (S12XEPIMV1) = paet Solect PO Fil
£ £)> [Crapter 8 Momory - — e MCOS12X..0PSG. paf
& Mapping Control P o .
3 (812XMMCVA) 38 [O | G | v | V| Yo o | g | Convertto
g) D Chapter 4 Memory f = .._ — — = d —~— sty
=3 Protection Unit - .l- e | o | | -] -l
32 (812XMPUV1) = Document Language
N E - —————
g 9 [Chapter § Extornal Bus]
a - T
8 Intorface (312XEBIV4) N o) e el e S A Croats, 06t i wgn POF
- A - =TT -
£ D A Chaptor 6 Interrupt == ,E,, :]:] Torma & agreements
S 3 BINVY [I
g 5
S 2> [Chapter 7 Background
Z Debug Module p——)T
&N S12x80MV2)
FAVA
RO A MCOS12XEP100PSG.pdl
Home Tools Append-FE085.paf MCOSIZXEPIOOP... X Tiva_Functions ... TMAC123G,_Laun. ® & sl
A
OB ADO wm/mu KOHOO av- { T B 4B &
o Bookmarks X
1@ R
N [Export POF A
> [Chapter 1 Device
@ Overview MCOS12XE Adobe Biport POF
" Family
= Corwert PDF Fies 1o Word
5 2 [Chapter2Port o xcel O
] Integration Module .
g £ (S12XEPIMV1) Select POF File
LE’ 2 [j Chapter 3 Memory MCOS12X...0PSG.pa
b Mapping Control ‘ >
3 (S12XMMCVA) Convertto
§ 5> [Chaptor 4 Momory Mcrosot Word (* docx)
£y Protection Unit
3 E (B12XMPUV1) Document Language
b4
g 9 [Chaptor & Extornal Bus
2 Interface (S12XEBIVA) Croate, ockt and wgn POF
£D [Chapter 6 Interrupt forma & agreements
S (B12XINTV2)
2
8 2> [Chapter 7 Background
Dobug Module

(S12XBOMV2)

® o Al MCOS12XEPI00PSG. pal

Home Tools Append|-FB085.pd! MCOS12XEP100P, .. X Tiva_Functions_S. TM4C123G._Laun @ Sign In
r 8 Q60 O LU O] - A 4 B 3
0 ks Find
(& Joora [}
- 2}
TET W
AR [Provos | Net B BpotPor A
, & Chapt 238 Port D Data Register (PORTD) T
& gt - Jo—— ————— Adobe Export POF
Iy Family
i ¥ e e L wert POF Floafo Wer
s 20 [Chapter2Pon T [[[[[o []
S S Integration Modulo [P ————
2 e (S12XEPIMV1)

om/docs/en/

g
g
8
2

.Y hrtps:/ rwww.nxp.c

®0 [+ MCOS12XEP100P5G.pal
Home Tools Append|-FB08S pat MCOSIZXEPI00P,.. X Tiva_Punctions.S. TMAC123G. Laun, 0) Sign In

P QO O VOO . L - 4 B %

4 Find
o (S|
[Prvious | Next B EpotPOF A

v Adobe Export POF

I4 Chapter 2 Port
Integration Module
(S12XEPIMV1)

Copyright 2008, 2013 Freescale Semicor

https: / /www.nxp.com/docs/en,

I

So I say here DDRA and | get all the details about this register. So, we can see here, so this is
data register DDRA data direction registers for port A. So now, it gives me all the definitions
if the value is written there, it will be defined as input port or output port like that. It gives all
the description and according to what is written in the datasheet if | set up this register some
number, then accordingly the functions will start happening in the hardware.

So, that is how one goes about programming these different-different microcontroller
interfaces. So, this is about this simple digital input output interface. These are many different
you have DDRB, DDRC and things like that. Then you will have port register port A, port B,
port C is a data register. So, port A when you say like the data will be given to this port or

read from this port.

Port C means the data will be, suppose | want to write or this is port is output port, 1 will
write this output number into this port and depending upon what is your data say that data is
10101010, then wherever that 1 is there that LED will glow, 0O is there LED will be shut off
or something like that.

So, you are putting the hardware pin high and low values on the hardware pin by putting
these data into respective registers, that is our operation that takes place in the input output

ports.

So, this is how we look for programming for little higher-level microcontrollers. So, this
thing you will be able to observe for many different kinds of interfaces. So, these different-
different modules, so, on these, you see different chapters in the datasheet we will find what
are modules that are provided by this microcontroller or in the datasheet you will find all
these modules that are provided and more details of those interfaces will be observed in the

respective chapters of the datasheet.

(Refer Slide Time: 22:15)

Interfaces types =

% Sensor

& Digital input output (Dii/0): Names such as GPIO (Tiva),
Port Integration Module (XEP 100)

% Analog input (ADC)
% Quadrature Encoder Interface (QEI)
& Serial and other communication modes

& Actuator
& PWM
& Digital to analog conversion (DAC)
& Serial and other communication

PRASANNA § GANDHI,
NPTEL gondhi@me.lith ac.in

So, typical interfaces will be of these different-different kinds. So, depending upon
microcontroller that you choose you will have these different interfaces and interfaces names
also will change from one microcontroller to another microcontroller. Say for example, this
digital input output interface as we saw just now in XEP it is called port integration module
or PIM. In the Tiva, it has a name GPIO or general-purpose input outputs. So, like that you
will have different-different names in different microcontroller. So, do not get bogged up

with that you can just understand this is your interface that you need to program.

Typically for mechatronic applications from sensors perspective, we will need these
interfaces, general purpose digital i/o input outputs. Analog to digital conversion and then
quadrature encoder interfaces and maybe some serial or other communication modes can be
possibility. Especially if the sensors give directly the output in terms of serial port or port like
a CAN interface then we will need these serial or other communication modules to be

programmed.

Actuator typically will run by PWM module. In some cases, there is a possibility of running
the actuator by using this digital to analog conversion also, but in most of our cases it may

not happen.

(Refer Slide Time: 23:55)

Digital ifo

& Use: for programming indicators, digital data reading,
writing, limit switches, stepper motor run, direction
control in servo motor

Most common interface available in ALL muc

Pins of registers are made available to user. So if data
is 1in one of the bits of register then corresponding pin
would have 5v physically in output mode. Reverse is
true in input mode.

Reading and writing of registers is done to hay
input and output from and on haréwired pins

PRASANNA S GANDHI,

gandhi@me.litb ac.in L

So, | think maybe now we will just talk about little bit more details of these interfaces. But
we will come back maybe in the in the next class. So that | have this small chunk of thing
about just to maybe base fundamentals of these and then we can come back to this more
details of these interfaces in the next part of the today's class. So, | will stop here for now.

