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We were looking last time at problems of two and three dimensional unsteady state heat 

conduction; before that we had looked at 1 dimensional unsteady state processes in an 

infinite cylinder for which I had given you a solution, a series solution and a solution in 

the form of charts and how to use them and there I had menti1d that the same type of 

solution is available for a long solid cylinder as well as for a solid sphere and then we had 

started discussing two and three dimensional unsteady state heat conduction and I said 

suppose we have a long rectangular bar like this and of dimensions 2 a and 2 b and 

initially this bar is at a temperature 
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Initially, it is at a temperature T 0; it is immersed at time t equal to 0 in surroundings at a 

temperature Tf. There is a surface heat temperature coefficient on all faces h, then 

obviously the temperature is going to be a function of x, y and time. We would like to 

solve for this temperature distribution so we will formulate the problem like we did for 

the 1 dimensional unsteady state. Let us formulate the problem; that means let us put 

down the differential equation, the boundary conditions and the initial condition for this 

problem. 
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First of all, the differential equation for this problem, go back to the general differential 

equation and take T as a function of x, y and time eliminate the heat generation term. 

Take k equal to constant and you will get differential equation straight away as d 2 theta 

dx square plus d 2 theta dy squared is equal to 1 upon alpha dT dt; that is the differential 

equation you will get d theta dt not dt dt d theta dt.  

 

Now, I am putting the differential equation straight away in terms of theta because I am 

defining theta in the same way. theta is equal to T minus Tf like we did earlier, Tf being 

the surrounding temperature. So what is the initial condition we have to solve this 

differential equation subject to the initial condition? Subject to the initial condition at 

time t equal to 0, T is equal to T 0 or theta is equal to T 0 minus Tf which is nothing but 

theta 0. And the boundary conditions will be as follows; now while putting down 

boundary conditions let us make use of the symmetry of the problem. That means let me 

go back to the sketch which we had of the bar. We have a choice we can either put down 

boundary condition that x equal to y equal to  x equal to minus a, y equal to b, y equal to 

minus b or recognizing that there is symmetry in this problem.  
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We say let us solve the problem only in the positive quadrant in which case we will put 

down the boundary conditions at x equal to a x equal to 0 y equal to b and y equal to 0; 

that is what we will do. It should recognize symmetry; you need to solve only in the 

positive quadrant. Let, so we will put down boundary condition at the four edges of this 

positive quadrant and what will they be? The boundary conditions would be at x equal to 

0, d theta dx at x equal to 0 has to be 0. Symmetry requires that d theta dy at y equal to 0 

also must be equal to 0; symmetry requires that and then at the 2 faces x equal to a we 

will get minus k d theta dx at x is equal to a is equal to h times theta at x is equal to a and 

at y equal to b, we will get minus k d theta dy at y equal b is equal to h in to theta at y is 

equal to b. 

 

This is the full formulation of the problem - the differential equation, the initial condition 

and the boundary conditions in the positive quadrant making use of symmetry at x equal 

to 0 and y equal to 0. Now this problem has been solved; also this differential equation 

subject to this initial condition and the given boundary conditions has also been solved 

and the solution is very neatly enough comes out to be as the following form. Now we are 

not solving the problem ourselves; I am just going to give you the solution which has 

been obtained. The solution which has been obtained is as follows. 
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It has been shown that the solution to the problem is given by theta by theta naught the 

same way that we had for the one dimensional situation is equal to theta by theta naught x  

multiplied by theta by theta naught y. This is what we call as a product solution, a 

product type solution and the quantity is theta by theta naught. x means theta by theta 

naught is a subscript; x stands for it is the solution. theta by theta naught x is the solution 

for the dimension less temperature; for the dimension less temperature in an infinite slab 

of width 2 a. That is what it is which we have already with us; this solution we have from 

the infinite slab solution and theta by theta 0 y is the same thing, is the same solution is 

the solution for the dimension less temperature in an infinite slab of width 2 b.  

 

So, for a rectangular bar all you have to do is to treat it as if you have got 2 infinite slabs - 

one of width 2 a, one of width 2 b. Obtain the solution theta by theta 0 x for a slab of a 

width 2 a, obtain the solution theta by theta 0 y for as infinite slab of width 2 b, multiply 

the 2 to get theta by theta naught for the rectangular bar 2 a by 2 b; that is all you have to 

do. So it is very very neat solution which has been obtained and as you know theta by 

theta 0 x and theta by theta 0 y will come. These values will come from the charts which 

we had earlier or from the series solution for the one dimensional case which I have given 

you earlier. Now the same idea can also be extended to a 3 dimensional situation. 
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The 3 dimensional situation is the following: suppose I have a rectangular block. Let us 

say I have a rectangular brick or rectangular block of dimensions  2 a by 2 b by 2 c,  a 

rectangular brick or block of this size. So initially at a uniform temperature t naught I put 

it in surroundings at a temperature Tf; the heat transfer coefficient and all the six phases 

of this block is h. Find the temperature at any point in this block as a function of time. 

Now t is going to be a function of x, y, z and time and interestingly enough in the same 

way in a similar way, the solution has been obtained for this case, has been obtained to be 

theta by theta naught is equal to theta by theta naught x multiplied by theta by theta 

naught y multiplied by theta by theta naught z where the 3 quantities on the right hand 

side theta by theta 0, x theta by theta 0, y theta by theta 0 z are the solution for infinite 

slabs of width 2 a 2 b and 2 c which we can obtain from the series solution I have given 

you earlier. So it is a very very straight forward job to use these product solutions for one 

- the rectangular bar a long rectangular bar and secondly for a rectangular block of 2 a by 

2 b by 2 c. 

 

Now we have come to the end of what we wanted to do with unsteady state conduction. 

We have done one dimensional unsteady state in an infinite slab, we have done one 

dimensional unsteady state and an infinite solid cylinder. We have also done something 

for a, I have also indicated that similar solution has been obtained for a sphere and I have 

indicated how these solutions can be applied to problems and can be extended to two and 

three dimensional unsteady state problems for rectangular bar - a long rectangular bar as 

well as for rectangular brick. Now we want to go on to a new topic and that new topic is 

the topic of fins or extended surfaces 

 

 

 

 

 

 

 

 



 7 

(Refer Slide Time: 12:45) 

 
 

The first thing we want to ask ourselves is when are fins used? We want to go to the topic 

of fins or extended surfaces. Fins are used to reduce the thermal resistance at a surface 

and thereby increase the heat transfer rate from the surface to the adjacent fluid; that is 

when we use fins or as you call them extended surfaces. I repeat - fins are used to reduce 

the thermal resistance at a surface and thereby increase the heat transfer rate from the 

surface to the adjacent fluid.  

 

Now, what is the heat transfer rate given by heat transfer rate q? For any given surface, it 

is given by the thermal temperature difference between the wall and the fluid or the fluid 

and the wall delta T divided the thermal resistance and if there is a heat transfer 

coefficient h at the surface and the area of the surface is a, then we would say it is delta T 

divided by 1 upon hA. delta T is the difference of temperature between the wall and the 

surrounding fluid; so q is given by this.  

 

Now suppose for a given situation this thermal resistance 1 upon hA, this thermal 

resistance 1 upon hA is too high. I want to lower it in order to increase q; I can’t change 

delta T, I want to lower 1 upon hA is a the thermal resistance in order to get higher value 

of q. Introduction of fins or extended surfaces helps p in lowering this value of the 
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thermal resistance. Now let us look at some geometries that are used; let me show you 

some instances. A fin is being used here is the figure. 
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this is the plane surface area a, h is the heat transfer coefficient, Tf is the fluid 

temperature over it; we get a certain heat transfer rate  from this surface. I want to 

increase that heat transfer rate so what do I do? I put fins on this surface; the fins in this 

case as shown are nothing but thin plates which are stuck on the surface at right angles to 

the surface. The fins are height L, width b and thickness T; usually thin plate side by side 

would be stuck and they would help to reduce the thermal resistance or the fins could be 

in the form of just rod sticking out of the surface. These would if they are thin rods, thin 

relative to the length L, with here would be like pins; so if we call them is pin fins 

typically. 

 

They could be square in cross section, they could be circular in cross section, they could 

have any cross section that we like; the point is we are adding some surface area on the 

main base area which is the horizontal part here and the addition of this area through the 

use of extended surfaces helps to reduce the thermal resistance; that is the main point 
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about fins or extended surfaces. Let us look at some more examples; I now go to the case 

of a cylinder. Let us say this is a hollow cylinder. 
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It could be say the cylinder block of an engine,  a internal combustion engine loosing heat 

to the surroundings. In order to reduce the thermal resistance at the outer surface and 

therefore increase the heat transfer rate, we put circumferential fins and the ones that are 

shown here are circumferential fins which are rectangular cross section around this 

cylinder. In b here, these are also circumferential fins around the cylinder but they are 

circumferential fins with triangular cross section, we could have a variety of cross 

section.  

 

I am just showing 2 as an example; typically we use circumferential fins with rectangular 

cross sections or with the slight taper or with triangular cross sections. These are typically 

used and as I said the purposes again the same as for the plane surface, the idea being to 

reduce the thermal resistance on the outer surface. Now what we are going to do in this 

class is the following. We are going to look at one particular fin namely the pin fin.  
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We are going to analyze it in some detail. What is the pin fin? A pin fin is nothing but a 

rod sticking out of a plane surface; one could have series of that. Let us analyze one; what 

we do for one is valid for all. So, pin fin is nothing but a rod sticking out of a plane 

surface and we use the word pin to signify that it is a cylinder rod, that is why we use the 

word pin and the moment cylinder, what follows is that we don’t have to worry about the 

temperature variation across the cross section of that pin fin. What we need to worry 

about is only the temperature distribution along the length L of the pin fin, that is the 

idea. 

 

A pin fin, a cylinder fin because of its slenderness, there is negligible variation of 

temperature across the cross section. The only worth while variation which is worth 

analyzing is the variation along the length L; so let us look at such a pin fin. This is a pin 

fin here; now in the previous sketch, I had shown it vertical. Now I am showing it 

horizontal that is the only difference.  

 

Here is the base surface which I have hatched here and the pin fin is of length L. I have 

drawn some arbitrary cross section and said - assume that the perimeter of the pin fin is p 

and its cross sectional area is A. It could be circular, it could be square, it could be 
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rectangular cross section; it doesn’t matter. The point is it is a slender cross section 

compared to the length L; that is the point. Now I have already said that the moment 

because it is slender variations of temperature along the cross section are negligible like 

this there are negligible. Therefore, temperature will vary only in the x direction, the x 

direction being the direction around the length and since we are dealing with the steady 

state situation, temperature will therefore only be a function of x.  

 

For such a pin fin, let us say the temperature at the base is T1; let us say the temperature 

at the base is T1. Now you know very well if the surrounding temperature is Tf and T1 is 

greater than Tf,, then it follows that along the fin, as you move along the length outwards 

away from the base plate base surface, the temperature is going to drop and is gradually 

going to approach the value of Tf as you go further and further way; that is what you are 

going to see.  

 

We want to solve for this temperature distribution. We want; this is the function of x we 

would like to get T as a function of x, we will like to solve for it and once we have solved 

for it, we will be able to calculate the rate at which heat flows from the surface of this fin. 

So our objective with this simplification that is a pin fin; therefore T is only a function of 

x, our objective is to find the temperature distribution along the length that is T as a 

function of x and to find the heat transfer rate from the surface of the fin; all along it is 

surface that is our objective.  

 

What we will do is the following - we will say consider in order to derive the differential 

equation for this case, we will say consider a closed system like this shown shaded by me 

here. That means at a distance x, take a cross section at a distance x plus dx. Take a cross 

section; you will cut out an alimentary volume of width dx and cross section equal to the 

cross section A of the fin. A times dx, you will cutout an elementary slice A times dx; 

consider the heat balance on this elementary slice of width dx; what do we get let us look 

at that now. Let us write that down; let us apply the first law of thermodynamics to A 

times Tx.  
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Apply first law of thermodynamics to the slice A time dx; now let me go back to the 

sketch here again for a moment. Notice I have drawn 3 arrows here; qx which I am 

showing here is the rate at which heat has been conducted into the element by heat 

conduction that is qx. qx plus dx is the rate at which heat is being conducted out of the 

element by heat conduction and we also need to consider the heat flowing by convection 

from the surface of the slice and that is h the heat transfer coefficient into the surface area 

p times dx where p is the parameter in to the temperature difference T minus Tf. So this 

is the heat being lost by convection from the surface of the elementary slice. So what do 

we have now? Let us put down expressions for these quantities. 

 

The first law says qx is the heat flowing in by conduction that must be equal to the heat 

flowing out by conduction plus the heat being lost by convection from the surface and 

that is h pdx which is the area into T minus Tf as the convective heat loss from the 

surface. Now from Fourier’s law, qx is nothing but minus kA dT dx and that is equal to 

qx plus dx is minus kA dT dx. If I move a distance dx in the positive x direction, I will 

get d 2 T dx squared multiplied by the distance I move dx; that is the increment on dT dx 

plus hPdx T minus Tf and on simplification you can see the dT dx term is going to 

cancel, this going cancel with this.  
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So on simplification, I will get d 2 T dx square. If minus hp by kA is equal into T minus 

Tf is equal to 0, that is the differential equation I am going to get for this case. As usual, I 

will again define theta as being the access temperature above the ambient temperature 

theta equal to T minus Tf; let us define that. And if we you do that, we will get one 

simplification.  
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We are going to get the differential equation in terms of theta as we get the differential 

equation in terms of theta as d 2 dx squared minus hP by kA theta equal to 0 - that is our 

differential equation. It is the second order linear differential equation, very simple to 

solve. What are the boundary condition under which we will solve it? We will need to 

boundary conditions so the 2 boundary conditions would be 1 at x equal to 0 1 at x equal 

to L. At x equal to 0; T is equal to T1, so theta is equal to theta 1 straight forward. At x 

equal to L, we have a variety of boundary conditions to choose from but let us make, let 

us choose boundary condition which is usually adopted and that is the following. We will 

say, I have already said the pin fin is fairly cylinder and long relative to it is cross 

sectional dimensions. Therefore, by the time you reach almost the fin tip the heat flowing 

out at the edge, the heat flowing out at the edge.  
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Right here which I am showing again, I am showing the sketch of the fin again the heat 

flowing out at the edge right here from this face. This is likely to be extremely small; 

what I have shown by the red arrow just now and if it is small let me assume that it is 0. 

If it is 0, it follows from Fourier’s law of heat conduction that the d theta dx at x equal to 

L must be equal to 0. So, we make the reasonable assumption that the heat lost from fin 

tip is negligible and therefore at x equal to L, we will take d theta dx equal to 0. So that is 

our second boundary condition that we take. Solve these differential equation subject to 

these two boundary conditions; as I said it is a very simple differential equation 
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the general solution of this differential equation is equal to;  theta is a  is equal to c1 e to 

the power of mx plus c2 e to the power of mx minus mx which all of you should know 

where m is equal to square root of hP by kA so straight forward solution. Now use the 2 

boundary conditions to get the values of c1, c2 and if you do that we will get the solution 

to the problem to be for the temperature distribution we will get the following 

temperature distribution. 
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We get theta by theta 1 instead of putting the solution in the form e to the power mx and e 

to the power minus mx, we will use the hyperbolic cosine and will get theta by theta 1 is 

equal to the hyperbolic cosine m L minus x divided by the hyperbolic cosine moulding 

that is what we will get for the temperature distribution, very simple solution that we get 

because a very simple differential equation where as the defined earlier m is nothing but 

the square root of hP by kA. So this is the temperature distribution, the equation that we 

got for the temperature distribution which I sketched for you earlier. Once we got the 

temperature distribution, we can solve for the rate of heat flow from the fin surface; that 

is what we are interested in the second thing we are interested.  

 

(Refer Slide Time: 29:13) 

 
 

What is the rate of heat flow from the fin surface that we will call as q so when you, what 

is, what will it be? If I go back to the fin again for a moment, let me show the fin again. 

We want the rate at which heat is flowing out through the fin surface like this all over to 

the surroundings. All this heat must have originated at this point; it has to come from the 

base surface here at x equal to 0, enters the fin and then go out. So, all the heat that is 

flowing out must ultimately originate here and then flows out like this; so we can also say 

the heat flowing out all over the surface is nothing but by Fourier’s law is nothing but 
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minus k d theta dx at x equal to 0 that is at this cross section. So let us put that, we will 

see rate of heat flow from the fin surface is nothing but minus kA d theta dx at x equal to 

0 and if you use the temperature distribution equation which I gave to find out d theta  d 

theta dx from it. Put x equal to 0 which is a  liner 2 of calculation for you to do.  

 

You can show that this will come out to be the square root of hPkA multiplied by theta 1 

multiplied by the hyperbolic tangent mL. So that is the rate of heat flow from this fin 

surface; so we have got the answers to the 2 thing we are looking for. We have got an 

equation for the temperature distribution in the fin pin; we have an equation for the rate 

of heat flow q from the fin surface, so many what is the rate at which heat is flowing? 

Now with fins, it is usual to define a term called the fin effectiveness for all fins, not just 

pin fins for all fins it is usual to define a term called as the fin effectiveness which we 

will denote by the symbol phi and is defined as follows.  

 

We say the fin effectiveness phi is equal to the actual heat flow rate q from the fin surface 

divided by the q you would get if thermal conductivity of the fin material is infinity. q 

upon q which would be obtained if the thermal conductivity of the fin material is infinite. 

Suppose the thermal conductivity of the fin material is infinite then again to go back to 

the sketch of the fin here; what would be the temperature distribution? If the thermal 

conductivity of this fin is infinite, then T is equal to T1 at the base; then an infinite 

thermal conductivity requires that T is equal to T1 everywhere along the fin’s length. 

There will be no drop in temperature like I am showing here; you will get T equal to T1 

everywhere. So, k equal to infinity means a temperature distribution T equal to T1 

everywhere along the length of the fin. So, this is how we define a term called as fin 

effectiveness.  

 

For a pin fin, what we will get for a pin fin phi is equal to the fin effectiveness is equal to 

in the numerator, I put square root of hpk theta 1 hyperbolic tangent of mL which is 

nothing this expression. In the denominator, recognizing that the temperature is T equal 

to T1 along the whole length if the temperature is T equal to T1. The temperature 

difference with the surroundings will be T1 minus Tf all along the length that means theta 
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1 and therefore the rate at which heat is lost will be h into PL which is the surface area of 

the fin p, is the parameter L, is the Length into theta 1 which is the temperature difference 

T1 minus Tf. So hPL theta 1 is the heat that would be lost from the fin surface if the 

conductivity of the fin material is infinite.  

 

If you simplify this whole expression, you will get hyperbolic tangent mL upon mL. So 

that is the expression for the fin effectiveness of a pin fin. Now how do we use?  
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Let me just  show you  graph and which I have plotted the effectiveness of pin fin, the 

same equation that I showed you phi equal to hyperbolic tangent mL upon mL is plotted 

here. This is phi and this is mL; just writing it in big letters again. We are plotting that 

equation hyperbolic tangent mL divided by mL here. Effectiveness, this is the 

effectiveness of a pin fin with the constant cross section - phi plotted against mL. How do 

we use this solution? Now we use it as follows; we say we, suppose I have a pin fin of a 

given length and a given cross section and ceratin given conditions. For that pin fin, you 

can calculate mL; the moment you get mL go, this graph here for that value of mL go up. 

Then go horizontally and get the value of phi for that pin fin; so for a given a fin calculate 
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mL, go up intersect this graph and then go horizontally till you get the corresponding 

value of phi.  

 

Once you have got the value of phi; multiply by q when you,  the value of q you would 

get if k is equal to infinity and you will get the actual heat transfer rate from the given pin 

fin. So for a given pin fin proceed first for a given value of mL upwards, then 

horizontally to get value of phi. You may have to do the reverse problem; reverse 

problem is find the length of a fin required to achieve  a certain heat transfer rate q. In 

which case, you would go in the reverse direction you would know a value of phi. You 

would go horizontally and then you would come down in order to find a value of mL. Try 

doing both types of problems yourself; I would like you to do both types of problems. I 

will do one type; I want you to do the other type yourself. So let me illustrate now this 

whole idea; let us take a problem, we will say let us do a problem now of pin fin.  
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I am going to take up the following problem; let us say on a surface certain base surface, 

I have 50 pin fins 50 pin fins. Each pin fin 1 centimeter diameter 10 centimeters long; I 

am just taking some dimensions simple dimensions. Circular pin fins 1 centimeter 

diameter 10 centimeters long attached to a wall. Fins are made of copper, fins are made 
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of copper k equal to 300 watts per meter Kelvin, high value of k because some metal and 

that too a fairly pure metal. Value of h at the surface given to be 15 watts per meter 

square Kelvin. Calculate q for the fins if the temperature at the base T1 is equal to 200 

centigrade and the surrounding temperature Tf is equal to 30 degrees centigrade. This is 

just a straight forward substitution into what we have done. So let us to that, calculate q 

for these 50 pin fins. Let us substitute the numbers now, first let us get mL 
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mL in this case mL is equal to square root of hP by kA to the power of half multiplied by 

L. So that is equal to h is 15 L, P is pi into .01 divided by k is 300. A is the cross sectional 

area which is pi into .005 squared pi r squared; take the square root of this and multiply 

by the length L which is .1 in meters - this comes out to be .447. So the effectiveness phi 

is equal to the hyperbolic tangent mL divided by mL which comes out to be if you 

calculate it .938. Therefore q is equal to 50, the number of fins into the heat transfer rate 

from 1 fin which will be pi into .01 into the length pi Dl. This is the surface area of 1 fin 

into the heat transfer coefficient 15 multiplied by the temperature difference 200 minus 

30.  
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pi d l into 15 into 200 minus 30 this would be the heat transfer rate if k is equal to 

infinity. If I multiply this by the fin effectiveness, I get the actual heat transfer rate. So 

this comes out to be 50 into 7.514 which is equal to which is equal to 300 and 75.7 watts, 

so that is the answer. It is a straight forward substitution problem - given 50 pin fins with 

the certain data, find the value q which you would get for a given values of a temperature 

and the surrounding temperature and the temperature at the base.  

 

Now we want to look at another problem; the problem which we want to consider next is 

the following. Consider that I have the, now doing 1 more problem of a pin fin. 
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Suppose I have rod which is 1 centimeter in diameter, consider a rod 1 centimeter 

diameter 20 centimeters long which is fixed between 2 walls each of which is at a 

temperature of 200 degrees centigrade. This is the situation I am visualizing now. These 

are 2 walls between which I have a rod struck, thin rod 1 centimeter in diameter 20 

centimeters long. This is 20 centimeters long and it is struck, it is fixed between 2 walls 

and the walls are at temperature, both of them are at a temperature of 200 degree 

centigrade. We are told that the k, the thermal conductivity k of the material of the rod is 

300 so many watts per meter Kelvin. The heat transfer coefficient at the surface is 15, h is 
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15 watts per meter squared Kelvin and the surrounding temperature Tf is 30 degrees 

centigrade, Tf equal to 30 degree centigrade.  

 

So, rod fixed between 2 walls at 200, surrounding temperature is 30 degree centigrade, h 

is 15, k of the rod material is 300 watts per centimeter Kelvin, watts per meter Kelvin. 

Now what kind of temperature distribution will you get in this rod if you were to sketch 

it? I think you will agree with me that you have got a symmetrical situation so you are 

going to get some kind of a temperature distribution which is going to be like this - going 

to go down and then it is going to go up; that is the kind of temperature distribution you 

are going to get in this rod. The line drawn in red temperature is going to go down and 

then going to go up again to 200; starts at 200, goes down and then goes up an at the 

center that is as a x equal to 10 at the center here, symmetry requires at the center, 

obviously since everything is symmetrical on both sides, symmetry requires that d theta 

or dT dx be equal to 0.  

 

So once you recognize that this situation is one with the symmetry what you have in 

effect - the situation that you have with this rod is in effect equivalent to 2 pin fins which 

are attached to each other. I would like to find out; by the way I should say that what are 

we looking for we want to know what is the heat transfer rat from this rod.  
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So, recognize now straight away that in this case the situation is equivalent, situation is 

equivalent to 2 pin fins, 2 pin fins attached to each other at x equal to L. That is what we 

have got and therefore if I ask now what is the q for this, you say straight away the q for 

this situation is equal to 2 multiplied by the heat transfer rate from 1 pin fin 10 

centimeters long and that is nothing but 2 times 7.514; that is the answer of the previous 

problem because the data is identical and that is equal to 15.028 watts. So the case of the 

thin rod in this case is equivalent to 2 pin fins that is what we are really saying. Now we 

have analyzed only the pin fin here but keep in mind that there are solutions for a variety 

of pin fin configurations available in the literature and in every case, almost in every case 

after obtaining the temperature distribution, the solution finally is in the form of fin 

effectiveness plotted again, some geometric parameter of the fin.  

 

For instance, you recall when I started talking of pin fins, I referred to circumferential 

fins with the rectangular cross section; you recall I showed this geometry and I said 

around cylinders we put circumferential fins like this. 
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Now for this case, this is a well analyzed case of a circumferential fin around the circular 

cylinder. For this case, the fin effectiveness phi - let me write this in bigger letters the fin 

effectiveness phi is plotted against a parameter L square root of h divided by kyb where 

yb is half the width of half the thickness of the circumferential fin. This is the chart which 

is available in almost all the standard books; it is not something new but keep in mind 

this is very similar to the chart which we got for the pin fin. 

 

And what, how would we use it? In the same way given a certain circumferential fin with 

given dimensions xe, xb, yb, etcetera, go to this chart calculate the x axis parameter L in 

to the square root of h upon kyb. Then from this for the given value of xe by xb, go up 

vertically in to the given value of xe by xb, go horizontally, get the value of phi, multiply 

this phi by the heat transfer rate you would get from the circumferential fin if it has an 

infinite thermal conductivity. So in exactly the same way as a pin fin, you would use this 

chart in order to find the heat transfer rate from circumferential fins with the rectangular 

cross sections. Such solutions are available for a variety of fin shapes. 
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We have done here in the class only the pin fin and I have shown you the chart for fins 

are the rectangular cross section but keep in mind such charts or equations are available 

for variety of fin shapes. Now we have come to the end of what we wanted to do in heat 

conduction; let me sum up what we did quickly. 

 

(Refer Slide Time: 49:31) 

 
 

Let us sum up what we have done in heat conduction - first of all we started with one 

dimensional steady state situations, one dimensional steady state situations and we looked 

at the infinite slab. We looked at the infinitely long hollow cylinder, got simple solutions 

for temperature distribution and heat flow rate for these cases. I told you how to solve on 

your own, to solve the problem for a hollow sphere. Then we introduced the concept of 

thermal resistance and we got a expression for the thermal resistance again of an infinite 

composite slab and infinite, infinitely long composite hollow cylinder.  

 

And our reason for introducing the concept of a thermal resistance was - thermal 

resistance is in series are additive like thermal, electrical resistances in series and then 

following in this, bases we looked or we introduced the idea of critical radius of 

insulation for a pipe. Saying that there are situations in which if the outer radius r2 of a 

pipe is below a certain value, then the addition of a insulation may not help until we a put 
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a certain minimum thickness. We got an expression for the critical radius of insulation 

then in order to extend ideas to more general situations, we derived the general 

differential equation. 

 

(Refer Slide Time: 52:14) 

 
 

we derived the general differential equation both in cartesian coordinates and in 

cylindrical coordinate and in cylindrical coordinates. Using this general approach we 

solved some problems of heat generation some one dimensional problems, 1 D  problems 

of heat generation in a slab as well as in a cylinder. Then we looked at unsteady state, 

unsteady state heat conduction and in this first of all we said, suppose we neglect internal 

temperature gradients, negligible internal temperature gradients. Then we have a situation 

in which T is only a function of time; a very simple which can be solved regardless of the 

shape of the object but the moment you can not neglect internal temperature gradients.  
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(Refer Slide Time: 54:03) 

 
 

Then we have more complicated situations, internal temperature gradients not negligible 

and for this case we looked at the infinite slab. I set up the problem; indicated how the 

solution is available in the form of charts. Then we also indicated how a solution is 

available in the form of an infinite solid cylinder and a solid sphere. Then we looked 

today at 2 D and 3 D problems, rectangular bar and rectangular block and indicated how 

a product type solution is available for them. And finally we have looked at fins and in 

particular we have looked in detail at the pin fin, derived an expression for the 

temperature distribution in the pin fin and the effectiveness of a pin fin. I have also 

indicated that there are charts available for the effectiveness of so many other geometries 

of fins. So we have come to the end of what we want to do with conduction; next time we 

will start with thermal radiation.  


