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Weak and Strong duality

Today, I will be talking about what is probably the most beautiful and most preformed part of

optimization, which is called Duality.
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This is a subject that arises specifically in optimization due to the very wave by which we go

about deriving solutions of optimization problems. I will explain what this what duality

means. So, suppose we have a linear program like this ok. So, today, I am going to limit to

linear programming duality. 



So, suppose you have a linear program which is written in standard form like this, the

decision variable here is x. Now, corresponding to this linear program, I will write another

linear program which is this one. So, the first linear program is minimizing c transpose x

subject to A x equal to b and x greater than equal to 0, this one is in standard form. 

The second linear program is maximizing b transpose y subject to a by A transpose y less

than equal to c; subject to A transpose y less than c. This is not in standard form, but it has

been written in I have written this particular problem for a specific reason and I will explain

what that reason is soon. 

So, you have a LP here on the left hand side, which is a minimization LP. The LP on the right

hand side is a maximization LP, Now, what we the constants involved here that means, the b

that is there in this the objective of this is the same as the b that is in the right hand side here

the this we are talking of the same b. 

This the c that is in the objective here is the same as the c that is in the right hand side here.

The A matrix here is the same as the A matrix here; only thing it has been transposed and

written in the constraint. The so, these problems are involve the same set of constants, but

arranged in a certain specific way. 

You will also notice that here there is a equality constraint because this was in a standard

form; whereas, this has an inequality constraint alright. Here, the x is greater than equal to 0;

but here, the y is unconstrained, there is no constraint on the side. So, the LP on the right hand

side, this is specifically crafted ok. It is very specifically crafted, way with to have this kind of

structure and we will soon see what the connection is with the this with the one on the left. 

The one on the left, we will call it the Primal LP and one on the right would be called the

Dual. Now, here is a quick observation you can make suppose, I gave you any point that is

feasible for the primal. So, let us write out some notation here. Let us write this F P as the

feasible region of the primal. 



So, it is x such that A x equals b and x is greater than equal to 0 and let us write F D as the

feasible region of the dual y such that A transpose y is less than equal to c ok. Now, can

someone tell me, what are the spaces that these sets line? So, these are in what is the what is

the dimension of x and what is the dimension of y? 

So, suppose my matrix A is an m cross n matrix, then what is the dimension of x and what is

the dimension of y? Yeah, so dimension of x is an n length vector and y is a m length vector

right. So, now so these are not these two optimization problems; the primal and the dual, they

are not on in the same space at all. I mean one is in R n, the other is in R m; one has n

decision variables, the other has m decision variables alright.

Yet, what is amazing is that they are very closely related. So, I will show you this. So, look at.

Let us make the first observation here. So, suppose I take a x; suppose, x belongs to this set F

P and y belongs to the set F D ok. Now, look at the value c transpose x. Look if I look if I

consider c transpose x, now this is the inner product between c and x; x itself is greater than

equal to 0 right and x satisfies A x equals b is that right ok. x is greater than equal to 0 and x

satisfies A x equals b.

On the other hand, let us look at this value, b transpose y; b transpose y is the is a value

attained by a feasible solution y of the LP on the right. So, y just satisfies A transpose y less

than equal to c alright, ok. Now, I know that if I know that c look at if I form since y y

belongs to F D ok. I know that c is greater than equal to A transpose y for this particular y

right. So, I know that c is actually greater than equal to A transpose y.

Now, what I can do is this is a full vector right; c is a vector and y A transpose y is also a

vector, every component of that vector if I multiply by A, a number that is non negative, the

inequality in the for that particular component will be preserved right. And then, I can add up

all those inequalities and get a scalar inequality using all of those. 

So, what I am doing? What I am going to do now is just take an inner product with x. x, I

know is a vector that is non-negative. x lies here; lies in F P ok. x is a is lies in F P, it is a



vector that is non-negative. So, what I can do is I can take an inner product with x. So, which

means that will give me x transpose c is greater than equal to x transpose A transpose y right.

I am referring to this specific x and this specific y that I have chosen an x in F P and a y in F

D. 

So, I will just multiplied x on both sides and the inequality. So, took inner product with x and

the inequality is preserved right, because every component of x is greater than equal to 0 right

so I. So, from here, from this equation, I was able to go to this equation. No problem.

But now, what look at the right hand side, right hand side is actually the same as A x the

whole transpose y and let me write the left hand side also better. Let us write the left hand

side as since it is just an inner product, let me write it as c transpose x. So, I have basically c

transpose x greater than equal to A x the whole transpose y. Now, I make my other

observation. Well, again my x belongs to F P; x belongs to F P which means A x is actually

equal to b. A x is actually equal to b, since x belongs to F P.

So, what this means is c transpose x is greater than equal to b transpose y. Now, notice what

has happened here. You have you started off with any point x in F P and for that, what I was

able to show is I took this value c transpose x and I was able to show that c transpose x ok, c

transpose x is actually greater than equal to b transpose y. 

I started with any x in F P and any y in F D and I got this inequality, that c transpose x is

always greater than equal to b transpose y. It does not matter what my choice is. Every x that

is feasible for the primal and every y that is feasible for the dual must satisfy that c transpose

x is greater than equal to b transpose y. 

Now, this let us take this one step further. Observe that the optimal the optimization problem

P, the primal optimization problem, primal optimization problem is actually looking for to

minimize the looking for the minimum value of c transpose x right. So, if the optimal value

exists; that means, it is not minus infinity right. 



If the optimal value exists, then the minimum value of the optimization problem is also going

to be greater than equal to b transpose y for every y right, so the minimum value of the primal

assuming this exists, assuming it exists is greater than equal to b transpose y and this is true

again for all y and F D. 

But then, what is what let us compare that with the dual problem. The dual problem is

looking to maximize b transpose y. Now, since this is true for every y in F D, it is also true for

the y that gives you the maximum possible value of the dual right. So, therefore, the

minimum value in the primal is greater than equal to the maximum value of the dual. 

In short, the optimal values of these two linear programs are related in this fundamental way

that the mean the optimal value of the primal cannot go below the optimal value of the dual.

The primal is looking to get the least possible value of a certain function of x, the dual is

looking to get the maximum possible value of a certain function of y.

But they are they have this kind of tension between them. You cannot bring the primal below

the optimal value of the dual and you cannot raise the dual, any higher than the optimal value

of the primal ok. Now, this property is what is called we write this in red, it is what is called

Weak duality. Weak duality, simply refers to this that for any that c transpose x is greater than

equal to b transpose y for all x in F P and for all y in F D ok.

Now, the remember the thing that I want that I mentioned at the start, this these are you might

be first tempted to think that you know there is some this is actually somehow is some sort of

simple operation. In the sense that say for example, you might be tempted to think like when

you are doing minimums minimizing c transpose x, it is like trying to come to the bottom of a

function and maximizing see b transpose y, you are trying to get to the maximum of it. 

It is as if the same function has been flipped, it is not a flip of this ok. It is not like you are

taking a reflection of the objective of one to get to the other. These are two problems written

on two separate spaces. So, you are not flipping one to get the other. 



There the there is a very there is a specific way in which these they have been crafted, which

gets you to weak duality alright. But at the same time, it is not it is really beautiful that you

can actually say something like this because it tells you that if there is that you cannot pull

down the value of an optimization problem beyond a certain level. If it is a minimization

problem; likewise, you cannot raise the value of the optimization problem, if it is a

maximization problem beyond a certain level right.

In fact, it gives you this the following results straight away. Let me just state this. If either

primal or dual LP is has an unbounded optimal solution has an unbounded optimal value; if

either primal or dual has an unbounded optimal value means that the value since we are

looking to minimize the primal; that means, primal value is minus primal optimal is value is

minus infinity or since and we are looking to maximize the dual; that means, or dual optimal

value is plus infinity right. 

So, either of if either of these two is true, if either the primal is unbounded or the dual is

unbounded, then the other must be infeasible. So, what this means? What this says is that if

the optimal value of the primal is minus infinity, then you cannot have even it cannot be that

the dual has a feasible solution. 

Why is that? Well, what the reason for that is just by weak duality. If the primal value is

minus infinity; that means, the minimum here is minus infinity, then you would get that

minus infinity is greater than equal to the maximum value of the dual. Now, in particular, it

would be greater than equal to the value of the dual for any y right, for any y in F D. 

So, but a finite value of y would give you a finite value of b transpose y. There is no way that

can be less than equal to minus infinity. So, the contradiction is that there cannot be a single y

that satisfies the constraints of the dual which means the dual has to be infeasible. So, if the

primal is unbounded, then the dual must be infeasible.

Likewise, if the dual is unbounded, so dual takes value plus infinity, then there cannot be a

finite value of x which satisfies the constraints of the primal because then, you would get that



you have plus infinity here on the right hand side and something here which is finite, but

greater than equal to the plus infinity right. So, that is also impossible. 

So, in short, if any of them is unbounded, so primal taking value minus infinity or dual taking

value plus infinity, then the other must be infeasible right. So, this also gives you a way of

testing if your problem is going to have minus infinity is going to have an unbounded optimal

value. Because it amounts to checking if a bunch of other linear inequalities or equations can

be satisfied right. 

So, if just giving you the just as soon as I give you this LP here, the primal LP, I can I need to

I can check if this is going to have a minus infinity as the solution. Well, one if this if A

transpose y is less than a less than equal to c is satisfied by some y, then it means that the dual

is not infeasible. Then, there is no way that this one can have minus infinity as a solution

right; likewise, for the dual alright.

So, this theorem the is what is called the first property is what is called the property of weak

duality and this here the theorem that I just wrote is just simply a consequence of weak

duality. Now, but the theory of duality does not end here because there is an even more

powerful result that is out there and that result actually says that these two these two

problems, if they admit solutions, then their optimal values are actually equal. 

Weak duality simply says that the optimal value of the primal is greater than equal to the

optimal value of the dual. It just only guarantees you a an inequality here. But a stronger

property is true which is which simply which says that if both are finite then they are both

equal alright. So, that is what that property is what is called the property of Strong duality;

strong duality. 

And the strong duality theorem is this; if either primal or dual has a finite optimal value, then

so does the other and these values are equal. So, the if the primal has a finite optimal value,

then the dual must also have an finite optimal value and the two values should be the same. 



Likewise, if the dual has a finite optimal value, then so does the primal and its optimal value

is the same as that of the dual. So, if one and from the earlier theorem, we know that if it does

not have a finite optimal value, means it has if it is unbounded, then the other one must be

infeasible alright ok.

So, now what we will do today is prove the strong duality theorem ok. So, that is the agenda

for today. The strong, I will prove the strong duality theorem and I will also give you some an

application of the strong duality theorem ok. Now, the one of the strong reality theorem

actually rests on one key property of convex sets and the property is that way very is very easy

to see; but it is not that easy to prove.

(Refer Slide Time: 23:02)

So, suppose, I have a convex set here c ok. Suppose, c is let us say c is closed and closed and

convex suppose, I take a point here x that lies outside c, a simple observation is that I can



always draw I can always find a hyper plane like this, a hyper plane that separates the point x

from c. What do I mean by separates? Separates means that the point x should lie on one side

of the hyper plane and the set c in entirety should lie on the other side. 

So, my hyper plane suppose is; so, let me call this point something else. Let us call this x star.

My hyper plane is suppose x such that a transpose x equals b, then if then this by separation

of the set from of the set c from x star, what we mean is well a transpose x stars is less than

equal to b, say it lies on below the hyper plane and a transpose z is greater than suppose

greater than equal to b for all z in c; the entire set c lies on the other side.

Now, the way I have written this is this form of separation is where I have allowed both these

inequalities to be weak, which means both these both the point it is possible for the point x

star to lie on the hyper plane, it is possible for the set c to also touch the hyper plane touch.

But not cross the hyper plane right it can. 

So, you can have equality in both. This is called weak separation. This property is what is

called weak separation; but you can also talk of much stronger versions of separation and I

will we will use a stronger version of separation. In the stronger version, both these

inequalities will become strict you will. 

So, it will be like the kind of picture, I have drawn here. Your point x star lies on the other in

one half space, but not on the hyper plane and the set c also lies in the other half space and

now does not touch the hyper plane ok. This is what is called these theorems that guarantee

you something like this are what are called separating hyper plane theorems; separating, they

are called separating hyper plane theorems and are one of the key tools for proving bounds in

optimization ok.

So, or optimization and several other fields also, where if you want to show that something is

impossible, try to show you one of the key ways of useful tools in that is through separating

hyper planes. Now, what is the role of convexity in a separating hyper plane theorem? You



can see that by just draw looking for looking at another case, suppose this set c was not

convex like this; but say suppose shaped like this and my I had a point x star of the out here.

Now, is it possible for me to separate x star from the set c by a hyper plane? No, it is just not

possible. No matter how much you try; you try to, you will never be able to find a hyper plane

that separates the two. You can find some other curve that separates the two; but not a hyper

plane right. This is the beauty of convexity. Convexity guarantees you this ok

Now, so, we now there are other points that may be separable. Like for example, a point x star

that lies here this may it may be possible to separate from the set c ok. But it is not possible

for every point outside the set right. So, you know when you have when your set is convex,

you can say it can be separated from every point that lies closed and convex it like, it can be

separated from every point that lies in the exterior. 


