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Towards the end of the last lecture, we were considering the case of a long hollow 

composite cylinder. 
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We were considering this case and you will recall that we had derived expressions for the 

thermal resistance of the long hollow composite cylinder which consisted of two 

materials with conductivities is K one and K two. We had derived an expression for the 

overall heat transfer coefficient for this cylinder and we had an expression for the heat 

flow rate. So, we had an expression for Rth - the total thermal resistance of the long 

composite cylinder; we had an expression for the overall heat transfer coefficient and you 

will also recall that since the area through which the heat is flowing goes on increasing as 

you go radially outwards, we have to specify on what area we are basing the overall 

transfer coefficient. So we had derived expressions say for the radius r1 which is the inner 
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radius of the tube of the inner cylinder or we could have based U even on the outer radius 

r3, etcetera.  So, we had expressions for Rth and for Ur1 and once we have these 

expressions, you can calculate q - the heat flow rate - as being equal to; if you want to use 

Rth, you will say simply q is equal to Ti minus To, the temperature difference at the two 

extremes from inside to outside divided by the Rth  or we can also say q is nothing but Ur1 

multiplied by the area 2 pi r1 L multiplied by the temperature difference Ti minus To. 

 

So, once we have an expression either for Rth or Ur1, we can write down the heat flow 

rate through that long composite cylinder; this is where we stopped last time. Now, we 

are therefore in a position to consider, we are therefore now in a position to take up 

composite cases that is cases where a number of thermal resistances occur in series. Now, 

I want to make an important statement which is written down here and I will read it 

slowly.  
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A statement is as follows; it says - when several resistances occur in series as in a long 

composite cylinder with two solid materials; we had four thermal resistances - one 

associated with the Hi, one associated with the thermal conductivity K1, one associated 

with the thermal conductivity K2 and finally the one associated with the outside in terms 
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of coefficient H0 or with the infinity slab where we took 3 solid materials, we had 5 

thermal resistances. So, for any such situation when several resistances occur in series, a 

few may be negligible compared to the others.  An important aspect in many heat transfer 

problems is to identify the significant resistances and to ignore the insignificant ones. 

When you have a number of thermal resistances in series, very often one or two or a few 

may be negligible. It is important if you are a good engineer that you should be able to 

identify which are the significant resistances and which are the insignificant resistances. 

So this is an important statement which I am making. Now in order to understand the 

significance of the statement, let us do the following problem. We are going to do a 

problem - the following. Let us say, let us go back to the earlier problem that we solved. 
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You recall the earlier problem in which we had a tube with an inner diameter of 2 

centimeters and an outer diameter of 4 centimeters. One surface was at 70 degree 

centigrade, one was at 100 degrees centigrade and for that tube we found out the rate at 

which heat was flowing and we got an answer. In that problem, recall in the earlier 

problem, we got the answer q by L is equal to minus 157.7 watts per meter; you recall 

this problem.  
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Now, I am going to change the data of this problem very slightly; we are going to change 

the data of the problem slightly.  Instead of the outer surface being at a specified 

temperature To, it is now specified; instead of To being specified - To was specified to be 

100 remember - it is now specified that saturated steam at 100 degree centigrade is 

condensing on the outer surface. That is the change in the input data that i am making; 

saturated steam at 100 degree centigrade is condensing on the outer surface of the tube. 

That is the change that I am making; all other data is the same. That means what is the 

other data?  
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The other data is for instance the I D of the tube, all other data, I D of the tube, O D of the 

tube and thermal conductivity k of the material of the tube. The temperature Ti also 

remains the same; find q by L - that is the change. Now, how do we proceed now? First 

of all, let me just draw a rough sketch so that we get the picture in front of us. Here is the 

tube, the center line; let us say this is one - the inner diameter, this is the outer diameter 

and this would be our outer radius, inner radius and outer radius. We are given the values 

Ro and Ri, this is Ro equal to I think 2 centimeters; this is Ri equal to 1 centimeter; this is 

the solid material of the tube; k is given to be .58 and now on the outer surface we have 

steam condensing. So the steam is going to condense and form a water film on the 
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outside; so on the outside here, you are going to have a water film. On the outer surface, 

you are going to have a water film formed by condensing steam at 100 degree centigrade; 

that is what you are going to have. The inner surface remains at 70 degree centigrade; the 

inner surface is this that remains Ti equal to 70 degrees centigrade. That is the position 

now; now what is the change compare to earlier?  

 

Earlier from Ti to To, that is from 70 to 100, there was only one thermal resistance and 

that thermal resistance was the thermal resistance of the tube. Now, we have got two 

thermal resistances in the path of the heat flow when it is flowing between the 

temperature differences 70 from inside to 100 on the outside and what are the two 

thermal resistances? First, there are now two thermal resistances in the path of the heat 

flow; there are two thermal resistances in the path of the heat flow and what are the 

thermal resistances in the path of the heat flow? The thermal resistances in the path of the 

heat flow are: let us write them down.  
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Number one; the two thermal resistances in the path of the heat flow are - number one: 

thermal resistance of the tube and secondly the thermal resistance of the water film; the 

thermal resistance of the water film on the outside. Let us estimate the two; let us put 
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down values for them. Rth - thermal resistance of the tube, the first one of the tube per 

meter that is equal to log to the base e Ro by Ri log to the base e Ro by Ri divided by 2 pi 

kL. So if you substitute the data - the given data - that is log to the base e 2 by 1 Ro by Ri 

divided by 2 pi into .58 - the same thermal conductivity as earlier - into a meter length 1 

that comes to .190 Kelvin per watt; thermal resistance of the condensate film per meter; 

thermal resistance of the condensate film - the water film - of the condensate film per 

meter. 

 

What is that, that is equal to 1 upon HA, 1 upon A. What is A? pi do L that is multiplied 

by Ho that is equal to 1 upon pi into do is .04 centimeters into length, we will take as 1 

meter, 1 meter length into Ho. Now, Ho is the heat transfer coefficient associated with the 

change of phase - that is condensation taking place on the outside of the tube. Let us take 

a typical value of Ho; I have already told you, it would be in thousands, 5000, 10000 

typical values. Let us take 5000. Let us take value of 5000; if I take a value of 5000 and 

calculate this Rth, I will get this. This number will come out to be .00159 Kelvin per watt. 

So, what do we see? We have got two thermal resistances - the thermal resistance of the 

condensate film is insignificant compared to the thermal resistance of the tube; that is 

what we are seeing. The thermal resistance of the condensate film is insignificant 

compared to the thermal resistance of the tube. We see, let me write that down  
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thermal resistance of the condensate film is insignificant compared to the thermal 

resistance of the tube. Now you may say - look the thermal resistance of the condensate 

film has only been estimated because we have taken Ho to be five thousand. Suppose we 

have taken it as 10000, it would be still smaller; it is in thousands whatever you do 

whether you take 5000, 10000, 7000, this value .00159, we would get a value which may 

be slightly different but it will always be insignificant compared to the value of the 

thermal condensate of the tube which is .190 Kelvin per watt. Therefore, the total thermal 

resistance is really .190; the condensation doesn’t make a difference and the outer surface 

therefore is effectively at 100 degree centigrade and the flow rate remains the same.  

Therefore, the conclusions are the thermal resistance - this total thermal resistance I 

should say - that is the sum of the 2 is equal to .190 Kelvin per watt. Temperature of the 

outer surface is effectively 100 degrees centigrade and the answer q by L is minus 157.7 

watts per meter; the answer remains unchanged, that is what effectively we are saying. So 

although we have got a situation which seemingly looks different, the thermal resistance 

introduced because of this new situation is insignificant. The total thermal resistance 

remains that which we had when there is only one present; it remains .190, so effectively 

the outer surface of the tube remains at 100 degree centigrade and therefore the heat flow 

rate obviously is still the same – 157.7.   
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Now, suppose you haven’t recognized this; then you would try, you would waste your 

time perhaps trying to calculate the value of the Ho more accurately from some formula. 

You may get a value like 6342 for Ho, would it make difference to this answer of this 

problem? No, it wouldn’t. Whether you take 6342 which is a more precise value of Ho or 

whether you use 5000 just doesn’t matter in this problem.  In some other problem it may 

matter but right now it doesn’t matter what is the value of Ho because the thermal 

resistance of the condensate film is negligible compared to the thermal resistance of the 

tube. You follow what I am saying? Always compare the value which is and say 

something is insignificant relative to something else; that is the point which I want to 

make.   

 

So, now we have looked at this situation in which we may have thermal resistances in 

series and as I said it is important to be able to decide which resistance is significant and 

which resistance is not. Now, we want to turn our attention to another composite 

situation; a problem associated with another composite situation. We want to look at what 

is called the critical radius of insulation; that is what we want to look at.  

 

(Refer Slide Time: 22:00)  

 
 



 9 

Consider again this is the long hollow cylinder composite situation. Let us say that the 

inner material here radius R1 R2, let us say that this is a metal tube; that is a metal tube 

and let us say the outer material thermal conductivity k2, is thermal insulation which is 

put on the tube. So, it is composite situation in which one of the materials is the metal 

tube, the other is the thermal insulation which is put on the outside. In the inside of the 

tube, there is some fluid with the heat transfer coefficient Hi and the temperature Ti and 

on the outside there is some other fluid to which heat is being lost; it may be the 

surrounding air in the room in which this tube is located.   

 

The outside heat transfer coefficient is Ho and the temperature outside is To; so there are 

four thermal resistances, two associated with the heat transfer coefficients on the inside 

and outside and two associated with the tube and with the thermal insulation. Now this is 

a composite case for which we know the value of the heat flow rate from inside to 

outside; if i want to put down an expression for the heat flow rate, then we will get the 

following. We have derived it earlier; i am just repeating what we have done earlier.  
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For such a situation the q is given by this expression 2 pi L into Ti minus To divided by 1 

upon r1hi plus 1 upon k1 log to the base r2 by r1 plus 1 upon k2 log to the base e r3 by r2 
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plus 1 upon r3 ho; we know this. These are the four thermal resistances - the first one 

associated with hi, the second one associated with the metal tube, the third one associated 

with the thermal insulation and the fourth one with the heat transfer coefficient on the 

outside. The 2 pi L has to be taken down in order to call it the thermal resistance so it will 

be 1upon 2 pi L into all this; then they actually become the thermal resistances. Now 

suppose I plot q against r3, I hold all other parameters constant. What are the other 

parameters? r1, r2, k1, k2, Ti, To, L everything else constant excepting r3; plot q against 

r3 other parameters being held constant. It will sometimes be seen, the value of q will 

sometimes be seen to pass through a maximum for certain value of r3. This value is 

called the critical radius of insulation.  So if I plot q against r3, sometimes we will see, go 

through a maximum for a certain value of r3. This value of r3, we call the critical radius of 

insulation.  

 

Now, first of all let us find out mathematically by differentiation, what is this value of r3 

at which the q acquires a maximum value; that is very easy to do, it is just matter of 

differentiating. So let us do that, let us just put down an expression, derive an expression 

for the value of r3 at which q goes through a maximum. Now in the formula that we have 

put down, let me repeat that, we want to know where this goes through a maximum-this 

expression; the numerator here is constant so if i want to know where this goes through a 

maximum, effectively I want to know for what value of r3 the denominator goes through 

a minimum. So, let us differentiate the denominator only with respect to r3 and equate 

that to zero; differentiate the denominator with respect to r3 and equate that to 0.  

The first term - if I differentiate – is going to give me nothing because there is no r3 in its 

all constants; the second term will also give me nothing, it also doesn’t have an r3 which 

is our variable, it is going to give zero. Only the third term and the fourth term will give 

me something because they have an r3 occurring in them.  
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So if I differentiate the third term and the fourth term and equate to zero, I will get 1 upon 

- I am now differentiating the denominator third term -1 upon k2 r3 that is the third term 

differentiated minus 1 upon ho r3 squared is, on differentiation gives me that and I equate 

that to zero, I will get r3 is equal to k2 by h0; so it is this value of r3 given by k2 by h0 that 

the denominator goes through a minimum and therefore the whole expression for q goes 

through a maximum. We will call this value of r3 as the critical radius of insulation; this 

is the critical radius of insulation. So we will denote it as r3critical; this is the critical radius 

of insulation. Now in effect what I am saying is the following.  
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I am saying if I were to plot q against r3, let us do that, if I were to plot q against r3 or 

instead of r3, if  I were to plot it against r3 minus r2 that is the thickness of the insulation, 

if I want to plot q against thickness of insulation that is r3 minus r2 - r2 is a constant so 

whether I plot against r3 or r3 minus r2 I will get the same variation - then I will 

sometimes get a behavior which will look like this and sometimes i will have behavior 

which will look like this. When do I get the first type of behavior? When does q go 

through a maximum? q will go through a maximum and then go on decreasing if r2 that is 

the outer radius of the metal pipe is less than the critical value which is given by k2 by ho. 

If to start with, I have metal pipe and the r2 of that metal pipe is less than k2 by h0, k2 is 

the thermal conductivity of the insulation and ho is the heat transfer coefficient on the 

outer surface of the insulation. If r2 is less than this, then we are going to get this type of 

situation of q going through a maximum then decreasing. 

   

On the other hand, if the radius r2 of the metal pipe to start with is greater than or equal to 

k2 by h0 - k2 by h0 is the critical radius of insulation - then straight away if I put 

insulation on that pipe I will start getting a reduction in q. So keep in mind the addition of 

the insulation on a pipe will help in reducing the heat flow rate if to start with r2 is greater 

than or equal to k2 by h0; if it is less, if r2 is less than k2 by h0, the addition of insulation 
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will first cause the value of q2 go up a little, then it will start coming down as we go on 

putting more and more insulation.   

 

Now, why does this happen? It happens, it is very easy to see if you look at the 

expression for q; let us go back to that. The expression for q has two thermal resistances 

right here - one is the thermal resistance associated with the insulation, the other is the 

thermal resistance associated with the heat transfer coefficient on the outer surface. The 

first one which contains the log to the base e r3 by r2- this increases as r3 increases; the 

second one - this one decreases as r3 increases, as you can see it is 1 upon r3 here.  

 

So, up to the value of k2 by h0, that is the critical radius; the rate at which this increases is 

less than the rate at which this decreases and therefore the overall thermal resistance is 

decreasing and therefore the value of q goes up. Once we have got the critical radius, the 

reverse happens and the overall thermal resistance goes on increasing and therefore q 

goes on decreasing. That is really mathematically why it is happening in this fashion. So 

when we put insulation on a pipe the lesson to learn is, when we put insulation on a pipe, 

you want q to go down so make sure to start with that; your value of r2 is greater than or 

equal to k2 by h0. If this is so no problem, whatever the thickness of insulation you put 

given r3 minus r2, it will help.  

 

If on the other hand, you have a situation in which to start with r2 is less than k2 by ho, 

then what should you do? You must put enough insulation to see that you cross this hump 

and you have reached a point where the value of q is less than the value you get to start 

with when there is no insulation. So if I were to take a horizontal line from here; what I 

am saying is, if you have a situation in which r2 is less than k2 by h0, then you should 

always put, you should put a thickness of insulation greater than the value shown by this 

arrow. If you put less, you will in fact get a value of q which is more; so adding 

insulation will hurt you, will not help you. That is the meaning and that is the sum and 

substance of what we are trying to do when we talk about the critical radius problem.  
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So now we can look at a problem and I want to solve a numerical problem just to 

illustrate ideas. I am going to take the following situation, I am going to say let us say 

there is a pipe - just going to draw a sketch.  
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Let us say there is a pipe like this, some pipe whose inner, I am drawing only half of it, 

some pipe; the inner radius is .8 centimeters and the outer radius is 1 centimeter; a pipe 

with an inner radius of .8 centimeters and outer radius of one centimeter. Let us say it is a 

metal pipe like this, some metal pipe like this and we put insulation on the outside of this 

pipe, we you put thermal insulation on the outside of this pipe; this is the thermal 

insulation on the outside of this pipe and let us say the insulation - thermal insulation - 

conductivity is .20 watts per meter k that is the thermal conductivity of the insulation. 

You are told that on the inside hot water flows and the temperature Ti is 90, hot water at 

90 degree centigrade; hot water flows on the inside at 90 and on the outside there is air at 

30; ambient air at 30 centigrade. Value of hi on the inside of the tube given to be 500 

watts per meter squared Kelvin and on the outside ho, value of heat transfer coefficient 

given to be 10 watts per meter square Kelvin.  
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500 is a typical value for low velocity water flowing at a low velocity through a tube and 

10 is a typical value for heat being lost by natural convection from an outer surface. 

Calculate the variation of q by L with the - q by L that is the heat loss rate per meter 

length - with insulation thickness. This is the numerical problem we want to do; it is a 

straightforward substitution problem. There is no real complication; I just want to 

illustrate the ideas that we have been talking about. 

 

Now, a typical situation metal pipe is insulation rounded, hot water flowing inside; how 

does the q by L vary with the insulation thickness? Now for this case if I substitute in the 

expression; what is my expression? q by L is equal to 2 pi Ti minus To divided by, the 

expression is 1 by ri r1hi plus 1 by k1 log to the base e r2 by r1 plus 1 by k2 log to the base 

e r3 by r2 plus 1 upon r3 ho; that is my expression for the q by L. Now the first thing we 

want to say is we have got a metal pipe made of say steel or stainless steel; what will be 

the k value? If it is say steel, it will be 10, 12 watts per meter Kelvin; if it is steel not 

stainless steel but steel it may be 40, 30 or 40 or 50 watts per meter Kelvin. In any case, it 

is just a pipe, a tube rather with a thickness 2 millimeters.  

 

r1 is .8 centimeter then r2 is 1 centimeter; whatever the value, the thermal resistance of 

this metal tube is going to be insignificant compared to the thermal resistance of the 

insulation. So straight away let us drop this out and say this we are going, not even going 

to calculate it. We are just going to take it equal to 0; going to make that approximation 

which is a very accurate approximation to make. So let us forget the thermal resistance; 

neglect the thermal resistance of that metal tube compared to the thermal resistance of the 

insulation which is coming on the outside. It is quite justified so with this approximation 

what do we get now for the q by L?  
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By putting the numbers, I will get q by L is equal to if I put in the given data, I will get q 

by L is equal to 2 pi into 90 minus 30 divided by - let us put down the data now - divided 

by I will get 1 upon ri .008 multiplied by 500 plus neglect the second resistance. The 

resistance of the insulation .2 log to the base e r3 upon .01 centimeter that is r2 plus 1 

upon r3 multiplied by 10; 10 is the value of ho. Now for different values of r3, we can 

calculate q upon L in so many watts per meter. Calculate the value of the q by L against, 

with different values of r3; if you do that and I want you to do this now; you should get 

the following answers. 

 

Show that for different values of r3, r3 in meters; I would like you to get the following 

answers. Show that you will get for different values of r3 .01, .015, 0.02, .03, .04 and 

what will be the thickness of insulation? r3 minus r2 which is the thickness of insulation 

in centimeter; so will come out to be here it is 0 because here r3 is equal to r2 then it will 

be .5 centimeters then 1 centimeter, 2 centimeters, 3 centimeters and you will get q by L 

if you substitute into the above expression. You will get q by L in watts per meter to be 

36.8, 42.2, 43.3, 41.5 and 38.9 and with more thickness of  insulation that value of q by L 

will go on decreasing.   
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So notice now that in this particular case with the data that we got the value of q by L 

goes through a maximum goes through a maximum at an insulation thickness of 1 

centimeter and the value of r3 equal to 2 centimeters. Do these calculations yourself so 

that you will be convinced of what we got. Now why is this happening?  

 

(Refer Slide Time: 45:00)  

 
 

This is happening because, q by L is going through a maximum because in this case in 

the data that we have given in this case r2 to start with is less than k2 by h0 - that is the 

critical radius of insulation and what we will get for k2 by h0? We get k2 by h0 is, it is k2 

by h0; in this case, the critical radius is equal to .2 divided by 10 which is nothing but .02 

meters which is equal to 2 centimeters. So, this is a case where r2 was less than the 

critical value given by k2 by h0. Therefore in this case the value of q first increased, q by 

L first increased with thickness of insulation then decreased and started decreasing. So, 

this is just an illustration, a numerical example to illustrate all these ideas.   

 

Now final comment on the critical radius; keep in mind this situation does not happen 

very often. When does it happen? It happens when k2 is high, that is the thermal 

conductivity of the insulation is high; this situation will also occur when the value of ho 

on the outside is low. Then the combination k2 by h0 will give me higher value of rcritical 
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and then only r2 may be less and q by L will first go through a maximum. So it will occur 

only under these situations.   

 

Now on your own, I would like you to do the following problem. Please do this on your 

own and I will readout the problem; problem is the following.  
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Derive an expression for - ‘the’ should not be there - derive an expression for the critical 

radius of insulation of a sphere. Suppose I have a sphere - a hollow sphere; inner radius 

r1, outer radius r2 and I put insulation up to a thickness, up to a radius r3 around it. So 

what is the thickness of insulation r3 minus r2? Find an expression for the critical radius 

for this situation and the answer you should get is r ritical for the spherical k should be 2 k2 

by ho. Please do this yourself in the same manner that we derived the value, this 

expression for the long composite cylinder for the cylindrical case.  

 

Now, we will just briefly today start with the next topic. I just want to introduce you to 

the next but we will not really do it today that is so far we have taken up one dimensional 

cases, one dimensional steady state through a slab, one dimensional steady state through 
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a cylinder, one dimensional steady state through a composite slab, one dimensional 

steady state through a composite cylinder; the sphere case I asked you to do on your own.  

Suppose all these cases remember temperature has only been a function of one 

dimension, that is why one dimensional cases, temperature has been a function of x or a 

function of r. Suppose now we want to take up situations in which the temperature varies 

in more than one direction, say it is a coordinate system - cartesian coordinate system - in 

which temperature is varying in the x and the y direction and the z direction; temperature 

is varying in space in more than one direction. Suppose also temperature is varying with 

time that means it is not a steady state situation. Whenever we have situations in which 

temperature is a function of more than one variable then we need to derive a general 

differential equation which will be a partial differential equation for solving heat 

conduction problems.  

 

So, now our next job will be to derive the general differential equation for heat 

conduction for situations in which temperature may vary in space in more than one 

direction and temperature may vary with time also; that is what we are going to do. In 

order to do that, we need to consider: anytime you have to derive a general situation in 

differential equation, a partial differential equation or an ordinary differential equation for 

that matter, you need to consider some element, some arbitrary differential element in 

that solid and apply the first law and Fourier’s law to that arbitrary element. 

 

So, what we are going do now is we are going derive a general differential equation for 

heat conduction. We are going to derive it for an isotropic material that is a material in 

which k does not vary in direction but k may vary from point to point and we are going to 

derive it in the cartesian coordinate system, that is in the xyz system. Later on, we will 

generalize to another coordinate system; so we are going to now derive a general 

differential equation in the cartesian coordinate system and for an isotropic material, that 

is a material in which k does not vary with direction. So pick an element inside the solid. 
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Let us say the element we pick is an element dx dy dz - a rectangular element somewhere 

within this solid; this is some arbitrary solid - some boundary conditions which we will 

take up later; this is the differential element. I take a magnified view of it and say this is 

the direction dx, this is the direction dy, this is the direction dz. And now on this element, 

now we are going to, through this element - not on this element - through this element, 

we are going to apply the first law of thermodynamics as for a closed system. In the 

process, we will also use Fourier’s law of heat conduction and get our general differential 

equation; so that is what we will be doing next time.   


