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So, let us just do a proof of this. So, one convenient way of writing this particular condition is

to simply write this lambda star transpose Ax minus b equal 0. Why is this, why can I write it

like this? The reason is because I know that I know that, Ax minus b or rather b minus Ax is

always greater than equal to 0. Since b minus Ax is greater than equal to 0, moreover lambda

is also greater than equal to 0.

So, then their inner product will be 0, only if you have this; only if you have this sort of

situation, where if there is slack in one of them then the other one must be, the other one must



be 0, right. So, this would be a compact way of expressing this. So, let me write it more

neatly.
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So, for x star in omega P and lambda star in omega D. The above condition; the

complementary slackness conditions, [mentary] complementary slackness conditions are

equivalent to lambda star transpose Ax minus b equal to zero and A transpose lambda minus

c, the whole transpose x star, sorry lambda star here x star equals 0, ok, alright.

So, now we want to show the necessary and sufficiency of complementary slackness for the

optimality of x star. So, part 1 is say suppose, x star in omega P is optimal for the primal LP.

So, now if x star is optimal for the primal LP ok, is it possible that the dual is infeasible?
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It is not possible, because the duality theorem of linear programming we learnt that if the

primal has a solution then, so does the dual right. So, it cannot be that; if you have a finite

optimal solution for the primal, then you cannot have that the dual is infeasible. 

So, which means that what this means is that omega D is not empty, ok. Moreover omega D

is not empty and so it cannot be that dual is infeasible and moreover there always exists a

solution to the dual. And the optimal values are equal. We know that from the theorem of

from the strong duality theorem.
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So, optimal value of primal LP equals the optimal value of dual. What does this mean? If I

look at C transpose. so C which means that, first not only that the omega D is not empty,

there exist a lambda star in omega D.
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Such that C transpose x star, which was my primal optimal value is equal to b transpose

lambda star, alright. Now, if we compare this with this particular, this strong duality

statement compare that with the weak duality statement, which is written here, the weak

duality statement which is written here. Then what say and this weak duality statement

remember was for all x in omega P and all lambda in omega D.

So, consequently we get by taking x as x star and lambda as lambda star, what are we going to

get? We are going to get that C transpose x star is equal to lambda transpose Ax star is equal

to b transpose lambda star, by combining with weak duality, ok. So, now what does this say?

What does this say this what does this; what does the red statement here say? Well, the red

statement simply says that, now I can do the following, I can put I can take this part together

there are actually two equations here.



There are there is one equation here and another equation here. So, let me take one of, each of

them separately. So, what is, what this is effectively saying is that lambda star transpose Ax

star minus b equals 0. And that A transpose lambda star minus c, the whole transpose x star

equals 0, right. 

And now, since this must since if these are if the if this has to be if these have to be equal to

0, what does this mean? This means that it has to be that component wise, component wise

they should be equal to 0; that means, see remember this quantity is always less than equal to

0, this quantity is always greater than equal to 0. This quantity is always, this quantity is

always less than equal to 0, sorry this is greater than equal to 0 and like and this is and this is

also greater than equal to 0. 

So, for the inner products of these vectors to turn out to be equal to 0, it has to be that

component wise they are actually they are each 0. Otherwise, the you will not get that the

inner product ends up 0. You in the first case you would get that the inner product was is

negative, otherwise in second case you will get the inner product is strictly positive, right. 

So, what does this mean? This means that lambda j, lambda star j times the times this, this

sum that we had here, which is times this sum or lambda star i times this sum, which is give

which is captured in this inequality. That must be so, lambda star i times summation over j

equals 1 to n a ij x star j minus b equals 0, minus b i equals 0 which means that, what does

this mean? If now, a ij x star j minus b i can be either equal to 0 or can or strictly less than 0. 

These are the only two possibilities, which means that so if it is equal to 0 this holds trivially.

If it is strictly less than 0 then the other the only way you can have an the product equal to 0 is

that lambda star i itself is 0, right. So, that which means that, if a summation a ij, j equals 1 to

n x star j minus b i is less than 0, must imply lambda star i equal to 0. 

And similarly, we can show the other way around, the other similarly sum over, the sum if

this inequality holds with strictly. Then the corresponding x star j must be equal to 0, right.

So, this is one direction of the complementary slackness condition. What we have concluded



so far is if x star is optimal, then it has to be that these complementary slackness conditions

must hold. 

Now, let us look at the other direction part 2; the other direction. So, assume that, so, assume

that lambda star transpose A x minus b equal 0 and, lambda star transpose A minus c the

whole transpose x star equal 0, ok. For some x star in omega P and lambda star in omega D.

Now, what does this, what does this say? Well, we can rearrange this a little bit so, the 1st

equation simply says, b transpose lambda star equals lambda star a lambda star transpose Ax

star. Now, the second one the second equation it is again says that. So, the second equation

ok, I had made a mistake in writing this, sorry yeah.
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The second equation similarly says that, lambda star transpose A x star is equal to C transpose

x star alright. So, now what does this mean, this means that b transpose lambda star is equal

to C transpose x star. So, we verified that these two conditions hold for some x star in omega

P and lambda star in omega D, from there we here we conclude that b star b transpose lambda

star equals C transpose x star.

And now, what this what does this mean? We know from weak duality that, we know from

weak duality that an inequality in this direction must hold and if any and if and we know from

the strong duality theorem that, if equality holds then it has to be that these two are optimal

in, ok. So, then it follows that x star is optimal for the primal LP and that lambda star is

optimal for the dual LP, alright.

So, what does this? So, this completes the proof and what so, what have we learnt from this?

We have learnt basically that as far as optimality is optimality of linear programs is concerned

essentially it comes down to just ok. So, what does this theorem teach us? It basically teaches

us that, if you have you if you take a candidate feasible solution x star for the primal and

candidate feasible solution for the dual lambda star they are optimal if and only if they satisfy

these two equations. 

Now, these two equations if you see them they are actually not linear equations such that

lambda star transpose something in x must be equal to 0 and likewise something in lambda

transpose x star is equal to 0. So, this is the where the hardness of linear programming

actually creeps in. So, the first the simply checking that x star and lambda star belong are

feasible is a matter of checking that they satisfy bunch of linear inequalities and it is easy to

generate solutions to linear inequalities. 

But, you have to also for finding an optimal solution, you have to effectively end up solving

some non-linear equation, even though the original problem was just the linear problem, ok.

And this is the, this is the root of why this is linear programming is non-trivial. But, you will

soon see that this kind of non-linearity comes up in all types of problems involving inequality

constraints.
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The non-linearity is in this is in this product equation. So, the lambda stars. So, sorry this was

supposed to be x star the lambda star is multiplied with this to get you, and that product this

quadratic thing has to be equal to 0, quadratic equation must be 0, likewise this quadratic

equation must be 0. Yes, but the it is if you look at it as equations in your variables x star and

lambda star, then these are not linear equations anymore, alright.

Another way of thinking about say expressing the same thing is that, if you look at this

condition. This condition simply says that if something is true then something else is true. It

is a conditional statement; it is not merely asking you to you cannot write this as simply a

solution of linear equations. It says that if this is strict, then that must hold and if it is not

strict with there is no particular, it says no it says nothing in particular right. 

So, this so the so, this is the; this is why linear programming is actually harder than it appears.

Because eventually you have it at its root, even though the original problem is just involves

only linear formulations at its root to solve the problem, you are ending up making a solving

some non-linear equation alright, ok.

So, that is one thing, but having said that the, if I gave you two candidate solutions to just

verify that they are optimal is very easy. All I need to do is just check these two, check that

they are feasible and simply check that this hold, right. So, finding one may be harder, but

verifying is absolutely easy. Because all I have to do is just check this, right.

So, what this is done is taken a problem of which is of which is linear programming and

reduced it to just simply checking some non-linear equations, checking for the satisfaction of

some non-linear equation. Now, you will see why this is, why this is a you know a significant

simplification? 

Because we started off thinking of linear programming saying that all solution it must have a

solution on an extreme point, but then there were so many possible extreme points, it was not



easy to characterize them and we said, well if I gave you even one extreme point, how do I

confirm that, it is in fact optimal without comparing with all the other extreme points of the

linear program all of this is extremely hard to do. This is this in comparison is some you

know something, that you can potentially do much more easily. Yes.

Students: Sir, are they actually (Refer Time: 19:42). 

Not necessarily, not necessarily. So, the earliest algorithms for solving linear programs were

actually went about their business by searching over extreme points, just cycled over extreme

points and made sure that you are getting to a better extreme point at each step. And that is

how they try to find the solution; modern algorithms for LP’s try to attack this directly try to

solve these non-linear equations directly.
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Yes, yes yes. So, effectively solving a linear program amounts to finding an x star, which is in

the feasible region of the primal and alongside lambda star which is in the feasible region of

the dual; such so, they; so, it means being feasible for the primal and being feasible for the

dual, simply means that they must satisfy these linear.

They must lie in this polyhedra and, but in addition to that they must also satisfy these

non-linear equations right, that is what, that is what it means to solve a linear program,

alright. So, this particular condition the reason ok, I will also give you a bit of intuition on

why this condition appears?

The reason for this is that if you look at the dual just remember I had told you that, I had

mentioned this once. And this I will mention this again and later also that if you look at the

dual variables, the dual variables are actually the same as what we were earlier calling

Lagrange multipliers.



So, when we were looking at optimization problems with equality constraints, we had these

additional variables, which we denoted by lambda 1 for each constraint. They came out of

doing applying implicit function theorem on the constraint and so on. Now, those additional

variables are actually the Lagrange multipliers.

Now, the if you look at the complementary slackness condition, what it effectively it says?

The complementary slackness condition effectively says that, I need to have only Lagrange

multipliers for those constraints that hold with equality. If so that although the constraint is

stated as an inequality, if it holds with equality then there is an applicable Lagrange multiplier

for that constraint.

If it does not hold with equality, which means if this inequality is strict, then the Lagrange

multiplier for it is effectively 0, alright. So, that is if I that is what this, these conditions are

saying. And it is the situation is completely symmetric between the primal and the dual the

variables of the primal are the dual variables of the constraints of the dual or the Lagrange

multipliers of the constraints of the dual ok, and likewise the variables of the dual are

Lagrange multipliers of the constraints of the primal, alright. 

And so you can make the same claim about the dual as well. So, if there is a constraint in the

dual, that is strict then the corresponding Lagrange multiplier or equivalently the primal

variable must be 0. Because it does not count effectively ok, you again as I said we will see

this in, see this some more as we go further into a non-linear optimization. 


