
 1 

Heat and Mass Transfer 
Prof. U. N. Gaitonde 
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Lecture No. 34 
Introduction to Mass Transfer - 2 

 

Welcome back to the second lecture on mass transfer. In the previous lecture, after a brief 

introduction we studied the Fick’s law of mass diffusion its various forms. We also noted 

its similarity with the Fourier’s law of heat conduction. Then we looked at some 

tabulated values of the diffusion coefficient D, then we studied mass diffusion in a 

stationary medium, steady state one dimensional cases and near the end of the lecture we 

solved a problem of hydrogen migration through a steel plate. Now let us move on to the 

study of diffusion in a moving medium.  
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Again, for simplicity, for the study of diffusion in a moving medium, we will consider 

one dimensional and steady state situations; this will keep the analyses simple and 

straightforward. Again, for simplicity we will consider a mixture of 2 gases say A and B. 

We will assume that the thing is not stationery, the gases are moving at different 

velocities in the x direction; let Va with the velocity of component A and Vb be the 
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velocity of component B. Let the molar densities at a particular location of the gases be ca 

and cb kg mole of a per meter cube kg, mole of b per meter cube and the corresponding 

mole fractions be xa and xb and it is possible that Va, Vb, ca, cb, xa, xb vary with x 

because it is one dimensional situation.  

 

Now, there is direction of flow but over the direction of flow, over the bulk movement, 

there is a diffusion taking place because of the concentration gradients. We are assuming 

that ca cb, xa, xb are varying with x. We begin by defining an average velocity; let us 

define the molar average velocity.  
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The molar average velocity V bar m - this is defined as ca into Va plus cb into Vb divided 

by ca plus cb - if some slot of weighted average, the weights are the molar densities of a 

and b. In terms of mass fraction this can be written down as xa Va plus xb Vb and we will 

consider the mixture to be stationery when the molar average velocity, it is 0. Notice that 

the molar average velocity may be 0 when Va and Vb are non-zero but have different 

signs. So, if the bulk movement of a is say from the left to right, bulk movement of b is 

from right to left, it is possible that the magnitudes Va and Vb are such that they cancel 

out with averaging and Vm m bar could be 0.  
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Now we should remember that the molar flux of any species will be made up of 2 

components. Because of the molar average velocity, the whole mixture - whole system - 

is drifting either to what is the right or to the left and hence the molar flux of any species 

will be given to the molar average velocity in part but there will also be component due 

to diffusion of the species. So these 2 will get super imposed over each other and we will 

have a total molar heat, molar flux with this super-imposition; it is now possible to write 

down the molar flux of species A.  
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That would be N dot A per unit area; the units here will be kilo mole of A per second per 

meter square. So, kg mole a per meter square second - that will be the molar density of A 

multiplied by the mean molar velocity. This is due to the bulk motion and this is 

modelled by Fick’s law - the diffusion in the x direction of species a. So, the bulk 

movement component and the diffusive component, you can also say convective 

component and diffusive component. In a similar fashion, for species B we can write 

molar flux of species B kg mole of b per meter square per second will be in part due to 

the bulk movement of species B because of the molar average velocity V bar m that 

would be cb V bar m. Add to that minus c Dba dxb by dx which is the diffusive 

component; the second term here as well as second term here is represented using the 
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Fick’s law of diffusion and notice that in this equation it is Dab. The diffusion coefficient 

of a diffusing through band, this is Dba - diffusion coefficient of b diffusing through a. 

We will soon come across a very useful relationship between Dab and Dba.  

 

In these expressions, it is not necessary that the molar density of the mixture c be uniform 

but if it is uniform or constant, then the expressions which we just saw can be replaced by 

slightly simpler forms not in terms of mass fractions as in this case - xa and xb - but in 

terms of mole molar densities ca and cb; these are the expressions except that c being a 

constant, we can move it inside the derivative sign. So, we have the right hand side for 

the first equation in terms of ca, the right hand side in the second equation in terms of cb.  

We now write an expression for the total molar flux combining species a and b together; 

we should remember that the total molar flux is made up of the molar flux for component 

a plus the molar the molar flux for component b. If we add the 2 expressions, one for 

molar flux of a and another for molar of b and use the definition of the molar mean 

velocity, we will get this expression which represents a relation between the gradient of 

xa, the gradient of xb and Dab and Dba.  

 

Now, we should notice that xa and xb are mole fractions in a two-component mixture.  So 

their sum is 1 and hence the derivative of 1 will be equal to negative of the derivative of 

the other and because of this, this expression simplifies to an important expression - Dab 

is Dba. This is an important relation which indicates that the diffusion coefficient for 

species a through b equals the diffusion coefficient of species b through a. Now at this 

stage we should remember that we have defined a molar average velocity. It is possible 

for us to define a mass average velocity so instead of V bar m we may define a V bar the 

mass average velocity which will be the mass density of a into Va plus the mass density 

of b into Vb divided by the sum of the mass densities which is the total density. 
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If the mass fraction is represented by our symbol w, then this is wa Va plus wb Vb. Now, 

notice that this is the mass fraction average velocity whereas we had V bar molar equal to 

xaVa plus xb Vb; in general, mass fractions are not equal to mole fractions and hence 

there is no reason why in a general case the average velocity should equal the molar 

average velocity. So, in general these 2 average velocities will be different and that also 

means that in general the case of Vm equal to 0 does not mean V bar equal to 0. So if the 

molar average velocity is 0 and the mixture is stationary in that it does mean that the 

mass average velocity is 0 and also if the mass average velocity it is 0, it does not mean 

that the mole average velocity is.  

 

So, whenever we do our mass transfer analysis, it will be important to note which average 

velocity we are talking about because they are different and should be treated in a 

different way. Now, we move on to the next case which is again a one dimensional steady 

state situation and which is known as equimolar counter diffusion. In equimolar counter 

diffusion, we look at a situation which is like this.  
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Let me sketch it. We consider 2 large tanks or reservoirs, let us say this is reservoir a and 

we have here another large reservoir b and let us connect the 2 reservoirs by thin long 

duct. This is reservoir 1 and we assume that the 2 reservoirs are large enough so that a 

small amount of mass moving out of reservoir 1 into reservoir 2 and vice versa does not 

really change the state and the concentration in reservoir 1 nor does it change the state or 

the concentration in reservoir 2.  

 

In the case of equimolar counter diffusion, we assume that both the reservoirs are at the 

same pressure p and also at the same temperature t. They contain a mixture of 2 gases - 

assume ideal gases - the concentration is different in reservoir 1 and in reservoir 2. Let us 

say the 2 component a and b, then the molar densities in the reservoir 1 are ca1 and ca2 

and ca1 and cb1 and the molar densities in the reservoir 2 are ca2 and cb2. Since the 

pressure and temperature are the same in both the reservoirs and if we assume them to be 

ideal gases - the components - we can show that ca1 plus cb1 it is c. And ca2 plus cb2, the 

total molar density in the second reservoir will also be C because each component is 

assume to be an ideal gas and the pressure and temperature in each of the reservoir is the 

same.  
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Let us plot against the distance x, let us say this is x equal to 0 and this is x equal L - the 

length of the thin passage between the 2 reservoirs - and let us plot concentration on this 

axis and let us say that the concentration of a ca1 in the reservoir 1 is higher than 

concentration ca2 in the reservoir 2. Let us also assume that concentration of cb2 in 

reservoir 2 is higher than the concentration cb1 in reservoir 1. Our aim is to determine the 

variation of concentration for a and b between reservoirs 1 and reservoirs 2 along the 

connecting passage. The way we have assumed things, ca1 is higher than ca2, so there will 

be a diffusion of component a from reservoir 1 to reservoir 2 and there will be a diffusion 

of component b from reservoir 2 to reservoir 1. Our aim is to obtain relations for these 

rates of diffusion and also obtain relations for the concentration profiles in the duct 

connecting reservoir 1 to reservoir 2. We proceed as follows. We have already assumed 

that the 2 components are ideal gases or obey the perfect gas law.  
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Because of this we can write the molar concentrations directly in terms of partial 

pressure.  

 

Let us look at reservoir 1 - the total pressure of reservoir 1 is made up partial pressure of 

component a, partial pressure of component b. And in terms of the universal gas constant 
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R bar we get the left hand side equal to R bar T into ca1 plus cb1 R bar T into ca1 is Pa1 R 

bar T into cb1 is Pb1 - that is the ideal gas law. A similar expression for reservoir 2 gives 

p. We have assumed the same pressure for reservoir 1 and reservoir 2 so p will also equal 

pa2 plus pb2 which is R bar T into ca2 plus cb2 because we have assumed the same 

pressures in either reservoir. From this, it turns out that ca1 plus cb1, that is the total molar 

density in reservoir 1 should equal ca2 plus cb2 which is the total molar density in 

reservoir 2 which is c; which should be a constant because the number of moles and 

molar density in reservoir 1 must equal that in reservoir 2 at any time during the process 

because the pressure remains constant.  
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We have assumed the reservoirs to be large enough; this implies that the molar flow rate 

from left to right must equal the molar flow rate of B from right to left. That means if 1 

mole of A diffuses say in10minutes from reservoir a to reservoir b in the same10minutes 

1 mole of b will have to diffuse or will have diffuse from reservoir b to reservoir a. This 

characteristic gives this process the name equimolar counter diffusion and because the 

number of moles moving from left to right and number of moles moving from right to left 

are the same, the molar average velocity of the mixture will be 0 because number of 

moles moving from left to right and number of moles moving from right to left are the 
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same. Hence, in our expressions for the molar flux of a and molar flux of b, we will not 

have the term containing Vm bar because Vm is 0.  

 

So, we have the molar flux of a provided by the Fick’s law minus Dab Dca by dx and 

molar flux of b is also minus Dba Dcb by dx. We use this expression because we have 

already demonstrated that the total molar density c is a constant; so, we can write this in 

terms of Dca by dx and Dcb by dx. Again, we will make use of the fact that Dab equals 

Dba. We integrate these 2 equations which we saw just now - one for Dca by dx and one 

for Dcb by dx. Since everything is isothermal and at constant pressure, it makes sense to 

know that Dab is a constant, Dba is also a constant. So, the integration is straightforward 

and if we integrated from x equal to 0 which is the connection of the duct to tank or 

reservoir a to x equal to L which is the connection of the duct to reservoir b we will get 

expression - the molar flux of a in terms of the molar density of a in the 2 reservoirs and 

using the ideal gas law in terms of the partial pressures of a in the2 reservoirs. 
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And a similar expression for the molar flux of b but we also have the molar flux of a 

equal in magnitude but opposite in direction to the molar flux of b. So this is the negative 

of this from which it make sense to relate ca2 minus ca1 to cb2 minus cb1 and pa2 minus 
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pa1 to pb to minus pb1. Again integrating it not from x equal to 0 to x equal to L but from 

x equal to 0 to some intermediate value of x, we get profiles for the variation of molar 

density of a and the variation of molar density of b in terms x and L. And this expression 

indicates that what we sketched here the variation of molar density from x equal to 0 to x 

equal to L; these relations or these variations are linear. So this leads to simple 

expressions; knowing the molar concentrations of a and b, we can determine the molar 

density profile but more importantly we can determine the molar flux of a and the molar 

flux of b.  

 

Let us solve a problem so that our ideas are clear. Although our derivation is for large 

tanks, it is equally applicable to a tank which is exposed to the ambient to the atmosphere 

through a passage - thin long duct. So here, I will read out the problem.  
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We have a large tank which contains ammonia gas at 1 atmosphere pressure and 25 

degree C. A long open tube, 1 meter long and 5 millimeter in diameter, connects the tank 

to the air outside and the ambient air is also assumed to be at the pressure of 1 

atmosphere and temperature of 25degree C. We will make some reasonable assumptions 

and then we are required to calculate the rate at which ammonia is lost through the tube 
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because the tube is exposed to the atmosphere. And b - the rate at which air enters the 

tube. Let us sketch the situation.  
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We have a large ammonia tank and it is connected to the atmosphere through a 1 meter 

long tube so L equals 1 meter. So that tank here is actually open to atmosphere; this 

contains ammonia, the pressure is 1 atmosphere, temperature is 25 degree C. Air in the 

surrounding atmosphere to which the duct is exposed here to the pressure is 1 atmosphere 

and temperature is 25 degree C.   

 

The connecting duct has, small diameter D is 5 millimeters, .005 meters. We have to 

determine the rate at which ammonia diffuses through the duct. And air leaks into the 

tank because the pressures are the same, the temperatures are the same if we assume air 

as well as the ammonia vapor to behave like ideal gases. This is case of equimolar 

counter diffusion; the duct is narrow and long so we will assume a one dimensional 

situation and we will also assume that a steady state exists. So when the ammonia is open 

to atmosphere there may be a sudden rush of ammonia, that initial part we are not looking 

at.  For ammonia diffusing into air from the data part of which we saw yesterday, let us 

say ammonia is component a and air is component b. Then we get Dab at 1 atmosphere 
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and 25 degrees C to be 2.80 into 10 raise to minus 5 meters square per second and we 

have an expression for the molar flux of component a. In this case ammonia because it is 

a process of equi-molar counter diffusion; this will be minus Dab divided R bar T pa2 

minus pa1 by L.   

 

Let us substitute - Dab is 2.8 into 10 raise to minus 5 meters square per second, R bar will 

be 8314, the universal gas constant a 34 joules per kilogram mole Kelvin, 25 degree C is 

298 Kelvin. In the second term, denominator is 1 meter; in the numerator we have the 

pressure difference; let us assume that there is no trace found of ammonia vapor in the 

atmosphere. The atmosphere is a large reservoir, whatever ammonia leaks in gets 

dispersed pretty fast; that is an assumption. So the partial pressure of ammonia in the 

surroundings that is effectively reservoir 2 will be 0; partial pressure of ammonia in the 

tank - it is full of ammonia, so it will be 1 but this is atmosphere so we will multiply it by 

1.014 into 10 raise to 5 to convert it into pascal or newton per meter square.   

 

Now, this gives us the value of the molar flux of ammonia is 1.146 into 10 raise to minus 

6 kg mole of ammonia per meter square per second. We want to determine the leak rate 

in terms of kilogram per second of ammonia.  
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So first, we calculate the molar flow diffusion rate of ammonia which will be the molar 

flux multiplied by area which will be pi by 4 into d squared; this turns out to be 0.225 

into 10 raise to minus 10 kilogram mole of NH3 – ammonia - per second. And the mass 

flow rate of ammonia will be the molar flow rate multiplied by the molecular weight of 

ammonia which is 17. So this will be .225 into 10 raise to minus 10 multiplied by 17; the 

answer will be in kilogram of ammonia per second and this answer terms out to be 3.825 

into 10 raise to minus 10 kilogram of ammonia per second.   

 

Now, since it is an equimolar counter diffusion for air which is component b, we will 

have N dot b equal to minus N dot a - same magnitude opposite in direction. So the molar 

flux of air, flow rate of air, will be from right to left, so it will have negative value; this 

will be minus 0.225 into 10 raise to minus 10 kg mole of air per second. So the rate at 

which mass of air leaks in - I will not write the negative sign - will be .225 into 10 raise 

to minus 10 multiplied by the molecular weight of air, the equivalent molecular weight of 

air which is 209 and this turns out to be 6.525 into 10 raise to minus 10 kilogram of air 

per second. 

 

After having obtained these 2 numbers, we should appreciate the magnitude of 2; notice 

3.8 into10 raise to minus 10 kg per second of ammonia and 6.5 into 10 raise to minus 10 

kg per second of air. The diffusion rates or the leak rates are pretty small; they are of the 

order of 10 raise to minus 10 seconds, that means even in 1 hour we will lose out 

something like10 raise to minus 6 of a kilogram,10 raise to minus 6 of a kilogram is 10 

raise to minus 3 of gram that is of the order of 1 milligram in 1 hour and that means even 

if our tank contains ammonia of the order of a few kilograms, after 1 hour the amount of 

air into the tank is only going to be of the order of few milligrams of air. Similarly, the 

amount of ammonia which has leaked out will also be of the order of few milligrams of 

ammonia.    

 

That takes care of our earlier assumption that during this process we have assumed the 

steady state and we have assumed that the pressure in the ammonia tank, temperature in 

the ammonia tanks and the concentration of ammonia in the ammonia tank does not 
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change. We have demonstrated by means of these numbers that it is a good assumption 

and even in 1 hour, the concentration of ammonia or the molar density of ammonia in the 

ammonia tank would have changed perhaps by 1 part in 10 raise to 6 which is one in 

million. Now it is time for us to move on to the next topic which is convective mass 

transfer.   
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If we compare what we have done so far in mass transfer to the processes of heat transfer, 

you would have noticed that so far we have looked at situations which were similar or 

analogous to situations of heat conduction. Now, we move on to situations which are 

likely to be analogous to situations of convective heat transfer; so we now look at 

convective mass transfer. Since we have just studied heat transfer, it will be good to 

compare what we are trying to do with convective heat transfer.   

 

In convective heat transfer for heat flow from a surface to a fluid surrounding it, we 

define a heat transfer coefficient such that the heat flux from the surface to the fluid 

surrounding it is represented it terms of the heat transfer coefficient multiplied by the 

temperature difference between the fluid between the wall and the fluid. In a similar 

fashion, in convective mass transfer, we assume that some species a is transported from a 
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surface to the surrounding fluid and we are interested in representing the mass flux kg per 

second of species A per unit area of the surface in terms of something similar to heat 

transfer coefficient called the mass transfer coefficient multiplied by the density 

difference between the wall and the fluid of the partial density of component a. Let me 

sketch the situation so that the ideas are clear. 

 

(Refer Slide Time: 40:55)  

 
 

Let us say that we have some surface the area of the surface A; there is some fluid 

flowing and there is a component say A which is getting transported from the wall to the 

fluid. It is getting transported because if we plot the density difference for the fraction or 

component a, we will find that far away for the wall the density of component a, per kg of 

a per unit volume will be say rho af whereas at the wall it will be rho a wall. We want to 

write the mass flow rate per unit area in terms of the mass transfer coefficient multiplied 

the density of a at the wall minus the density of a in the free stream; this is the mass 

transfer coefficient.  

 

Notice that in case of convective heat transfer if the wall is hotter, then the fluid heat 

transfer takes place from the wall to the fluid. If the fluid is hotter, then the wall heat 

transfer takes place from the fluid to the wall in convective mass transfer. If the density 
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of component a is higher near the wall as compared to that in the fluid, the mass transfer 

takes place from near the wall to the free stream away from the wall whereas if the 

density near the wall is lower than that in free stream, the mass transfer will take place 

from the free stream in to the wall. Again, it is possible that the mixture density rho is a 

constant if it is assume constant.   
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Then we can write the basic relation defining relation for convective mass transfer in 

terms of the mass fraction of the fluid near the wall minus the mass fraction of the fluid in 

the ambient. Let us look at the units for the mass transfer coefficient. Notice that the mass 

fractions will be dimensionless; this is density so it will have units of kilogram per meter 

cube, this is mass flux so it will have units kg per second mass flow rate per meter square. 

So kg per second meters square or kg per meters square second since the equation has to 

be dimensionally homogeneous, hn will have, there is kg common on either side. There is 

meter square in the denominator of either side so you will have here - the required units 

for hm to be meters per second. It is interesting to note that the units for the mass transfer 

coefficient are also the units for speed or velocity.   
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When we talked about convective heat transfer we looked at the concept of a thermal 

boundary layer; now we look at a similar boundary layer for mass transfer. 
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Let us say that we have a plate and on the plate we have a boundary layer, a velocity 

boundary layer with free stream velocity V infinity. Let us say that the plate is covered 

with some material, some fluid which diffuses into the free stream. Let us say that the 

component a has density rho aw near the wall and it has a density rho a infinity in the free 

stream. So, similar to the velocity boundary layer now, we will have a mass transfer 

boundary layer or diffusion boundary layer and if you plot the concentration profile, it 

will go like this - where away from the wall in the free stream the mass density of 

component a will be rho a infinity whereas just near the wall the mass density will be rho 

a.  

 

Our aim is to write down the appropriate relations and obtain a relationship for hm so that 

we can get finally, using this expression, hm into rho aw minus rho a infinity or, assuming 

rho to be uniform in the boundary layer, hm into rho into w a at the wall minus mass 

fraction of a in the free stream. We stop here now; we will continue with analyses of 

mass transfer boundary layers in the next lecture. 


