
Design of Mechatronic Systems

Professor Prasanna S. Gandhi

Department of Mechanical Engineering

Indian Institute of Technology, Bombay

Lecture 18

Microcontroller Architecture ll

(Refer Slide Time: 00:11)

So, let us understand a little bit more about this ARM technology now. So, this Texas

Instruments has developed this ARM Cortex M4 series MCUs which are quite popular for lot of

industrial usage and applications. Some of the usages if you go to the datasheet, you will find

they are gaming interfaces and lot of mobile chips, we may have additional chips as these

controller chips and things like that.

So, there are many-many devices in which you will find this and in the application note it will

give this more details, maybe, or it maybe not now, but (maybe) we can go through some of

these details in the datasheet, but maybe we can get first overview of this technology itself and

then maybe we can go into little more details of the datasheets of this, let us do that first not

jump into, so this ARM technology has lot of these different you can just appreciate for now that

this technology has lot of families of microcontrollers, which are used in many-many different

industrial applications and devices.

And the main crux of this technology is this ARM stands for this advanced-RISC-machine, RISC

stands for reduced-instruction-set-computer. So, this is reduced instruction set computer is

having the main idea or main philosophy, here, to develop this kind of a technology is to reduce

the number of clock cycles required to execute whatever instruction needs to be executed, each

of the instructions that you execute, say you want to move some contents of one register to other

register, it takes some finite number of clock cycles.

Now, these clock cycles determine, how much is time taken for execution of the command and

clock frequency would determine how fast that will happen. So, if you have 80-megahertz clock

which is there in Tiva, and say you are taking 15 clock cycles to execute some command, so you

can find out what is the time taken to execute that competitive command. So, as compared to the

normal microcontrollers where this amplifier is not there and when this ARM technology is there

each of these commands whatever are designed in this ARM technology, they will have the

reduced number of clock cycles to execute.

So, that is why this, they can do really fast execution of your hardware programs. So, that is a

main advantage of this ARM technology, and it is some industry standard now for a lot of

industrial machines, mechatronic systems, people are using this ARM based controller. And the

other thing is that the programs that you write here, even if now the chip is upgraded here, you

will execute those programs with not much of a modification. So, here again the programming is

also based on the base C-level programming. So, we will see what ways, how do you go ahead

and program these.

(Refer Slide Time: 04:39)

So, let us move on to these, these are different, different technologies and corresponding features

of the technology. So, this is a Cortex M4 technology and now more/upgraded model is Cortex

R4 technology. So, there is some more details are given, so this is what this architecture, so this

is Version 7, v7M architecture, so v7R some differences are given, we may not understand

everything at these stages, it is okay, but one can see there are some things that are there in the

advanced, say for example, cache memory is there in this Cortex R4 series, but not during this

earlier series.

So, as people use this and then they demand the manufacture, we want some kind of this feature,

people start developing, the other companies start developing the next versions of the

microcontroller and that is how the evolution of these different microcontrollers takes place. The

way you see the evolution that has happened in your computer systems.

Similarly, there are this kind of evolution that happened keep on, some developments keep on

happening. So, the microcontroller that we will be using or we will be looking at is this Cortex

M4 series microcontroller. And it has this 32-bit kind of architecture, 32-bit data processing will

be there.

So, can you look at some of these details, some details I may also not be able to tell you, details I

will read more about it and I will be able to tell you, but you can try to find out and see if we can

understand some of the parts at least.

Say, for example interrupt latency here is 12 cycles, here it is 20 cycles, it will have some delay

in the interrupt coming in execution. So, this is increased some advanced processing, something

like that maybe there, which is I do not think this is a good thing to happen, I mean we want

interrupts to get executed very fast. But anyway, so as I just said, these are the features that are

given and some advanced features will be there in the higher series. From mechatronics

perspective we may or may not need to get into too many details about these anyway.

So, unless very specific application comes, we should be able to dig into that and see, otherwise

we probably from mechatronics engineers, we do not need to really bother too much about. See,

this floating-point unit is there inside this Cortex. So, this is one can appreciate that you have this

floating-point built-in unit and single and double precisions are also there.

So, these are more precise calculations can be done with Cortex R4 series than M series,

fundamentally. So, even if you do not know in the specific datasheet of the microprocessor,

microcontroller, as long as you know that it belongs to this Cortex M4 series is fine, you know

that it cannot do the double precision as a built-in in the future in the microcontroller, one has to

write a separate program, that means one has to expand more number of clock cycles, to execute

double precision in the single precision inherent microcontroller platform. So, those are things

one can see from mechatronics perspective.

(Refer Slide Time: 08:52)

So, now if you come to this Tiva Cortex microcontroller, its features, if you see in the datasheet

are given in this format. And then there will be some block diagram to explain these more in

detail. So, you have this 80-megahertz operation, so these 80-megahertz mean your clock is

running at that frequency and then depending upon what is the length of your program or number

of clock cycles that your program may take you can have a sampling time which is more or less

based on this, this can determine your sampling time actually.

Then, some memory details are there, and there are communication details, what for

mechatronics system perspective is more important for us is this advanced motion control. So,

they have these PWM interfaces, 2 modules which with 4 PWM generators where there are 8

PWMs in this microcontroller and for total 16 PWM outputs. And so, 2 PWM modules each with

4 PWM generator blocks, so actually it should be 8, I do not know why they calling these 16

PWM outputs, so there may be something more we need to see in more details here.

Then, there are these two quadrature encoder interfaces modules, the encoder which is having A

and B pulses, so that encoder can be now directly connected to this quadrature encoder interface,

you remember why it is called quadrature, because it gives this A and B pulses which are phase

shifted by 90 degree and the combination of that gives over one cycle four different pulses can

be possible.

So, 4 first quad, so that is why it is called quadrature, 4 different pulses you get over one cycle,

because of this cascade of two A and B signals shifted by 90 degrees. So, that phase difference is

what gives you the direction also. So, that is how this entire thing, how to read these pulses and

convert them into count and increment the count if its direction positive and decrement the count

if its direction negative, everything is done by this dedicated interface.

So, you do not need to do any of the operations of this kind to get the number for the encoder

count into your microcontroller system that will be directly given by this, if you configure in this

interface appropriately, you will be directly getting the output ready. And that is what we will do,

we will be sending you this motor and along with its encoder, so we will interface this encoder

with Tiva and see how it can give these counts, like that all we will do as a part of the lab.

So, we will focus on this motion control part and then some part of analog inputs. And so, these

other things are useful package and other things will be useful from, if you want to now build a

dedicated embedded system board for your application, which we will not have opportunity to do

in this course. We will have to do a PCB manufacturing for that and it is not part of this course.

(Refer Slide Time: 12:51)

So, we will move on, from here, this is more details about the diagram. So, this JTAG refers to a

communication interface, which is typically used for downloading the C level program compiled

version to the microcontroller memory and exchange the variables from the memory to this

software program in which you will write the course, which in this case will be Code Composer

Studio to view.

So, there will be some interface that is needed, which will share some memory locations to real

time, what is happening to different registers, what is happening to different variables in what

we, what you have used in program. They all will be exchanged to this interface, to your

computer system to be displayed on your desktop.

So, that you will see, you run some program in microcontroller and you see that, when I execute

this command, this happens to this register all the seen you can see on the on the thing. And also,

you may be able to register the, say if you want to record some signal in time, you will be able to

do that to such a kind of interface, so this is a JTAG or SWD those kinds of interface are there.

And then these are different, you can see this bus system is there and then these are memories

that are interface, so some part it will have a unidirectional some part it has bi-directional

memory. Then, there is some, so this is the interrupt interface, then you just read some part may

make sense some part may not make sense, it is okay, does not matter. So, as, so part which then

makes sense you will go through and read little more and things start making sense.

There is a ROM in which read only memory if you know, I am sure you know, it has some driver

libraries. So, it has, see this ROM has boot loader, that means the system boots for this

microcontroller through this ROM. When you start your computer system also you will have

some small part of the program that get executed, that is written in the ROM, so that your system

is at the, for the first time it starts booting from there.

And then it calls of other routines to execute and get the computer ready for you to work. The

same way it happens in microcontroller, it starts off with execution of this commands in the

ROM, and then the microcontroller is ready for your programming. The important part is that the

driver library is already recorded into this ROM, so those libraries are not fetched and burned

separately through these JTAG interface, they are taken and burned here every time the program

execution takes place.

So, that saves you a lot of what you say programming time partly and also the execution time.

So, the memory of your application will not have any of the library files there, because they are

already coded into this ROM, and there will be call from the ROM to be used. And one of the

other reasons things are fast in some sense in these microcontrollers. Especially the programming

is fast, you will be finding very quickly this program gets loaded onto this microcontroller and

now you are ready to execute.

When you start programming, you notice this difference as compared to what you are doing with

XEP 100 or your Arduino or anything the previous thing, we will find that the program will get

very fast downloaded onto this microcontroller platform Tiva platform.

(Refer Slide Time: 17:24)

Again, here also as I said for the way it was there for XEP 100, if you see the pins here, this is

our GPIO pins, now this is general purpose input output or one can understand this as a digital

input output interface. So, they have alternate functions, so this is important to know that okay

pins can have alternate functions.

So, for example here if you see this PC4, PC5, PC6 these are the pins here, they have, they are

shared between this Phase A1, Phase B1 and Index 1. So, these are the pins for the encoder

interface, you remember that we had A phase, B phase and you had index pulse also. So, these

pins, so when you interface your encoder, you will use these three pins or there are two encoder

interfaces one of the interfaces is this some other interface you will find for two IDX2, PhA2,

PhB2, like that you may find some other pins.

So, in this case they fall as PC, so these are the names of general-purpose input output, PC6, PC5

and PC4. These pins you will connect to your encoders and then you hope that okay you

configure this appropriately. So, naturally then there will be some where you need to say that I

am using these pins not as general-purpose input output, but I am using these pins as encoder

outputs.

So, that configuration, reconfiguration of the pins needs to be done somewhere, there will be

some commands to do that. So, this is how one can understand by looking at these pin diagrams

or some other details, what it means when I start programming? In programming also, it will be

given there, but if we know what we are looking for then it is much easier to find out what we

are looking for and then figure out and go ahead with programming.

So, it is a skill, I would say to develop and that comes through your previous background of

whatever microcontroller programming and you start programming a new microcontroller use

some philosophical idea and then some of these cues from somewhere or some previous

examples of some programming and you need to finally make sure that your application is

running fine. So, that is exercise we all have to go through we will understand little more about

this ARM Cortex technology.

(Refer Slide Time: 20:29)

So, this we will talk a little bit at a philosophical level about the programming, this is important

and see this, see once you have this philosophy firm up in your mind, then actually what to

expect what not to expect is very clear, so we do not need to teach learn a syntax, syntax is not a

big deal to learn, so you might have, we might appreciate that in by now, you might have learned

two, three computer languages C or some other thing.

And the syntax is not but ideas and philosophy or the way of doing things, or way of thinking,

how do I create a logic around this that is what is more important. So, we need to shift that for

microcontroller programming, the way you think in the domain of normal computer

programming, C language programming, although there are a lot of similarities, but there are

some certain distinct features that one needs to be very clear about.

So, we will not talk about much about assembly level program, we will not use it at all actually,

but this is a most fundamental way to program stuff. So, you know all the registered details and

like you say okay for this command to be executed, I know I need to move something from this

register to that register and from then I need to do something, like that you need to know the

sequence of operations to be carried out and you are programming each of the operations for just

doing some simple tasks, that is too much of a treasury.

So, that nowadays is all done by the libraries, so libraries will do this task of whatever is to be

done to get your interface working and your task is to now know the libraries, how to use those

libraries and how do you make sense of different things that are there in the libraries or in the

register level programming.

So, suppose we are doing register level programming, so see, one of the ways is the most basic

way is assembly level programming. Then, little higher than that is in this register level

programming, which you are, so in the assembly level you are actually writing assembly code,

you are not using C.

So, actually C programs finally will convert the code into assembly level only, but you are

directly writing that, but that is not the way just for the sake of completeness of this, but we will

not use that. So, the next higher-level programming is where you have the registers and each of

the registers you know their functionality, the functionality of how do know the functionality?

Functionality will come from the datasheet, in the programming of XEP 100, for example.

So, for programming say digital input output interface, there is a register called DDR, data

direction register, DDRX or DDR whatever ABCD there are different registers. Now, these

registers you need to write something in those as some data and that will have some meaning and

what data written has what meaning is given in the datasheet of the programming for that

microcontroller. And that is how you initiate different registers to achieve different things, for

example, in XEP 100 specifically to have those registers as output registers. So, I want A register

as a port as an output port, then I will use DDRA to be equal to some FF number.

So, then all the pins of this port A will be configured as an output pins. In other cases, they can

be configured as input pins as well. So, like that you write these as a C level commands, so these

DDRA is equal to 0X FF is a command in the C that you will write and when it is compiled it

will do all these jobs about whatever it needs to be done to, at assembly level to get make sure

that this port A is configured as an output port.

So, these registers are called control registers, and then there are some other registers called data

registers. So, you need to understand that functionality of this ratio, it is a control register or it is

a data register and write appropriate values according to the datasheet in those registers and your

programming is done. So, that is how you go ahead programming next level of program for

microcontroller, where you have access, you are directly writing these registers in some sense.

And so, this is next level of programming where you are doing the register level programming,

control registers and data registers separately you are initiating and doing some operation. So,

some of you are familiar with XEP 100 it will be very easy thing to understand. For those who

are not you will need to see those things and see the datasheet and then you can make sense of

some of the things.

So, the idea here is not to understand everything from all the details, no. What we want to get a

point here is that you have these registers names available as a variables and those variables are

initiated to some kind of data values depending upon what is the functionality that is needed, that

is one higher level of programming for microcontroller. And then there is yet another level of

programming where you are now heavily dependent upon the libraries.

So, there are commands that are there in the libraries, that carry out the operation that you want

to do and you have to supply those functions, some appropriate data as arguments. So, that is a

way the Tiva based or ARM Cortex based microcontrollers will be programming in that way. So,

we will get into more details about that as we go down, but for now maybe we will stop here.

We have some more details about the programming philosophy coming up next, different kinds

of things that we need for, specifically for our mechatronics application from the

microcontroller, what we should have in microcontroller, which we will use for mechatronics

purposes. So, that is what will be coming up the next. And that is how we will move on. So,

maybe we will stop here for now.

