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Today, we will start with the second major topic in the syllabus namely heat conduction. 
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Now, more specifically I should say, we will be talking about heat conduction in solids. 

We will be concerned with trying to find the temperature distribution in a solid for certain 

situations, trying to find the rate at which heat flows in and out of solids given certain 

specified conditions either in the steady state or in the unsteady state.  
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One reason why we study heat conduction in solids first is that of the three fundamental 

laws the law of conservation of mass and Newton’s second law of motion are trivially 

satisfied when we talk of a closed system within a solid. We don’t yet worry about mass 

being conserved obviously; it is trivially satisfied and Newton’s second law of motion is 

concerned with force and momentum that too inside a solid is not of concern to us. It is 

like saying almost zero is equal to zero or something like that. What we need to satisfy is 

only the first law of thermodynamics and that too applied to a closed system. Now, in the 

first law, we say rate at which heat enters the system minus rate at which work is done by 

the system is equal to rate of change of energy of the system. Inside a solid, the work 

term does not take exist; so the first law simply reduces to the form dQ dt equal to dE dt 

because there is no work involved.  

 

So, this is one good reason why we study heat conduction in solids first. It is 

mathematically, shall we say a little simpler in the sense that of the fundamental laws, we 

have to satisfy only one and that too, the first law for a closed system. Now what we are 

going to do is first of all in order to get a little familiar with the situation of heat 

conduction, we are going to consider a number of one dimensional steady state situations. 
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Steady state means the temperature does not vary with time and one dimensional means 

the temperature varies only in one direction. The first situation which we are going to 

consider is that of an infinite slab. Let us say I have a slab of width b, its two faces - one 

on the left is at a temperature t1, the one on the right is at a temperature t2, is maintained 

at that temperature t2. The thermal conductivity of this slab, let us say is k, small k. We 

would like to find out - by conduction - what is the rate at which heat flows across this 

solid and what is the temperature distribution in the solid.  

 

By conduction, obviously heat has to flow in the direction of decreasing temperature. So, 

if I assume t1 to be greater than t2, the heat is going to flow from left to right something 

like this across the slab. And I would like to derive an expression for the rate at which 

heat flows across the slab. I would like to derive an expression for the temperature 

distribution in this slab; that is what I am trying to do. The way I will proceed is of course 

to use Fourier's law of heat conduction and the first law; these are our basic tools for 

solving the problem. So, let us first of all now see that - suppose we want to use these. 

So, I have already made a statement that the flow of heat is one dimensional - let me 

write that down – one dimensional and therefore and it is steady state. 
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Therefore, the temperature in the slab will only be a function of one direction and we will 

call that the x direction. Therefore, since temperature is only a function of the x direction, 

it follows that Fourier's law can be stated as q by A is equal to minus k dt dr, dT dx; 

notice I am using an ordinary differential not a partial differential. Why? Because T is 

only a function of x. 

  

Now the first thing I am going to do is I am going to use the first law of thermodynamics 

first of all, to show that the quantity q - the rate at which heat is flowing across the slab so 

many watts - is a constant and I do that as follows. Suppose I take a slab. Let me just 

draw a slab here; suppose I draw a slab. This is a slab and let us say at some distance x 

from the left face - some distance x - I consider a plane x at a distance x. Now, also 

consider another plane which I will show in a slightly different manner at a distance x 

plus dx. Let us say a second plane at a distance x plus dx like this. This is the plane x and 

this is the plane x plus dx.  

 

Now, consider heat flowing across this slab through the plane x and then through the 

plane x plus dx. The heat is flowing at the rate q. Now, if the quantity q flowing across x 

- some area of x - is not the same as the quantity q flowing across x plus dx; if it is not the 



 5 

same, then the first law of thermodynamic says that the temperature of the slab, the 

energy of the material within these two planes x and x plus dx, will have to increase, 

either increase or decrease; will have to change, if q is not the same and if that happens 

the temperature will have to change but we have already said that the temperature is not 

changing with respect to time. Therefore, it follows that q across any plane x, x plus dx or 

x plus two dx, whatever, any plane in the slab will have to be the same everywhere. So q 

is a constant; that’s what the first law - from the first law, we have shown; q is a constant. 

It follows if q is a constant that q by A is also a constant because A - the area through 

which heat is flowing across the slab - is the same. It is a one dimensional situation; the 

heat is continuously flowing across the same area. So if q is a constant, it follows q by A 

is a constant. So using the first law of thermodynamics, we have shown q by A is a 

constant. Now, with that information let me rewrite Fourier's law in the form; I will say q 

by A - which is a constant - into dx is equal to minus k into dT and let us integrate this 

expression. Let us integrate this expression between the limits; from one end of the slab 

zero to b - x equal to zero to x equal to b - and the other one at x equal to zero the 

temperature of the face is t1, at x equal to b the temperature is t2. So, integrate it and once 

we integrate it, we will get the expression; we will get the following expression.  
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If we integrate it, we get the expression q by A is equal to k by b into T1 minus T2 - this 

is the expression for the rate at which heat flows across the slab. If I want the temperature 

distribution, we integrate the same earlier expression but from zero to x for x and from T1 

to T for the variable T and we will get the second expression which I have shown here 

that for the temperature distribution namely T1 minus T upon T1 minus T2 is equal to x 

by b which is just a straight line; simply saying the temperature will vary in a straight line 

across the slab. This is derived under the assumption that k is a constant at all points 

within the slab. Keep that in mind. 

 

If k is not a constant, then I will have to put that variation of k with temperature into 

account and leave that, put that variation into the integration. So, I will get a different 

answer in that case. So, this is with the assumption let k is the constant. So, these are our 

two results for the temperature distribution in the slab which is a linear distribution and 

heat flow rate across the slab.  

 

Now, we will solve the same problem for the cylindrical situation. Let us say, I have an 

infinitely long hollow cylinder and it is of inner radius ri, 
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Its outer radius is ro; the inner circular face is maintained at a temperature Ti, the outer is 

maintained at a temperature To. Its thermal conductivity is again a constant namely k. I 

would like to find again like in the earlier case; to find first of all the temperature 

distribution in the solid and secondly to find the radial heat flow rate just like in the 

earlier case; the only change now is we have switched from a slab to a long hollow 

cylinder. So, we would like to find expressions for these and we will proceed in more or 

less the same manner that we proceeded earlier for the slab, excepting that now we will 

be working with a one dimensional situation in cylindrical coordinates. So what will we 

have? We will have again if you argue out; you can say it is a one dimensional situation. 
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So, the temperature will only be a function of r - the radial direction. It will not be a 

function of theta or z or of time; time because it is not a - it is a steady state situation. 

Therefore Fourier's law we dealed - q by A is equal to minus k dT dr where the dT dr is 

an ordinary differential and now in a ray, in a cylindrical situation, the area A across 

which heat is flowing is continuously increasing as we move outwards in the radial 

direction unlike the infinite slab case. Therefore for A, I will have to put q divided by two 

pi rL where r is any radius within the cylinder; L is some length of the cylinder. q divided 

by two pi rL is equal to minus k dT dr and q is a constant; just like we had shown in the 
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previous case, we can argue that q is constant by applying - by using the first law of 

thermodynamics. q has to be a constant. So again, integrate this expression. We write this 

as q upon 2 pi L; integrate it from ri to ro, dr by r and that is equal to minus k the integral 

Ti to To - the inner face to the outer face - dT; that is how we will integrate. So, rewrite 

the Fourier's law in this fashion; integrate from the inner face to the outer face and after 

doing that, we will get the result for the temperature distribution and the heat flow rate.  
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We will get the following - we will get for the heat flow rate q is equal to 2 pi kL into Ti 

minus To upon the logarithm ro by ri - logarithm to the base e - and the temperature 

distribution would be T minus Ti upon To minus Ti is equal to the logarithm r by ri upon 

the logarithm ro by ri; this would be temperature distribution inside the cylinder. So, 

these are the corresponding results for a long hollow cylinder. Now, let us do a problem. 

We are going to do the following problem - numerical problem. I am going to say let us 

do the following  
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just to illustrate the use of the equation which we have just derived for heat flow rate. Let 

us say we have given a long hollow tube. Let us say ID inner diameter 2 centimeter outer 

diameter 4 centimeter. Let us say its thermal conductivity k is equal to .58 watts per 

meter Kelvin. Looking at this value .58, I hope you immediately recognize it is not a 

metal tube; it is made of some non metallic material say a plastic or something like that. 

And let us say the inner face - the inner circular face - is maintained at a temperature 70 

centigrade and the outer is maintained at a temperature of 100 degree centigrade. This is 

the given data. Find the value of q by L - the heat flow rate per meter length of the tube. 

It is a direct substitution into the equation that we have just derived. Now, one habit - one 

good habit - which I think you should get into is: always draw a sketch of the physical 

situation that you are dealing with. Very often, one can visualize it; it is a simple enough 

sketch, simple enough situation that you can visualize it but still it is a good habit to 

always draw a sketch.  

 

So, in this case what we will get now? If I draw a sketch, it is going to look something 

like this. Let us say this is the outer surface, this is the inner surface and let us say this is 

the center line. So, the inner diameter is Di so I will have Di is equal to 2 centimeter. Do 

is the outer diameter is equal to 4 centimeter and this is my solid tube whose k is given to 
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be k is equal to .58 watts per meter Kelvin. So, this is the solid tube. Now, the inner face 

is at a temperature of 70 degree centigrade. This is Ti and the outer face is at a 

temperature of To - is at a temperature of 100 degree centigrade. We would like to find 

the value of q upon L - heat is going to flow - we would like to find the value q by L; the 

rate at which heat flows in the radial direction. You can see I am drawing the arrow 

always in the positive r direction. We would like to find q by L for this situation. It is a 

straight forward substitution; there is no complication in this problem. I just want you to 

get into the habit of drawing a sketch, putting down the data and solving the problem. So, 

substitute into the equation we have; what was our expression?  
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The expression we had was q by L is equal to 2 pi k into Ti minus To; that is our 

expression divided by the log to the base e ro by ri. So in this case substituting the data 

we are going to get 2 pi .58 into 70 minus 100 divided by, this will be divided by the log 

to the base e 2 divided by 1 - 2 centimeters is the outer radius 1 centimeter is the inner 

radius. I don’t have to put it in meters because I am diving 1 by the other and it becomes 

dimensionless automatically. And this if you calculate it; if you put in the numbers and 

calculate, you will get minus 157.7 watts per meter for a meter length of the tube. So, that 

is the answer to the problem. It is a direct substitution into the formula which we just 
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derived and what is the meaning of this negative sign? Please note it - the negative sign is 

because in this case the heat is flowing in the negative r direction; the positive r direction 

is outwards. Since the outer face is at a higher temperature compared to the inner face, 

the heat flow is actually inwards; therefore, we are getting a negative sign. That is the 

meaning of the negative sign.  

 

So, now we have expressions for 2 one dimensional situations - a slab and a cylinder. 

What I would like you to do on your own is the following. I would like you to do the 

problem that I just solved; do the problem with the same data for a hollow sphere. Repeat 

this problem; that means assume we have got a hollow sphere, inner diameter 2 

centimeters, outer diameter 4 centimeters; inner face maintained at the temperature of 

100, inner face maintained at temperature 70 degree centigrade; outer face at a 

temperature 100 degree centigrade, k equal to .58. Find q; what is q? And the answer you 

should get - I want you to do this on your own - if you do this problem on your own, the 

answer you should get is q is equal to minus 4.37 watts. So please do this problem which 

is an extension of what I just did on your own for a spherical situation. You should get 

this answer; mind you again the negative sign is because heat is flowing radially inwards. 

That is the reason for the negative sign. 

 

Now, we want to introduce the idea of what is called as a thermal resistance. You have 

got solutions for a few one dimensional steady state situations; now we want to introduce 

the concept what is called as a thermal resistance. A thermal resistance is defined in a 

manner very similar to an electrical resistance defined by ohm's law. Suppose I have, let 

us look at the right side of this figure. 
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suppose I have an electrical resistance through which a current I is flowing and across 

which I have a potential difference delta e. Ohm’s law states  that the electrical resistance 

R electrical is equal to delta e divided by I right? That is ohm’s law. Now in a analogous 

manner, I define a quantity called a thermal resistance and define it as follows. I say 

suppose I have a solid and across the faces of the solid I have a temperature difference T1 

minus T2; this is similar to the potential difference delta E and there is a heat flow rate q 

flowing across this solid; the q is analogous to the current I. Then, the thermal resistance 

of the solid is given by the temperature difference T1 minus T2 divided by q; that is how 

we define it. We define thermal resistance as equal to a temperature difference divided by 

the rate of heat flow; this is the definition of a thermal resistance. Now, immediately I can 

go back and see the case of the infinite slab. For the infinite slab, what did we have for 

the, look at the expression for heat flow rate. 
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For an infinite slab, what will be the thermal resistance; with this definition that I just 

gave you for an infinite slab. We just derived the expression q is equal to kA by b; if you 

go back in your notes you will see kA by b into T1 minus T2; we just derived that 

expression. Compare it now; compare this expression with our definition. How do you 

define thermal resistance? We say thermal resistance is equal to T1 minus T2 divided by 

q. Therefore, for an infinite slab, thermal resistance would be given by b by kA. That is 

how we will get the expression for the thermal resistance of an infinite slab. For heat 

flowing from a surface to a fluid - that is Newton’s law of cooling - the thermal 

resistance, if I again use this definition of T1 minus T2 by q; the thermal resistance would 

be equal to 1 upon hA by comparing with Newton’s law of cooling this definition. 

 

For an infinite hollow cylinder - if I go back to the previous transparency now - for an 

infinite hollow cylinder, Rth would be given by the logarithm to the base e ro by ri 

divided by 2 pi kL. So, once I have an expression for heat flow rate and I have a 

definition for thermal resistance, I can write down what would be the thermal resistance 

for a given situation. So we have put it down for the 3 cases which we have be so for 

studied - an infinite slab, an infinite hollow cylinder and when heat transfer takes place 

from a surface to a fluid. These are our expressions for thermal resistance. Now, why do 
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we introduce the concept of a thermal resistance you will say? Well, what do I get out of 

it? The main reason is the following - the main reason is you know that when there are 

many electrical resistances in series r1, r2, r3, r4, we know very well the total electrical 

resistance of all those in series is the sum of r1 plus r2 plus r3. So, if I have many electrical 

resistances in series, the total electrical resistance is the sum of the individual electrical 

resistances.  

 

Similarly, when we have a number of thermal resistances in series, the total thermal 

resistance is also the sum of the individual thermal resistances; that is why the concept of 

a thermal resistance is a useful one and we use it. So, let me repeat that sentence because 

that is a useful sentence. 
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Thermal resistances in series can be added to obtain the total resistance; when we have 

many resistances in series, the thermal resistance - total thermal resistance - is the sum of 

the individual thermal resistances. Now with this backdrop, let us look at a composite 

situation. A composite situation is one in which we have a number of thermal resistances 

in series.  
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So, we are now going to look at instead of a slab, just one slab that we looked at earlier, 

we are now going to look at an infinite slab which is composite in nature. Look at this 

figure; we have now a composite slab consisting of three materials with thermal 

conductivities k1, k2 and k3 and thicknesses b1, b2 and b3; three slabs attached to each 

other side by side. The first one is thickness b1, b2, second one - b2, third one - b3. Their 

conductivities are k1, k2 and k3 and let us say on the left side here, the slab is in contact 

with a fluid at a temperature T1 and on the right side, the slab is in contact with a fluid at 

a temperature T2 and arbitrarily I have said let T1 be greater than T2. If that is the case, 

heat will flow from the left side to the right side; if the reverse is the case it will flow in 

the reverse direction; it doesn’t matter, I have just taken one temperature to be higher 

than the other.  

 

Now what we want to do; we want to find an expression for the heat flowing across this 

slab. Heat will flow like this across this slab; I would like to find an expression for the 

rate at which heat flows across this slab and I would like to find an expression for the 

thermal resistance of this composite slab; that is what I would like to do. For the moment, 

let us not at look at this expression; we will come to it in a moment. This is the composite 
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slab; we want an expression for the heat flowing across it and the thermal resistance of 

this composite slab.  

 

Now the first thing you recognize is that for analyzing this slab, we need to recognize 

first of all that there are five thermal resistances in the path of the heat flow. What are the 

five thermal resistances in the path of the heat flow? Starting from the left, we have the 

heat transfer coefficient on the left side, then the thermal resistance associated with the 

first with conductivity k1, then second, then third and then finally the thermal resistance 

associated with the heat transfer coefficient h2 on this face. So there are five thermal 

resistances in the path of the heat flow and for each of them if I first say the intermediate 

temperatures are Tw1, Tw2, Tw3 and Tw4. So, for across the first thermal resistance, there 

is a temperature difference T1 minus Tw1 which is governed by Newton’s law of cooling; 

across the next Tw1 minus Tw2 I can use the result for an infinite slab which I have just 

derived a few minutes ago; same for the second and the third slab, I can use the linear 

distribution and the heat flow rate result which I got a moment ago and finally again for 

the last thermal resistance where there is a heat transfer coefficient h2, I can use 

Newton’s law of cooling to put down the expression for heat flow rate for the fifth 

thermal resistance. So let us do that; what will we get? We will get starting with the left 

side again 
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q by A and now going from left to right - is equal to h1 T1 minus Tw1; Tw1 is the 

temperature of the surface on the left side. Then, first slab - q by A is equal to k1 by b1 

Tw1 minus Tw2; second slab making up the composite situation k2 by b2 Tw2 minus Tw3; 

third one - q by A is equal to k3 by b3 Tw3 minus Tw4 and finally the last one - this is the 

heat transfer coefficient q by A is equal to h2 into Tw4 minus T2. These are the five 

expressions and obviously q by A is the same for all of them. It is not just symbolic; all 

these q by A have to be equal because it is a steady state situation - heat flowing from left 

to right.  

 

Now, I can rewrite each of these expressions in terms of a temperature difference alone; 

so I can write say the first expression as T1 minus Tw1 is equal to something; I can write 

the second one Tw1 minus Tw2 equal to something; all the five can be rewritten like this 

and then I can add them up. If I add up notice what is going to happen. The intermediate 

temperature Tw1 will cancel, the intermediate temperature Tw2 will cancel; all of them 

will go - Tw1, Tw2, Tw3, Tw4 - all will go. All that would be left on the left hand side when 

I had up will be T1 minus T2. If I now add up all the five expressions, all the intermediate 

temperatures will go and I am simply going to get on the left hand side T1 minus T2 is 

equal to something; let us put that down. What we will get is the following.  
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T1 minus T2 is equal to q by A multiplied by one by h1 plus b1 by k1 plus b2 by k2 plus 

b3 by k3 plus 1 by h2; that is the expression I am going to get and this is my expression 

now for the heat flow rate across this composite slab consisting of three infinite slabs 

joined together and two heat transfer coefficients on the two faces. This would be my 

expression and now compare this with by definition of thermal resistance for a composite 

situation. What will it be? The thermal resistance for the composite situation is given by 

T1 minus T2 divided by q; so if I take T1, in this expression that I have derived here, if I 

take T1 minus T2 upon q to the left hand side, what am I left with on the right hand side? 

Whatever I am left with in the right hand side will be my expression for the thermal 

resistance; so for the composite case, I get the thermal resistance to be the following, 

which I had shown you earlier. For the composite case, thermal resistance is 
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Rth is equal to 1 upon A into 1 by h1 plus b1 by k1 plus b2 by k2 plus b3 by k3 plus one 

by h2 and this is nothing but the sum of the five individual thermal resistances which I 

have got. The first one is 1 by h1A; second one is b1by k1A , etcetera. So, we have not 

only got an expression for the total thermal resistance of this composite case, we also 

have shown that when thermal resistances come in series, the total thermal resistance is 

the sum of the individual components. We have done that as well. Now, at the same time 

while we are on the composite case, I want to define another term for you and that term is 

a term called the overall heat transfer coefficient. 
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It is an important term which we use quite a lot in heat transfer; so I want to define a 

second term called the overall heat transfer coefficient. I want to define that term for you. 

The overall heat transfer coefficient whenever is defined for a situation in which we have 

more than one thermal resistance for some composite situation. We say the overall heat 

transfer coefficient for a composite situation may consist of two thermal resistances; it 

may consist of three or like we did just now, five thermal resistances.  

 

It is defined as follows. We define it as the overall heat transfer coefficient for a 

composite situation; is defined by the following expression. Let me write down here 

definition. It is defined by the expression q is equal to UA into T1 minus T2 – that is the 

definition of the term which we have called as overall heat transfer coefficient. U is the 

overall heat transfer coefficient, q is the rate of heat flow in watts, A is the area across 

which heat is flowing and T1 minus T2 is the temperature difference at the two 

extremities of the system across which we wish to define this term - overall heat transfer 

coefficient; that is how we define this term. 

 

Now mind you, if A is a constant as in the case of the infinite slab, it is well defined, 

there is no ambiguity. But if on the other hand A is varying, then we need to tell on what 
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area A, the quantity U is defined; it is based on some area. So, if A is varying I will have 

to tell the area A on which U is defined; if on the other hand there is no ambiguity like in 

an infinites composite slab then of course, I don’t need to tell anything on what basis U is 

defined.  

 

Now, compare this definition with the expression which we had a moment ago for q for 

an infinite slab. What was our expression for q for an infinite slab? Let me just show that 

again for a moment; the expression for q for an infinite slab was the following. We got T1 

minus T2 is equal to q upon A into all this; this was our expression from which I can 

write q equal to something or the other. So, if I compare this expression for q for a 

composite, infinite composite slab with my definition of an overall heat transfer 

coefficient, then for an infinite composite slab I can say for an infinite composite slab, the 

expression for overall heat transfer coefficient will be U is equal to 1 divided by 1 upon 

h1 plus b1 by k1 plus b2 by k2 plus b3 by k3 plus one upon h2. So what we have done is 

we have defined a term called overall heat transfer coefficient and for the infinite 

composite slab case, I have given you what would be the expression for the overall heat 

transfer coefficient for that case since we have just derived an expression for heat flow 

rate across an infinite composite slab. Now let us move on to the thermal resistance of a 

long hollow composite cylinder. 

 

 

 

 

 

 

 

 

 

 

 

 



 22 

(Refer Slide Time: 45:15) 

 
 

So, instead of a composite slab, now I have a composite cylinder. Let us look at this 

figure; here I have a composite cylinder - a long composite cylinder - made up of two 

materials. Thermal conductivity is k1 and k2; the inner cylinder has radius r1 and r2; the 

outer cylinder has r2 and r3. The inner surface there is - at the inner surface there is a heat 

transfer coefficient hi, at the outer surface there is a heat transfer coefficient ho; the fluid 

inside the tube is at a temperature Ti and on the outside the fluid which is in contact with 

this surface is at a temperature To. So for this case we have four thermal resistances - a 

thermal resistance associated with the heat transfer coefficient hi; a thermal resistance 

associated with conduction through the first cylinder; then a thermal resistance associated 

with the heat conduction through the second cylinder and finally a thermal resistance 

associated with the heat transfer coefficient ho on the outer surface at radius r3.  

 

Now, we can go through a derivation for this case again in the same manner as we did for 

an infinite composite slab and derive expressions for q. What is the rate at which heat 

flows across this slab, across this composite cylinder and what is the thermal resistance 

for this composite cylinder? We can do both that in exactly the same way that I did for 

the slab; that means I will take each one of them one by one and say let the intermediate 

temperatures be Tw1, Tw2; then I will say Ti minus Tw1 is equal to something; Tw1 minus 
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Tw2 is something; Tw2 minus Tw3 is equal to something and then finally Tw3 minus To is 

equal to something. Add them all up, get rid of the intermediate temperatures and I will 

get an expression for q and for Rth. If we do that, which I want you to do on your own 

because it is exactly a repetition of we did for the infinite slab, you will get the following 

results.  
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You will get - Rth the thermal resistance for the composite case is equal to again the sum 

of the four thermal resistances which make up that composite situation. Start with the 

inner one - one upon hA, one upon hi into the inner area; what is the inner area? 2 pi r1 L; 

L is some length that we are taking for the cylinder. Second, thermal resistance of the 

first inner cylinder log to the base e r2 by r1 divided by 2 pi k one L; second cylinder - log 

to the base e r3 by r2; 2 pi k2 L and finally the thermal resistance on the outermost face 1 

upon ho into 2 pi r3 L. That is the total thermal resistance of the composite cylinder and 

obviously if I want expression for the total thermal resistance, it follows that q must be 

equal to the temperature difference from one end to the other - that is from Ti to To - 

divided by this total thermal resistance. So that is my expression for q straight away. q is 

given by Ti minus To divided by this whole Rth out here.  
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I could also for this case put down an expression for the overall heat transfer coefficient 

by comparing with my definition of overall heat transfer coefficient. Suppose I want to 

base my overall heat transfer coefficient on the inner area that is on the radius r1. What 

would be the area there? For r1, the radius would be 2 pi r1 L.  
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So my U - the overall heat transfer coefficient - then based on inner area, the definition of 

U would be q is equal to U and since this is U based on the inner area that is on the radius 

r1, I will put subscript on it Ur1 to indicate that it is based on the radius r1 multiplied by 2 

pi r1 L – that is the area - multiplied by the temperature difference from the inside to the 

outside and what is the temperature difference? Ti minus To; that is my definition of the 

overall heat transfer coefficient based on the inner radius r1 where the area would be 2 pi 

r1 L. Therefore, if I use this definition and use my expression for q for this case, I 

straightaway get 1 upon Ur1 is equal to 1 upon hi plus r1 by k1 log to the base e r2 by r1 - 

this is the inner cylinder, then r1 by k2 log to the base e r3 by r2 plus r1 by r3 1 upon ho.  

 

My definition of U can be based even on some other radius, say for instance suppose I 

say based on outer area, what is the outer area? 2 pi r3 L; in that case, I will get an 

expression 1 upon Ur3 is equal to and I want you to write this on your own. Write this 
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expression 1 upon Ur3 on your own. Remember if I use this value of Ur3, I must always 

multiply by 2 pi r3 L; if I use this value Ur1, I must always multiply by 2 pi r1 L in order 

to get q.  

 

So now, we are ready to stop here today. What we have done today; we have done the 

following. We have first of all started the topic of conduction and I said that while 

studying conduction in solids, we will be primarily concerned; what we have to do is to 

satisfy the first law of thermodynamics for a closed system and that too without a work 

term being involved. We will not have to worry about Newton’s second law of motion or 

the law of conservation of mass because these would be trivially satisfied. Then we 

considered 2 one dimensional steady state situations. First of all an infinite slab, then an 

infinitely long hollow cylinder; for both of them we got the temperature distribution; we 

got the heat flow rate.  

 

Then we introduced the concept of a thermal resistance and I said we introduced this 

concept because thermal resistances in series are additive. We went on then to a 

composite situation; we considered an infinite composite slab, got an expression for q and 

for thermal resistance for an infinite composite slab. We did the same for an infinitely 

long composite cylinder and for both of them I also defined a term called as overall heat 

transfer coefficient and said - we define an overall heat transfer coefficient as q is equal 

to U into A into T1 minus T2 where T1 minus T2 are the temperature differences at the 

two extremes and for both these cases - the infinite slab and the infinitely long composite 

cylinder - we got expressions for the overall heat transfer coefficient U for these two 

geometries and that is where we have stopped today.  


