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Lecture No. 33 
Introduction to Mass Transfer-1 

 

Welcome back. We will now move over to the ninth and final part on this series of 

lectures on heat and mass transfer.  
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This section is called mass transfer. In the next few lectures, we will undertake a basic 

introductory study of the phenomena of mass transfer. 
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We will notice that there is a significant extent of similarity between the processes of heat 

transfer and those of mass transfer. Conduction has an analogy in diffusion, heat 

conduction has analogy in convective mass transfer. Because of the analogy we will find 

that many equations, relations, correlations are very similar in structure and we should 

know that heat and mass transfer occur simultaneously in many important situations. For 

example, clothes hang out to dry in the sun; the process of drying is a process of 

combined heat and mass transfer. What are we going to study in these few lectures on 

mass transfer? 
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First, a basic law pertaining to mass transfer is the Fick’s law of diffusion. We will look 

at it in some detail, then we will look at some one dimensional problems in a stationary 

medium followed by mass transfer in a moving medium, then we will look at convective 

mass transferring. Particularly, we would study the analogy between heat transfer and 

mass transfer and finally we will spend some time on simultaneous heat and mass transfer 

- situations in which we have to consider heat transfer as well as mass transfer occurring 

together. Let us begin our study of mass transfer by looking at the Fick’s law of diffusion. 
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The Fick’s law of diffusion is analogous to Fourier’s law of heat conduction. One can say 

that the Fourier’s law of heat conduction represents or models the diffusion of heat 

through a material medium. The Fick’s law considers diffusion of mass through a 

material medium. The Fick’s law of diffusion is valid for gas mixtures and our initial 

illustrations would essentially be on gas mixtures; it is also valid for liquid solutions and 

solid solutions. We should notice that the Fick’s law of diffusion is an empirical law and 

is based on experimental evidence, similar to Fourier’s law which is an empirical law and 

is based on experimental evidence.  

 

Suppose we have a confined gas and in which there is a mixture of gases. Let us say that 

we have a concentration of some component A; so we can say this is concentration of 

component A. A is more densely packed on the left hand side, is more lightly packed on 

the right hand side. So the A has a higher concentration near this zone A, has a lower 

concentration at this thing because of this concentration gradient decrease in 

concentration as we move to the right. Let us say this is direction x, there is a flux or a 

flow at the microscopic level of component of A. This is known as the diffusion of A; 

Fick’s law relates the concentration gradient to the rate of diffusion of A.  
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Let us consider a mixture of 2 gases A and B and let us consider gas A diffusing into gas 

B. The Fick’s law of diffusion says that the mass flux of gas A in a particular direction A 

is proportional to the density of the mixture and the concentration gradient in that 

direction. n is the direction variable and wa is the mass fraction of component A. So this 

is the mass flux of A component; this A here represents area and that is why we will get a 

mass flux. m dot a will be the mass flow rate or diffusive flow rate, so the units of m dot 

a will be say kg per second, units of area are meter square. So, the units of mass flux are 

kg per meter square second.  

 

On the right hand side, we have density units kg per meter cube. n is the space variable 

direction units meters and wa is the mass fraction of A - it is a dimensionless number. If 

you want units, you can write the units as kg of A per kg of mixture. Now since we have 

2 components A and B, we must know what is meant by the mixture density rho, the 

mass fraction of A and the mass density of A. Let us say that rho A is the mass density of 

A. 
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This, the units will be kg of A per meter cube of mixture. Similarly, the second 

component B will have a mass density of B which will be kilogram of B per meter cube 

of mixture and this is the gross or total density which is the sum of the densities of the 

component A and the component B and it will have units kg per meter cube. The mass 

fraction of A will be the mass density of A divided by the total density. Similarly, if you 

want to write down the mass fraction of b, it will be rho b divided by the total rho; this 

will be the mass fraction of b.  

 

We have seen that the basic form of Fick’s law of diffusion gives us a proportionality 

between the mass flux of A and its concentration gradient. The constant of 

proportionality is called the mass diffusion coefficient or the diffusion coefficient. 
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It is given the symbol D for diffusion coefficient with subscripts ab; ab indicates that the 

mixture is made up of gases a and b or components a and b and a is diffusing into b. With 

this constant of proportionality, the Fick’s law of diffusion looks like this. This is the 

mass flux of component a in direction A equals minus rho Dab and the derivative partial 

derivative of wa in that direction. Notice the negative sign very similar to the negative 

sign in the Fourier’s law of heat conduction. Here we put the negative sign to indicate 

that when the concentration of a decreases in a particular direction, the mass flux is 

towards that direction.  

 

So, just the way heat gets conducted down a temperature gradient, mass in a mixture 

diffuses down the concentration gradient. The mass flux is from a zone of higher 

concentration towards a zone of lower concentration. Notice that we have a density here 

and a mass fraction here and the product of density and the mass fraction would be the 

mass density of that particular component. So, if the density of the mixture rho is uniform 

- which is often the case - then we can write the Fick’s law of diffusion in the slightly 

different form, in terms of the mass density of component a. 
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So, the mass flux of a in a direction n will be minus Dab into partial derivative of rho a in 

the direction n. Notice the similarity between this and the Fourier’s law of heat 

conduction. Suppose we select a Cartesian coordinate system; so in a Cartesian 

coordinate system we will have 3 directions. 
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x, y and z and the Fick’s law in each direction can be written down in terms of 3 relations 

- one for the x direction, onefor the y direction and one for the z direction. Notice that the 

diffusion coefficient for component a diffusing into a second component b is the same in 

the three directions. This indicates that for the purpose of writing these expressions, we 

have assumed that we have an isotropic mixture. We may also express Fick’s law of 

diffusion in a vector form; then on the left hand side we will have a mass flux vector. 
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This vector will have 3components - mass flux in the x direction, mass flux in the y 

direction and mass flux in the z direction - and on the right hand side we have density and 

the diffusion coefficient which are scalars and gradient of the mass fraction. The gradient 

of the mass fraction will be a vector and the 3 components of this vector would be partial 

derivative of wa with respect to x, partial derivative of wa with respective to y and partial 

derivative of wa with respective z.  

 

The advantage of writing any law - in Fick’s law in this particular case - in vector 

notation is that now we can expand this vector notation in any suitable system of 

coordinates. We can do it in Cartesian coordinates and we will get the equations which 

we saw earlier. If you need to solve a problem in cylindrical polar coordinates or 

spherical polar coordinates, all that we have to do is express the left hand side and the 

right hand side in the appropriate coordinate system. The 3 components will be specific 

to that particular coordinate system and we will get the expressions for Fick’s law in that 

particular coordinate system. In fact, you should notice that the expressions are very 

similar to the expressions for Fourier’s law of heat conduction.  
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So you have, if you have a form of Fourier’s law of heat conduction for a particular 

coordinate system, by analogy you can write, fix law of diffusion in that particular 

coordinate system. Quite often, we express the composition in terms of mole fraction and 

molar density. 
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So, if the concentration of gas A is expressed in its mole fraction xa or molar density ca, 

then we can express Fick’s law in terms of these. This will be now molar flux of 

component A; this will be kg mole of A per meter square per second. On the right hand 

side, c is the molar density of the mixture that is kg moles per meter cube, n is the 

direction, ca is the molar density of component A - that will be kg mole of A per meter 

cube - and xa is the mole fraction of A, that would be kg mole of A per kg mole of 

mixture. And notice that Dab - the diffusion coefficient - will have the units meter square 

per second; whichever form of Fick’s law we use the diffusion coefficient will have, 

diffusivity will have the units meter square per second.  
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Again, continuing with the molar density from if ca is the molar density of gas A and 

and cb is the molar density of gas B. Again, units will be kg mole of A per meter cube of 

mixture and cb will be kg mole of B per meter cube of mixture, then the total molar 

density is ca plus cb and the mole fraction of A will be ca divided by c. And as in case of 

the mass fraction base formulation, if we find that the molar density of a mixture is 

uniform, then we can write Fick’s law in a slightly simpler form in terms of the molar 

density. Again here, the units on the left hand side would be kg mole of A per meter 

square second and on the right hand side this will be kg mole of A per meter cube. n will 

be in meters and D will be in meter square per second. Mole fractions and mass fractions 

are applicable for any mixtures. However, quite often, when the mixture is a gas we tend 

to work in terms of partial pressures and quite often a gas mixture is made of components 

which obey the ideal gas law.  
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When each component obeys the ideal gas law, then we can express Fick’s law in terms 

of the partial pressure of a component. For example, here we have the molar flux of 

component A expressed in terms of the mixture pressure or system pressure divided by 

RT which will give us the molar density rho Dab and here the mole fraction will be the 

partial pressure of component a divided by the total pressure of the mixture. And by 

simple algebra, we can write this as minus the diffusion coefficient into d by dn partial 

derivative in direction n of pa by R bar T where R is the gas constant specific to that 

particular gas.  
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All this while we have looked at component A but if the concentration of the density of 

component A is changing in the direction n, that of component B will also be changing in 

the direction n and using Fick’s law we can write an expression for the diffusion of 

component B into component A. This will be the mass flux of component B in direction n 

and using Fick’s law it will be minus rho into Dba into partial derivative of the mass 

fraction of B in the direction n. Notice that this is now Dba because we are considering 

the diffusion of B into A. So far we have had Dab which was the diffusion diffusivity for 

component A diffusing into B.  

 

We have so far considered only 2 components A and B but Fick’s law doesn’t restrict 

itself to 2 component situations. It is applicable to multi component gas mixtures also; 

not only that, it is also applicable to liquid solutions and solid solutions – a solid diffusing 

into a liquid or a gas diffusing through a liquid, one liquid diffusing through another 

liquid or a solid a liquid or a gas diffusing through a solid. For example, hydrogen or 

helium diffusing through a metal sheet or through a rubber hose - Fick’s law is applicable 

even in these cases. 
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Let us now look at the diffusion coefficients; there are hand books and reference books in 

which you will find values of diffusion coefficients, tabulated for a large number of 

cases. 
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This is an illustrative table tabulating diffusion coefficient of some gases in air at 1 

atmospheric total pressure and 25 degrees C. Diffusion coefficients are reasonably 

significant functions of both pressure as well as temperature so whenever you read off a 

value of diffusion coefficient, note down the pressure and the temperature at which it is 

tabulated. The values of the diffusion coefficients are small; meter square per second is a 

large unit. Typically, the values of diffusion coefficients are of the order of 10 raise to 

minus 5 minus 6 or still smaller in meter square per second so the value of diffusion 

coefficient multiplied by 10 raise to 5 is tabulated here for ammonia, carbon dioxide, 

hydrogen naphthalene, nitrogen oxide and oxygen. And you will notice that all the values 

are of the order of 1 to 4 into 10 raise to minus 5 meter square per second. 

 

So, the component A, here is this component B, here is air and the total pressure of the 

mixture is 1 atmosphere and the temperature is 25 degrees C. One small thing to notice 

here is the general trend that lighter gases like hydrogen tend to have a higher diffusion 
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coefficient and heavier gases or heavier vapors like naphthalene tend to have a lower 

diffusion coefficient; that is the general trend. Here, we see the variation of diffusion 

coefficient of water vapor in air with temperature. 

 

(Refer Slide Time: 27:22) 

 
 

The total pressure remains 1 atmosphere but the temperature goes from 200 to 400 

degrees C in some steps and you will notice that the diffusion coefficient increases; 

actually it more than doubles when the temperature goes from 200 Kelvin to 400 Kelvin. 

It is a monotonic increase in the diffusion coefficient; this is the general trend for 

diffusion coefficients of gases. Quite often, we need to obtain a diffusion coefficient at a 

pressure and temperature slightly different from that tabulated and quite often, more often 

we need to interpolate between tabulated values of pressure or tabulated values of 

temperature for a gas or a vapor diffusing through a gaseous medium. 
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The diffusion coefficient increases as the temperature increases as we have seen for water 

vapor in the previous table and the diffusion coefficient decreases if the pressure 

increases so there is some sort of a direct relation to temperature but an inverse relation to 

pressure and over a reasonably small range of pressure and temperature the diffusion 

coefficient of a gas A in gaseous mixture of A and B or even a multi component mixture 

can be represented as proportional to temperature raise to n divided by p where n is a 

number less that 2 usually between 1.5 and 2. So that is why you will notice that as 

temperature increased by a factor of 2 for water vapor from 200 Kelvin to400 Kelvin, the 

diffusion coefficient increase from 2.12 10 raise to 5 to 4.61 10 raise to5, a factor of more 

than two. That is why this exponent n here is a number greater than 1 but less than 2 and 

is typically around 1.5. This proportionality can be used to interpolate or slightly 

extrapolate the data for diffusion coefficient. 

 

Now after this discussion on Fick’s law and something about the diffusion coefficient, we 

will look at the next topic which is the steady state mass diffusion in a stationary 

medium. We are going to look at some simple problems during this set of lectures.  
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Here we will look at a typical problem; the statement of typical problem has the 

following situation. We are going to look at steady state diffusion of a gas through a 

stationary large isothermal slab of width B. The slab may not be a physical solid slab; it 

could be a liquid layer, it could be a layer of a gas but we will use the generic word slab 

meaning a region of uniform thickness in large dimensions in the other directions. The 

mass fraction of the gas on the 2 faces of the slab is different - wa1 and wa2. Let us sketch 

the situation; we are considering diffusion through a slab. 
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Let us say we have slab of width b - a plane parallel slab; it is very large in this direction, 

also in that direction. So, if this is the x direction, it is finite in extent, width b, but in y 

and z direction it is infinitely large. And let us say that if we plot the mass fraction of a at 

this face of the slab, we have maintained it at a value wa1 and at the other face of the slab 

we maintain it as wa2, so if the mass fraction is large here and the mass fraction is small 

here, the component a will diffuse through the slab from left to right and there will be a 

concentration gradient setup from the left to the right. So, this is the gradient of 

concentration of A which leads to diffusion of A. We will say we have gas A on this side, 

we also have the same gas on this side and a second component B is the slab; so gas A 

diffuses through the slab which is component B. In this particular case, one component is 

a gas, the other component could be a solid, it could even be a liquid layer.  

 

Now, we have to consider a steady state and a one dimensional situation. Since the slab is 

stationary, it doesn’t move and in steady state, if you take any plane here or here - a plane 

parallel to the, parallel to any face of the slab and in the slab - you will find that the flow 

of this diffusing component will be a constant through here, through here, through here 

because it is a steady state and the amount of gas crossing this plane should be the 

amount of gas crossing this plane should be the amount of gas crossing this plane should 



 19 

be the amount of gas crossing this plane. And that means we will have m dot a to be a 

constant independent of a and that means the mass flux of A would also be constant and 

uniform along the thickness of the slab. 
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So again, since we have steady state and a one dimensional situation, the mass flux would 

be a constant that is independent of x, the location along the thickness of the slab, and by 

Fick’s law this should equal minus rho into Dab into dwa by dx. Notice that since we have 

a steady state situation and a one dimensional situation, we use an ordinary derivative 

here and not a partial derivative. Now if we assume the density of the medium to be a 

constant - this would be a very good assumption if the thickness, if the density of slab b is 

much higher than the density of the gas a which diffuses through - generally it is a very 

good assumption. If the density of the medium is assumed constant, then the right hand 

side can be written in terms of the mass density of component a. 

 

Now, here we have the derivate of rho a instead of the derivative of wa. Now, this is the 

constant hence this also is a constant and now if the diffusion coefficient is a constant and 

- we have said that the slab is isothermal - since the slab is isothermal, it is expected that 

in the steady state the temperature of the gas will not change as it diffuses through the 
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slab. And hence its diffusion coefficient is likely to be at some constant value; then we 

can straight away integrate the equation. 
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If we integrate it from x equal to 0 to x equal to b along the full length of the slab, we will 

get the mass flux equal to the diffusion coefficient into the difference in the mass density 

of component a on two sides of the slab divided by the thickness of the slab. Or in terms 

of mass fraction, we have the mass fraction difference divided by the thickness of the slab 

multiplied by the diffusion coefficient multiplied by the density. Compare this with the 

result for steady state conduction through a plane parallel slab. You will find that the heat 

flux is represented or is equal to k into T1 minus T2 divided by b; I will write that 

equation again. 
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The mass flux across a parallel slab, infinite parallel slab, in steady state and the 

corresponding equation for heat flux across a plane parallel slab in steady state is going to 

k T1 minus T2 divided by b. Notice the analogy and similarity. We have the mass flux, 

we have the heat flux; in heat flux there are no components, mass flux of component a. 

We have the conductivity of the material in mass transfer; we have the diffusion 

coefficient, thickness of the slab in the denominator. A geometric parameter doesn’t 

change the same in case of conduction and mass transfer and now temperature is the 

analogous variable to mass density. We will keep noticing the analogies between 

conduction and mass transfer convection and mass transfer as we proceed.  
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If we integrate the equation not fully over the slab but from x equal to 0 to some x within 

the slab, then that integration and the previous integration will give us an expression for 

the concentration profile or mass fraction profile in the slab. And since we have assumed 

density uniform, this would also become rho a1 minus rho a divided by rho a1 minus rho 

a2 equals x by b - again a similar result to the steady state conduction result. The density, 

mass densities, will be replaced by temperatures x, will be replaced x and b, will be just x 

and b; a linear temperature profile there, a linear concentration profile here. 

 

In fact, if you solve the one dimensional steady state mass diffusion problem through a 

hollow cylinder, we will get an expression very similar to that for conduction across 

hollow cylinder steady state conduction. 

 

 

 

 

 

 

 



 23 

(Refer Slide Time: 41:53) 

 
 

Here we have a cylindrical shell or a hollow cylinder inner radius ri, outer radius ro, inner 

concentration mass fraction wai, outer mass fraction wao. And you will notice that the 

diffusion mass flow of component a over a length L of the cylinder and the mass fraction 

profile of component a - the expressions are perfectly analogous to those for one 

dimensional steady state heat conduction through a hollow cylinder. And what is true for 

a case of a hollow cylinder is also true in the case of a hollow spherical shell; here too it 

is assumed that we have a spherical shell - inner radius ri, outer radius ro, inner 

concentration or inner mass fraction wi, outer mass fraction wo. 
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Again, notice that the 2 expressions are perfectly analogous to the heat conduction 

equations. All that you would need to do is replace mass flow rate by heat flow rate 

diffusion coefficient, by conductivity, and mass fractions by temperature. Let us look at a 

simple problem; let us solve this problem 
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We have to determine the rate at which hydrogen will diffuse through a steel plate 4 

centimeters thick, face area of 2 meter square, uniform temperature of 400 K. Hydrogen 

diffuses through steel and causes embrittlement - that is a known factor. The 

concentration is given on the 2 sides as .1 and .01 kilogram per meter cube - this is mass 

densities. 

 

Let us consider this problem; we have hydrogen diffusing through a 4 centimeter thick 

steel plate. Face area of the plate is 2 meter square and it is at a uniform temperature of 

400 K. Concentration of hydrogen that is its mass densities on either side is .1 kg per 

meter cube and .01 kg per meter cube. The diffusion coefficient of hydrogen in steel at 

400 Kelvin is given - 1.6 into 10 raise to minus 11 meter square per second. Notice how 

small it is but even then it is known that hydrogen diffuses slowly but surely through steel 

and causes embrittlement leading to pitting. Let us solve this problem; let us sketch the 

situation. 

 

(Refer Slide Time: 45:41) 

 
 

We have a steel slab, the thickness b is 4 centimeters, .04 meters. Dab is given as 1.6 into 

10 raise to minus 11 meter square per second; uniform because it is given that the 

temperature is 400 Kelvin which also is uniform. The surface area of the slab A is 2 
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square meters; wa1 and wa2 are given - .1 and .01 kg per meter cube. Since these are kg 

per meter cube, this is actually rho a1 and this is rho a2, steady state one dimensional 

situation.  

 

So, our equation for diffusion rate of component a - hydrogen in this case - becomes, in 

terms of mass density of component A, area diffusion coefficient into the difference in 

mass densities divided by thickness of the slab. Substituting here - area is 2 meter square 

multiplied by diffusion coefficient which is 1.6 into 10 raise to minus 11 meter square per 

second multiplied by density difference which is .10 minus 0.01 divided by the thickness 

which is 4 centimeter so .04 units for density difference kg per meter cube and for the 

thickness of the slab meter. So, you will find that we have meter raise to 4 in the 

numerator, meter raise to 4 in the denominator. So, the units which remain are kilograms 

per second which are the proper units for the mass flow rate. Multiplying this out we will 

get this to be 7.2 into 10 raise to minus 11 kilogram per second, that is the answer we 

were looking for.  

 

Now, notice that the diffusion coefficient is a significant function of temperature. If the 

temperature increases from say 400 to say 1200 Kelvin – 3 times - the diffusion 

coefficient will go up not just 3 times but not even by the square of 3 times, 9 times; it 

will be may be, it will go up by a factor of 5 or 6 and that means even the diffusion rate 

or if you want to call the leakage rate of hydrogen through the slab will also increase. 

This indicates that at higher temperature the chances of hydrogen embrittlement are large. 

This is enough for this lecture; we will continue in the next lecture.  


