Design of Mechatronic Systems
Professor Prasanna S. Gandhi
Department of Mechanical Engineering
Indian Institute of Technology, Mumbai
Lecture 16
Timing and Control Unit: Primitive Microprocessor

(Refer Slide Time: 02:07)

Design of Mechatronic
Systems

+

Introduction to microprocessors

Acknowledgements: Anand (Mtech 09)+
P.S. Gandhi
Mechanical Engineering
IIT Bombay

PRASANNA S GANDHI
gandhi@me.iitb;ac.in

We saw in the last class different, different building blocks of microprocessors. The
combination logic circuits, the sequential logic circuits and we saw also memory and its
addressing. So, in this part now, we will start putting together everything to construct a
microprocessor. We will start off with some small primitive microprocessor construction, and

then we will look at how these instructions are executed inside a microprocessor.

So, we have, in the last lecture, we have seen the operation of transfer of data from external
register to the memory. What are the sequence of things that have to be happening for
different, different pins, that we will carry out that operation. Now, how this operation can be
done by using some kind of a timing and control circuit, we will introduce that here, and then
proceed for introducing more and more kind of a functionality to this microprocessor.

And get a glimpse of what how things are happening inside. So, here the idea is to kind of
introduce you to the basic fundamental understanding here for the timing and control circuits
and the basics of microprocessor instruction sets and things like that, architecture instruction
sets, everything and then based on this, you will be able to understand the modern
microprocessors and microcontroller data sheets in much, much kind of a better fashion. That
is how we have introduced these lectures here.

(Refer Slide Time: 02:10)

Execution of commands
In microprocessor

Givejp‘Physical connections below and a timing diagram for operation of
“transfer of data from register A to a specified memory location”

Notice . > This is external register
Register to store x . From which data is to be

Memory address - an O Transferred to specified
Has been used here B8 A Memory location

Q: Can you see that we need
to make some pins High'and
3 low!in certain sequence?
W

Chip Select PRASANA S cmnnm&m‘ifnyhiCh pins. 2

So, we will proceed with, first with the example we saw in the last class. So, you just recall
this that, we had this sequence of operation to be performed for getting the data from the
external register A now to be transferred to some memory location, where that memory
location is indicated by this address, which is on the address bus here. And that address is

stored in this register called MA.

So, the sequence of operations would go something like, you need to have this output enable
for MA going high, which will take the data from this register and put it on the address,
address bus. So, when the data, the address bus has some kind of data, that particular location

in the memory will be addressed now.

And then you want to make this, enable this chip select and this, so that this this particular
write operation is enabled and then we have this valid data to be there on the data bus and
then this operation, the writing of this data here will be done. So, how do you get the data on
the data bus? To same way like now you have made output enable pin high and then the data
from the register A will be now available on the data bus. So, this will be captured in the

timing diagram as we have seen in the last class, in this kind of a fashion.

(Refer Slide Time: 03:37)

Timing diagram for
write operation

to memory at location given by valid address from external register.

Data Bus *
- transfer

4/ N external

OE(A) Register
See the sequence of operations from 1-8: 1 OE (MA) should be made high, 2,3.
Writing needs to be enabled, 4 OE (A) should be made high so that valid data is

Available on data bus, 5,6. CS WE sheuldibe made low to disable writing, 7 Data
Disable, 8 OE(MA) should be made low.

So, you see at here this is output enable for memory address and then there is output enable
for data register. So, so, you know that now these are the like numbers, some kind of a
sequence that is there in which the operation needs to happen. How would we get this
operation done now? By some kind of a circuit or logic circuit. So, we make use of some

sequential logic for this.

(Refer Slide Time: 04:10)

Generation of

generate sequence of pulses to execute operations 1-8?
sequence of pulses

n We want the bulbs toon
and off one after other

~ » One way: ring counter with
reset =» asynchronous

= Do you recall the circuit??

PRASANNA S GANDHI gandhi@me.litb acin

So, let us understand first, suppose, you have some different problem given here. So, how do
we generate the sequence of of these pulses which will light this bulb first, then this will light

this bulb and then light this bulb and this bulb like that, it should light in a sequence like S1,
S2, S3 and S4.

So, so they need to be on for a while and one, once S1 goes off, S2 should get lit up. So that
is what we want to do. So, how do we do this? So, if you just scratch your memory a little bit
and see our sequential logic circuits, which we have seen there is one example there which

will help you, help us here.

(Refer Slide Time: 05:00)

Recall

Four Bit Ring Counter

% n Simplest counter: timing diagram?
) S3
Out Outy

How many states are getting represented? 1000,
0100, 0010, 0001

Q: what if we start at 000072

Reset to 1000 needed.f0, Stark ..
How to reset to 1000?72

So, if you recall, thing and then proceed. So yeah, it is a ring counter. So, so, this in the ring
counter you introduce this sequence like 1000, so, the state is 1 here which will enter so all
others are 0 and then in the next clock cycle that 1 will come here and then in the next clock
cycle it will proceed here and if you have this feedback which is coming like, so, this is
continuously this sequence will go on in a loop 1000, 0100, 0010 and 0001 will happen for

S1, S2, S3, S4 in a loop and that is what we want for these lights to be lit up in a sequence.

(Refer Slide Time: 05:46)

Timing diagram

PRASANNA S GANDHT gandhi@me.iith acin

The timing diagram for this such kind of a case will look something of this sort. S1 is lit up
first, then S2 is lit up after that, once S2 goes off, then S3 is lit up and S3 goes off S4 is lit up,
then again S4 goes off, S1 is lit up again. And then this this continues in the, in the clock.

(Refer Slide Time: 06:10)

Operation of Data
Transfer to Memory

= Q: How to use this sequence now. to
realize the operation of data transfer
from external register to memory.

PRASANNA S GANDHI gandhi@me.iith acin

So, now, if we want to you make use of this sequence to realise this data transfer operation
for external register to the memory, that is what we are talking about. So, we see the, see the
timing diagram again carefully for the operation that we want to do. And then now we put

this S1, S2, S3, S4 in some, some kind of a time sequence here.

(Refer Slide Time: 06:26)

Timing diagram for
writing data

¥ to memory at location given by valid address from external register.

Data Bus
- transfer

4/ N external
OE (AY Register A
sl is high in the interval indicated same with s2 s3 and s4

Q: can you think of combinational logic and hardware circuit to
achieve th|5 operation? PRASANNA S GANDHI gandhi@me.iith acin

S1, S2, S3, S4 so they are these four kind of a timing zones which we have mapped here. And
in that, like, we know S1 will go high first, then S2 will go high, then S3 will go high, and
then S4 will go high. This is what is going to happen in time for us now.

So, now, how do we use, make use of this S1, S2, S3, S4 going high in a sequence to execute
like what we want here. So, remember our inputs are these WE, CS and address bus and
output enable. So, these are the inputs which we need to provide some kind of proper signals
to these inputs, so that our operation happens in a way that is governed by this timing

diagram. So, let me get the pointer red.

(Refer Slide Time: 07:19)

Physical connections

This is external register
From which data is to be
Transferred to specified
Memory location

Notice additional

Register to store . & Q: Can you think of
Memory address combinational logic using si

Ry Used here 52 53 54 as inputs and

producing ‘appropriate’
outputs to be used inthese
CONNections?.

What should be outputs? See

PRASANNA S GANDHI J;me%magram 9 CSI WE‘I
OE (A) OE(MA)

So, now, think about this, what we need to do, so, this combination logic we can use on S1,
S2, S3, S4 to produce this appropriate output, which can be connected to this OE pin here or
OE pin here, or CS pin and WE pin here, that is what we want to do. So, how do you think
about, so, say if you go back and see your S1, S2, S3, S4 all four cycles, this address bus has

valid data which is coming from making OE for the memory address to be high.

So, we odd these inputs S1, S2, S3, S4, they are odd with each other to produce some output
that output will be connected to this output enable valid address, then all the sequence all S1,
S2, S3, S4 durations, your memory address will be holding, the address bus will be holding
valid address, that is how when we can think about, like that you think about for other pins

what is a combination of S1, S2, S3, S4 to be used and then proceed.

(Refer Slide Time: 08:33)

Physical Connections

With this connections and S1-S4
Turning on-off in sequence we can
Achieve data write operation to
Memory

Several other operations can be
Planned in similar way

PRASANNA S GANDHT gandhi@me.iith acin

(Refer Slide Time: 08:48)

Timing diagram for
This indicates

write OperatiOn That 152 s3 54

Are high in the
sl s2 s3 s4 $— Respective

mlntewals shown
OE (MA)

bus

S

WE 7

DataBus /) /)

4/ N external
OE (A) Register A

Q: can you think of combin&tiai#F kit antidardware circuit to g
achieve this operation? Do not require K map to do this.. Isnt it?

So, you can see now that the circuit is going to look something of this sort. So, you have S2,
S3 connected with OR gate here, S3, S4 connected with OR gate here and then you see that in
S2, S3 sequence, S2, S3 sequence you will have this, this will be S2 and S3 sequence like this
will be happening S2, S3 are here. So, this part will be happening. So, this will be done to the

chip and S3, S4 sequence you will have this valid data here.

So, one can see that by using a simple kind of a like that the sequence of pulses going high
one after the other and some kind of a combination of these, those pulses in the, in the, in the
combinational logic way, we can achieve the task that we wanted to do. So, this is one of the
tasks that we had. Now the question is like many such tasks can be performed now, one can

see that easily.

(Refer Slide Time: 09:46)

Basic Building Blocks

Yoy
L % Combinational logic:
= Adder

= Comparator
» Decoder and encoder

s Multiplexer and demux
= And so on...
s Sequential logic:
» RS and D-flip flops
m Registers or basic memory element

= Counters finite.state.machines (FSM): seq
inational logic

So, we can put together many different, different kinds of elements, as we whatever we have
seen in combinational logic elements, adder, comparator or there is many different kinds of
possibilities are there and many sequential elements also can be there and then we can put

together all these to build now, our microprocessor unit.

(Refer Slide Time: 10:10)

How do we how
work with these to

get microprocessor?

= Use some temporary registers to bring in/out
data from memory and do some operations
with the data

= Operations can be executed using
combinational logic Circuits and output can be
stored in some register or then to memory.

» We further would need some kind of timing and
control unit to carry out desired tasks

» Lets consider the following example

PRASANNA S GANDHI gandhi@me.iitb,acin

Primitive
Microprocessor 1

= Now we will put together memory. registers
and more combinational logic to construct
primitive microprocessor (purpose is to
understand underlying philosophy)

PRASANNA S GANDHI gandhi@me.iith acn

So, how do we this, this work with like we will see with the example. So, so, we want to have
a microprocessor which will consist of some temporary registers and some memory, then you
can put in some combinational logic circuits to do some, some additional, addition,
subtraction operation logic, output operations, all those kinds of things can be put together
and then we will need a timing and control circuitry the way we had these four pulses coming

up here, similar kind of a timing circuit to to execute this desired task.
(Refer Slide Time: 10:57)

Primitive
Microprocessor 1

Arithmatic
Logic
Unit (ALU)

How do you
understand /describe this PRASANNA S GANDHI gandhi@me] Address Bus
diagram?

So, we will see one with some example of actually put together this. So, this is a primitive
microprocessor architecture that is shown here. So, see this microprocessor architecture or

microcontroller architecture where typically given in such kind of a diagrams and these

different, different registers there is a data bus then the registers will have some functionality

that is given in the datasheet of the microcontroller.

This data bus, this this kind of thing tells you that the data from this register can be written
and read also, but in the register T the data is can be only given as an input, one cannot read
the T register like that, you can read this kind of a diagram. And you have a memory, small
memory available in the microcontroller, this memory address register holds some kind of a

address and then one can address this memory, something is there.

Then you have some, this is only adder here. So, this adder is taking a value, value in the
register T and value in the register AL and this is adding together and this is values available
in this register and when you this, put this output enable pin high for this register, then that
added value will be available on the data bus, things like that. So, you can have only this one
way kind of direction coming in, the data is coming on this data bus, you cannot write in this

register otherwise.

Like that some kind of understanding can be built for by use, by reading such a kind of
diagrams. Similarly, you will find these kind of diagrams in many modern kind of a
microcontroller data sheets and one you should kind of figure out, have ability to figure out
what these diagrams really really mean. So, that that can be done. Now, with this
understanding that we have done so far and by reading the datasheet of the, of that

microcontroller.

(Refer Slide Time: 12:58)

Primitive
Microprocessor 1

» Q: How do you understand/describe this diagram?

— This mup consist of two registers A and AL which are data
read write, and one write only register: T

— ALU has only one operation addition. It adds contents of;

register T and AL and saves it in its register

— It has memory address bus of which is connected to
register MA

- No specification has been given about size of memory and
the size of the data
= Now suppose if the connections of: four signalsisi,
s2, s3 and s4 are given below, guess What
operations would be achieved?

PRASANNA S GANDH gandhi@me.iith acn

Use states S1-S4 from
previous example

Q: what are the operations carried out in each high of
states 51-S4??

PRASANNA S GANDHI gandhi@me.itb.acin

Use states S1-S4 from
previous example

Lets focus on part when sl is high

Observe: Contents of register MA will always be on the address bus
S1 goes high = data at the Iocaﬁor;whsdAvyls%Jingecggnslfher_red to data
Further it would be written to register T oo e

Use states S1-S4 from
previous example

Why do we
Need AND
Gate here?

To make sure
Valid data is S3
Stored in T

See timing
diagram

ALU-adder

PRASANNA S GANDHI gandhi@me.itb.acin

Use states S1-S4 from
previous example

Lets now focus on part when s2 is high
S2 goes high = data at the Iocano%mgyggg transferred todatabus ~ Address
Further it would be written to register A

Use states S1-S4 from
previous example

Lets now focus on part when s3 is high
S3 goes high = sum at the location ALY would, be transferred to data bus Address ,
Further it would be written to register A

Use states S1-S4 from
previous example

Lets now focus on part when s4 is high

$4 goes high ¥ sum at the location, Awould,be transferred to data bus Address ,
Further it would be written to register in the memory location pointed by address in MA

So, let us proceed with the with some some operations here now. So, these are our
understanding of this microprocessor. And suppose we connect now some signals like S1, S2,
S3, S4 in this fashion. And | tell you now, can you just guess for such a kind of a diagram,
what is the operation that will be happening.

So, read this carefully like how this S1, S2, S3, S4 are connected to these and and they are
going in the same sequence high. So, S1 will go high first, then S2, then S3, and then S4. So,
you can pause here for a while and figure out like little bit at least to think about what will
happen in S1 sequence for example, what will happen in S2 when S2 goes high. So, like that

you can think and then you can proceed. We will go one by one in the, in the understanding.

So, let us say S1 goes high. So, when S1 goes high the contents of this register MA, which
are always there on the so, see this has no output enable nothing. So, this is always connected
to the some memory. So, contents of memory register, this memory address holding register

will be available on the address bus, there that is there for always.

Then when S1, S2 goes high, this S1 goes high in this thing then this chip select will happen
here and then this memory will be selected. Now, this memory is getting selected and then
the data from this will be available on the, so the data from these will be available on the, on
the data bus. So, data, which data is available? Data which is at a location which is governed

by this address here that will, that data will be available on the, on the data, data bus.

Then what else is happening, that data is this, this is write here. So, when S1 goes high that
data is also getting written in the, in the register T. So, data will be fetched from the memory
location and it is given to the register T. So, there is a clock that is kept here to make sure that

this clock signal is given along with S1.

So, S1 you remember it is half, this S1 it goes high for a full clock cycle and this when it is
ANDed with the clock this output will be only half cycle up. This is done to kind of make
sure the there is no clash of the data or the the write operation is completed well before like
the data gets invalid on the data bus, so that there is no clash with the data. So, some some

some nitty gritties of that sort are are done, which you do not need to really bother about.

So now let us see what is happening in S2. So, that is what we saw, why do we need AND
gate here and then yeah, so, now when S2 goes high, you can see S2 is here and S2 is here,

what is happening here is again something is getting written here. What is getting written?

So, see this output enabled for this A register, so that is going high, this OR gate, that is going

high, that means data from register A will be available on the data bus now.

So, you see the data bus, same data bus is sharing in all different registers and memory and so
on and so forth. So, so, the data from A will be available on the data bus and it is written in
which register now, it is written in the AL register, that is happening in the, in the second part

of the sequences 2.

So, you remember the first part, the data from the memory was available here and was
transferred here. Now, in the second part like the data from the register A is going to get
transferred here. Then what will happen in 3, S3 goes high, you see that these data from this
this is now added together, this is the data which is data in the register T plus AL will be
added together and that data will be available now on the data bus.

Now, which register that data is written? That data is written in register A again. So,
whatever was previous content, it was overwritten and like that addition will be available
here. Now, that is what is done here. And then what is happening S4 sequence? You take this
data, which is from, from S4 register now, it is put again on the data bus and in S4 it is now
write enabled and that data is is written to this memory.

So, so, these are like typically you can you can see that the sequence of operations is going to
happen, there are some nitty gritties that we need to figure out and things like that, but this is,
this is giving you some kind of a sense of, oh this is how like something is connected together
the same operations can be performed.

(Refer Slide Time: 18:49)

Summary of

Operation achieved

m Say in state S1 (s1=1, s2=0, s3=0, s4=0): cs’
=0 chip will be selected, contents MA will be
on address bus memory. (always), read state
= data at location MA would be on data bus
and would be transferred to register T

» State S2 (0100): Data from register A will be
transferred to register AL

n State S3 (0010): Sum (calculated by adder: in
ALU) will be transferred to A

» State 54 (0001); data from A to mermory
location

And we know that these operations are has not great meaning here. So, one can have the
summary of these operations which are achieved in different different state, but you can see
that, the some kind of a successive addition is performed here on some data, but it is not a
greatly meaningful kind of thing.

And also, suppose we do have this microprocessor, this will be only doing this, there is no
other command that is to be, we cannot write any command that saying that okay, oh, this is
my, is my programme, and | want to have like something done like that or I have to want to
have some instruction set which will, which will control this kind of operation, nothing like
that is there right now.

(Refer Slide Time: 19:30)

Operation achieved

+- Not very meaningful
‘Timing and control” gives only one possibility
Only one command or: instruction or: sequence of:
states (its like a one line ¢ code, not meaningful isnt
it?)
Four ‘machine (clock) cycles or 'T” states” in this
command
We need more meaningful operations to be done
How can we do that??
Lets add more registers to our primitive
microprocessor and then define some operations

PRASANNA S GANDHI gandhi@me.lith ac.in

So, we want now to have such a kind of a facility, we build some more stuff in the, in the
thing. So, so, we add some more registers to our primitive microprocessor and look at some
more operations with this microprocessor 2. So, this is a microprocessor which is having now

like a lot more number of registers but still that additional, addition ALU is there.

(Refer Slide Time: 19:42)

Primitive
Microprocessor 2

Next: lets enhance capability of the
microprocessor by having added functionality

of coding or writing sequence of instructions to
Perform desired operations, how can we do that?

PRASANNA S GANDHI gémmﬁ‘mc.um acin

So, there is, there can be many different logic elements that can be used in ALU, to arithmetic
logic unit to kind of perform many many different operations, one can now guess that it is
very easy to see that we can have a lot of things put together in in our ALU, you can have

some some counter or other kind of things also put as a part of this microprocessor unit.

So, now, what we, we need to introduce here is is we have like notice here we have
introduced some some more register called PC register, like a programme counter register.
So, this will keep track of which instruction you are, you are running at present. So, you have
some sequence of instructions that are typically written as a program, that is what you write
when you write a programme, you write some first command line, second command line like

that you write this and one after the other they get executed.

So, so, this programme counter register is a special register which will keep keep track of that
count, that it will, it will fetch the instruction first whatever it is that you have written that
programme, it will fetch that instruction and it will be put that into instruction register is other
kind of facility that is there, is a special register. So, these are all, they are all some special

registers having some special functionalities, in the microprocessor.

So, typically, you will have these kind of not all registers can be accessed by a user, this is a
typical very typical for any microprocessor, you can address for example, this programme
counter, so, you cannot write anything into that, you can just read from the programme
counter register to see, like that you will have in every microprocessor, some kind of a special
registers will be there.

And every registers will have some function, functionality and that functionality will be
written in the part of the datasheet, you do not need to guess from just this diagram, the
diagram is helps you to kind of guess some of the aspects, but the rest of the thing can be read
from the, so, read from the datasheet of the microprocessor.

So, there is, there is this other kind of register which is typically will be there now, it will
have this memory address holding register, from that register the address can come on the
address bus and that particular like location in the memory will get addressed. So, this is
some kind of a description or understanding of this diagram.

(Refer Slide Time: 22:28)

Primitive
Microprocessor 2

= Q: How do you understand/describe this diagram?

— Description same as Primitive MuP.1 for common registers

— Notice there are additional registers: IR, W, B, and PC
(program counter), W, B are general purpose registers
with same read write functionality as A.

- PC is special purpose register to keep track of sequence of;
execution of operations, We would like to have this
sequence pre-stored and changeable or programmable;
(Its similar to writing ¢ code commands one after other),

— IR s instruction register which allows us towrite
instructions (similar to each command in C code).
Depending on instruction different operations would be
carried out.

PRASANNA S GANDH gandhi@me.iith acin

Primitive
Microprocessor 2

ALU(add!
e ALU(edd)

There is special functionality to MA register! Do you se€

that!?? We want data from data bus transferred to MA when

WR is enabled. However the data should get transferred

To address bus when OE is enabled !!

Q: How can you achieve this conneztizm s st gandhiemetsac
ELQ: Why we need such functionality?

So, you can pause here and read through and understand little better if at all you need to be.
So, now, there are some questions that we can raise now. So, these are like some kind of a
special registers and how these registers would work is what is get gotten here. So, we do not
worry about, so, what we want here is special functionality to this register, we want the data

from the data bus transferred to MA.

So, some data from the data bus can be transferred to this register, but you cannot read and
transfer any data from this register back to the data bus. And that data will be transferred to
the address bus when the output enable is is. So, this functionality is needed, can you guess,

why this functionality is needed?

See we have written some kind of a programme in some memory locations. So, when we
execute, we need to give microprocessor location from where you want to execute, that
location when you give that location will be a starting point for this memory address register
to hold, and that address will be there on the address bus and then that address can be
transferred to the address bus and then your, your address bus is pointing to that particular

location where your program is written in the memory.

And now that first command that you have written and for the programme that can be now
fetched from, from this data bus, fetched from this memory and gotten onto the data bus and
transferred to this instruction register IR, these are the, so this register will typically not see

for a user to be accessed.

We are giving this here to just to give you some glimpse of how things are happening inside.
So, this register you will not be able to see or many times they will not even kind of put them

in the, in the architecture. Because the user is not concerned with those registers too much.

(Refer Slide Time: 24:58)

Enhanced
Operations: Coding

= Q: We wouldlike to have afacility:in which we
write some code or program (Sequence of
instructions iniserial manner)inithe memory and
then it should'get executed. Lets say we have some
instructions written at memory.locations say 10, 11,
12 and so on. We would'like to have these
instructions brought into register IR sequentially.
How would you propose to dojit using register PC
(program counter)???

First program counter: (PC) register: should'hold
number 10 (memory location where first instruction
is stored), then what?? How do we fetch this

\SANNA'S GANDHI gandhi@me.iith ¢

instruction and place;it in IR?2

29

So, now the question is we would like to have this facility to code or programme and that say
say some some instructions are written in some memory locations and we would like to have
these instructions to be fetched as | said from the memory and given to this register IR and

now from IR they will be taken and executed in some way.

So, let us see that how, how things happen little bit in more detail. The say programme
counter is holding first memory location and so, this programme counter if you see is, maybe

here you can see, so, programme counter is holding that first memory location. So, that
programme counter will be now holding the starting point, that starting point address will be
transferred to the data bus from there it should be getting to the memory address register and

then it will be available on the address bus.

The moment this is executed then second address, this programme counter will update,
increment by one and then second memory address will be there here, then again it will be
taken here, from here it will be transferred to this and again it will be executed or this it will
be addressed and then the second line of your command or programme will be, second
command of your programme will be transferred to the instruction register and then it is

executed like that this sequence will continue further.

(Refer Slide Time: 26:46)

«;% Enhanced

Operations: Coding

% To get the first instruction' (written at location| 10;in
memory) from memory number: in PC should be moyed
to register MA so that register at thisilocation|(10)/is

selected for read (OE) operation. This can be briefly
represented as MA € PC

Next step now. is to transfer contents of; this register in
memory. to data bus by enabling OE (mem).

Next the data on data bus should be written to register
IR. Both of these can be briefly represented as IR
M[MA]

Then we need to increment PC register by'1 so as to
keep it ready for getting, the next instruction PC €

meith,ac. 30

PC+1

So, so, now, we will now create this kind of brief notion for the, for the instruction. So, PC to
MA, what, what it means, contents of this register PC are transferred to MA. So, so for that
lot of operations are to be done before, so, so, the way we said okay external location some
some data hold in external location to be transferred to the memory, now, this is just to

transfer from one memory, one register to other register, there is no memory involved here.

So, so, programme counter transfer some data to memory register. So, we we now see that,
this this other instruction that we want to see that memory address will be given by this
programme counter register which is now holding the memory address, that is pointing to
some memory location and the data from that memory location needs to be fetched and

transferred to the IR register.

So, this will indicate briefly as M is stands for memory, memory which is like pointing
pointed by this memory address register that particular kind of a location whatever is there is
is to be transferred to IR register, this is how we represent this small, small commands. And
then PC is incremented, so, programme counter needs to get incremented. So, these are like

small, small brief, briefly we write these commands.

(Refer Slide Time: 28:30)

FunctionaEty/Not.ilon Ef programming added
Primitive
Microprocessor 2

So we see that there is special functionality to register PC!
Every time its read it should update the count by 1 and there
Should be facility to clear it

Q: How can we achieve this? Think!!!

PRASANNA S GANDHI gandhi@me.iitb ac.in

Program Counter
Details

s . v v >
+ = How can we achieve program counter to function in
a way described?

= There can be multiple possibilities again!
— 1, Use the memory register and adder to achieve

the job (this however cannot be achieved in one
clock cycle)

— 2. Use actually the counter: we had seen in
previous class

n Lets say we use second!option and assume for sake
of discussion and understanding fundamentals that
its counting only 8 states (3 bits) = we take a
counter previously designed'and'provide additional
facility needed!!*$hintetewenoeld you achieve 2

hig2?

Program Counter Details

databus ¢ l

(0/3
—>| WR COUNT
PC CLR

Only when the pin COUNT sees a pulse count is updated. How will we develop such
circuit?? Think!!!

So what we want is to give control of update (clock input to Dffs of the counter circuit)
to be considered as an external input and be connected to COUNT!! Isnt it?
See circuit in the next slide

PRASANNA S GANDHI gandhi@me.lith.acn

We will use this PC for our discussion further

Can you think of further enhancing:PEvodinitiatesitmetac
at desired number?? CLR makes it all bit 0 to start
with!!!

And now, we do not worry about how this this will happen actually. So, let us kind of skip
through this part, how the programme counter is function to do some some things that are
described. So, let us not worry about this part here, this is more like a how do you digital
circuit will design about about that. So, these are more details about how the programme
counter is, is made to function the way it is there.

(Refer Slide Time: 29:05)

Enhanced

Operations: Coding

s M(- PC Command example 1

IR € M[MA]

PC € PC+1
These operations should happen irrespective of any.
additional operations for each command
Each of these operations can be considered|as state
We add additional operation and it becomes one
command (Sequence of states) Ex move contents of
register A to register B
MOV B, A

MA € PC

IR € M[MA]

PC 6 PC+1 PRASANNA S GANDHI gandhi@me.lith ac.in

So, these are the operations that we said should happen. So, programme counter contents
should go to memory address register and then whatever is addressed by that register to the
memory, that location of the memory, contents of that location in the memory we transfer to
IR register and then we update these, these are the, this is the sequence of operation should
happen every single command that we execute. So, irrespective of any additional operations

that are to be done.

And then we can have these additional operations that move B to A or some some kind of
operations that we we can add to this sequence. And now we want this thing to be executed in
some kind of a way by using this, some kind of combination of the states or combination of

the some of these, these each of these can be designated as a, as a state.

(Refer Slide Time: 30:07)

‘ Enhanced
Operations: Coding

MAde PC Command example 2
R€ MMA]

PC € PC+1

= Another command may, consist of: some different
operation (above 3 are goingite/be common to all

commands). Example say addof: two numbers stored
in registers A and B and store the addition/in register
A. By looking at the microprocessor architecture can
you write down sequence of operations (states)?
MA € PC Funda: To qualify what you chose as an operation or state
IR € M[MA] It should be achievable in one machine (clock) cycle .
For example by looking at the microprocessor construction
PC € PC+1 A € A+ B cannot qualify as single operation. Think why?
AL €A You cannot perform this in one clock cycle?

TEB Q: why we.need this funda at all? It is to finally develop,
Sequencial circuitary to achieve the command result?

— /IR € AL+T

So, we will see how this operation can be executed in g, so, this is example of another kind of
a command. So, this is so, these three are common and then now contents of A are to
transferred to the AL register, contents of B are to be transferred to the D register and A
should again hold the addition of AL and T which is given by ALU, arithmetic logic unit.

This is another command that we have built up. So, we are we are kind of building these
commands now, this is command one where this just moving of contents of A from register A
to B happens and then like this is a second command. So, so, we want to see like how these

commands can be finally executed.

(Refer Slide Time: 30:57)

1o Y, St Contents of A
S2 (IR) €= M[MA]; MOV BA 00 register is moved
K et to be B rgiter
SummggLof s3 =
2 §1 (MA) < (PC)
Other commands />SZ\ S2 (IR) < M[MA]; ;hI: acg:::ntt: of
Operation St s (PO oo B eianar
to be Ak S4(AL) «(A) A and placed
carried S5(T) < (8) D resultin A
Sox__S5 56 (A) €= (T)H()
out 3 $1 (MA) < (PC)) The Contents of

Notice different Py S2 (IR) < M[MAJ; the location
Feature of st N\ = (PC) &« (PO)H — whose address
instruction s7 S7(MA) «(PC) is given by the
3. Instruction is 2 G J S8(W) <« M[MA]; second byte
part instruction. R % =0 « (PO after the opcode
First part is actual S9 S9 (MA) <= (W) is moved to the
command and the §10 (A) <= M[MA] register A
2 part holds S1 (MA) < (PC) Contents of register
more information S2 (IR) <= M[MA]; Aare moved to the
needed to (PC) = (PC)+1 location in memory
execute: address S7 (MA) <= (PC) STAaddr 11 whose address is
of memory S8 (W) «— M[MA]; given by the second
3 location from (PC) <« (PC)+1 byte after thg

reL | where data is to 8 (U <) P
NPTEL S11 M[MA] <—(A)

So, we create this kind of a table in which like we have this commands which are now called
mnemonic. So, these are like assembly language kind of commands. So, typically this is a
way this is syntax that will be used in the assembly language for for moving some data from
one register to other register, add something to that register like that, you will have these

different different kinds of commands that will be possible.

So, say for this first command we want this, this is micro instructions that are called. So,
whatever these we say PC to MA, this is a micro instruction, so these micro instructions are
typically which can be completed in one kind of a clock cycle, and you have like second
instruction, micro instruction, third micro instruction, like that three micro instruction are the

required for executing this one single command.

So, this is your command, and then there will be some code associated with that command.
So, we do not need to worry about this code here, this code will be used by this IR register to
actually execute this sequence of things and how that happens, we will get some glimpse of
it, but we will, we will not get into too many details about it. So, so, these are the three kind
of operations to be happening one after the other for first command like that, you can have
the second command operations.

And the, what it does here, result and it is code, so, typically, these are the things involved in
every of your instruction set. So, this is assembly language is one of the fundamental kind of
a language for the instruction, here each microcontroller will have its own instruction set, and
it will produce some kind of instructions or some commands it will be mentioned there, and

that its commands will get executed by using these kind of a micro instructions typically.

So, you are just getting a small glimpse of that. So, this is a second command that we have
generated then some kind of a third command | am generating here. So, we will not get into
too many details about how these commands are, how, what are these operations and things
like that, what we want to see is that every command that or every instruction that is issued in
microcontroller or microprocessor will have this some set of micro instructions to be

executed and they are executed by using some kind of timing and control unit.

So, all these micro instructions together, you can see that we want now, only, we will add this
S1, S2, S3 we have said here, but S1, S2 are common, because these micro instructions are
common, but S4, S5, S6 are new kind of a micro instructions, like that you will identify every

command whatever you want to, want the operations to happen for that command, we will

add these micro instructions to this set and all these micro instructions form like distinct kind

of operations that are to be performed.

And now these operations can be say up to here when we come there are 11 kind of states
that we get distinctly here. So, these 11 things, these are like remember, these are to be
executed in one clock cycle kind of a thing, the way we had executed S1, S2, S3, S4 in our
previous example, the same way this will happen now but the logic will be a little more

complicated and more involved.

(Refer Slide Time: 34:44)

Based on four commands consisting of various operations
All possible states are collected together

% Summary of state
=y =) definitions S0 is added to initiate PC
V £ Others are from previous
STATE/ Data transfer operation
Operation

Note: some of the states
are common to

(PC) €0 various commands.

S1 (MA) € (PC) Q: Are number of

$2 (IR) € MMA]; (PC) = (PC)+1 C:nsganfsla::d gt;[nnmrl
$3 (B) € (A) Ol €S related’ !

Q: how to use these
S Lohall definitions in our
5 Me® primitive mup 2 to
S6 (A) € (T) + (AL) achieve operations??
S7 (M) € (PC) Say when signal s1 is
S8 (W) € M[MA]; (PC) € (PC)+1 high operation (MA)€
59 (MA) € (W) (PC) should be carried
S10 (A) € M[MA]'«,"; SANA 5 GANDHI gunedhi@rn, In L 38
S11 M[MA] € A

So, we will just get a small glimpse of that. So, these are like 11 kind of distinct operations,
which are kind of called the states here. And now we want to have these states executed in a
one particular kind of way, when command 1 or Command 2 is issued. So, if we have these
four commands that are defined for this microcontroller and we want to execute whatever

commands that is written by the, by the programmer.

So, but then they, when they when this command is issued then this operation should happen
is what we want to make sure. So, we start generating a state diagram which is now
dependent upon the, the instructions that are there, four instruction that we have. So, so, SO,
S1, S2 will be instructed, will be executed anyhow, then S3 will be done only when the

command issued has some particular format or this is a command which is having code 00.

So, we start drawing this kind of a state diagram from here saying that S1, S2, S3 are same

state I will go from SO, to S1 to S2, and then | will go to, go to S3 only when IR is equal to

something, like that, we will start drawing the complete state diagram and then we will start

connecting the signals.

(Refer Slide Time: 36:03)

Connections of Signals to
Achieve the Tasks

ALU(add!
i (add)

I3 1211 lo

TO TIMING AND
CONTROL CIRCUIT

Q: for example, when when s2 goes high &

And low for one clock cycle what is achieved?
L Can you thlnk || PRASANNA S GANDHI gandhi@ay X

Example check state s2

Connections of Signals to
Achieve the Tasks

ALU(ad:
- LU(add)

I3 1211 lo

TO TIMING AND
CONTROL CIRCUIT

So, the signal connection again can be seen in in a way that you want to have these operations
to be done. So, this is a kind of very easy as as similar to what your previous example. So, we
have the signal connections, signal states identified and for each of the states now, we will do
these kind of a signals connection to do this task.

So, now, whenever like, you know, this S1, SO goes high, this part will happen, when S2 goes
high for example, this part will happen, that is going to happen, you can check it here. So, so,

one can construct that very easily, and then what we want here is now the loop, the state

diagram to be generated for these instructions to happen.

So, say for example, S2 when this happens like S2 is here, S2 is here, S2 is here, we can see
that, this, this this will get executed when S2 is going high. So, so, what we have done is so
far is identified the states and each of the states when it is to be executed, what is to go high
and low in this connection we have done. And now we will see what is, how it is to be

executed.

(Refer Slide Time: 37:32)

= Q: Now how to loop through each of:
the different loops seen before

PRASANNA S GANDHT gandhi@me.iith acin

Timing and Control
Unit

m Total states: 12

S"l » Instead of having single
S loop we will have four:
. loops
. m Loop to be executed is
—_— governed' by combination
" of IR0 and IR1

:: » Use decoder to generate
i Z‘° 10, I1, 12, 13 based on
" IR0 and IR1

PRASANNA S GANDHI gandhi@me.iith acn 42

So, so, for that we saw, we will use this kind of timing and control unit here. So, we had
previous unit which has simply to go through S1, S2, S3, S4 that is it, but now here we want

to have this control given by this IR register as | was saying before, that S1, S2, SO, S1, S2

are executed anyhow, but S3 we should go only when IR has something.

(Refer Slide Time: 38:08)

State diagram

-)
+Q: How to achieve this using
Our sequential logic??

Ro=t ¥ IRi=0

0-0-0-00
—— «— «—

v

Ro=1 y IRo=0

Ri=1 IRi=1
PRASANNA S GANDTH{ gandhiG? acin

So, so, so, we start writing it as a state diagram. You remember our sequential logic we

developed by using state diagram. So, this is how we develop this diagram. So, when IR is
this from 2 you go to 3. And then you go back from, otherwise IR if it is something else you
go through these different states, then again you have some, some kind of a way, this is like a

you get this sequential logic diagram done.

(Refer Slide Time: 38:58)

Timing and Control
Unit

(0) n Consider: one loop how will you
achieve this without control of IR0
and IR1?? Same as before see
below!

L.,
o

‘ .
IR1=1"" IR1=1
IR0O=1 IR0=0

5 = However we want now additional
2t04 >l control of code 00, We first use
IR0 decoder L mwmscﬂ%ﬁ@ﬂﬁ‘}«t&ﬂﬁx signals IO! Il' 12, 134
&)

corresponding to four instructions

Timing and Control
Unit

» To use these signals to have
control now what logic you can
think of?2?

v
0:9,0—
IRO=1 IR0=0
» (Can you think in the same way as
this for getting the circuits for other

PRASANNA S Gmp.fmh-mmc,nm acin %5

And then you can execute this logic by using your so, each of these states will have one D
flip flop selected, and we can start connecting things together and we add on with the D flip
flop, some more kind of a logic elements to get this executed. So, | will not get into details of
that again, we will just directly see the, see the final result here. So, you can pause and go

through some of these things in more detail if you want to later.

(Refer Slide Time: 39:08)

Circuit realized using
similar concepts

{‘Im lo S3
2t04 It (LR
Ro—3| decoder I D Q
1 K

(12+13)

So, this is how this final circuit is going to look like. So, so, this we generate depend upon
instruction we use decode the instruction and get these pins high and when these pins are

high, then the sequence of operation is going to run according to the state diagram that we
have seen.

(Refer Slide Time: 39:29)

O

So, this is like a complete picture of this stuff. This is what typically you will not get to see
these in the microprocessor datasheet, what you will see is only the architecture that this has
this registers and that registers have this functionality, how it happens, you do not have to
bother about. So, this is like a complete picture of, of a typical microcontroller execution

operation execution that happens in the microcontroller.

And of course, there will be a lot of other facilities, you can have additional registers put
together for getting these for loops, while loops and then storing something for temporary
that stack and other kind of registers can be introduced. So, once you have this base
understanding of how things are happening then all the other things can be imagined very

nicely how they would have been happening there.

(Refer Slide Time: 40:22)

Summa
Iy
+ s S1 and S2 are common to all paths: read
memory location pointed by PC and place its

contents in IR register and increment PC

= Four different paths can be executed by placing
appropriate “code” in the IR register

» The sequence of codes to be executed is saved
in memory (repeat possible) and fetched from
there in every “path” by S1 and S2 commands

= We have designed a microcontroller having 4
instructions (codes 00, 01, 02, 03) executing,

PRASANNA S GANDHI l,ll'ﬂhl&!‘m!ulb .

Summary

Each of these group of instructions (executed for each
Sx in one clock cycle)iis called' micro-instruction

An instruction say' MOV B,A consists of: several micro-
instructions (3 in this case)

When muc is put on it first initializes PC to 0. (state S0)
then goes through instructions S1 and'S2. Thus the
execution of instructions stored in memory. locations
from 0% address begins one by one.

Thus desired program: “in machine language”can be
developed

PRASANNA S GANDHI gandhi@me.iith acn

& & The program can be written in ‘mnemonics’ as
+ LDA 30H € H here signifies hex:
MOV B,A Do you recall what this does?
LDA31H :
ADD B
STA 32H

= Can you see what this program would 'do.in terms of commands
developed before

= |oad A with contents of memory location 30H

= Move contents of A to register B

s Load A with contents of memory location 31H

= Add contents of A to contents of B and store addition in A
= Store contents of A to memory location 32H

» Easier to understand and develop bigger: programs, without
getting into detailsdFhardwaredpserations of making pins high”
and low

So, so, this is just a summary of this whole thing all process of this four lectures on
microprocessors that we have done to get all the basics very very nicely understood here and
this understanding will help you read through the data sheets of microprocessor very easily.

So, so, we have this these instructions.

These are called typically assembly language instructions and each of these instructions will
consist of several micro instructions and each micro instructions will will tell you that much
time will be taken for, so, if you have three micro instructions to run these then three clock
cycles will be needed to execute this. So, you can get also some sense of how much time will

be taken to execute my my command.

And this machine language or assembly language is what is called this instruction set is
termed as, and and this is how you write a programme in C or any other language, it is getting
when it compiles, what that compiler does is basically converts all your hard language stuff
into this assembly language instructions and and then executes that same language instruction
the way we saw, they get executed by using the timing and control unit. So, this that is how

like, things happen typically in the microprocessor. So, we will stop here for now.

