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We defined the term called mean temperature difference and we derived expressions for 

the mean temperature difference in parallel flow and in counter flow. You would recall 

that the logarithm of delta Ti delta Te occurs in the denominator of the expressions, both 

the expressions. For this reason the mean temperature difference in a heat exchanger is 

also referred to as the logarithmic mean temperature difference and the symbol capital 

LMTD - all letters in capital - LMTD is used instead of delta Tm by many authors and 

many writers.  

 

Then, we moved on to discussing how to obtain the mean temperature difference in cross 

flow. Now, you will recall that the, what emerged after discussing the temperature 

profiles on the hot side of the hot side fluid and the cold side was that in cross flow - 

unlike the parallel flow or counter flow - the temperature is not a function of one 

variable, the temperature is a function of 2 variables x and y. If both fluids are unmixed - 

temperature Th is a function of x and y, temperature Tc is function of x and y. If both 

fluids are mixed, one fluid is a temperature, one  fluid’s temperature is a function of x, 

the other fluid’s temperature is a function of y. And if one is mixed and the other is 

unmixed, the unmixed is a function of x and y whereas the mixed one is a function only 

of one variable. But regardless of whichever case it is, the fact is the temperature on the 

two sides are not function of one variable x as is the case in counter flow or cross flow 

but are a function of x and y. And therefore, in order to obtain the mean temperature 

difference it becomes necessary to perform numerical integrations to obtain expressions 

for the mean temperature difference. And you will also recall that towards the end, I said 

the mean temperature difference is given, the values are given in terms of a correction 

factor F and F is defined as the mean temperature difference in cross flow divided by the 

mean temperature difference if the arrangement had been counter flow; this is where we 

stopped. So, let us take off from that again.  
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We were deriving getting results for the mean temperature difference in cross flow; we 

were deriving the results for this case and, towards the end, we said F - we are going to 

express the results in the form of correction factor F. And F is equal to the delta Tm 

which we were looking for - The delta Tm in cross flow, this is the quantity we are 

looking for, divided by the delta Tm. If the arrangement had been counter flow, delta Tm 

if the arrangement was counter flow and we know how to calculate the denominator and 

in case the fluid is unmixed on one side, you have to take the mean temperature of the 

fluid. The bulk mean temperature of the fluid leaving the heat exchanger and substitute 

that in the expression for delta Tm for obtaining the counter flow delta Tm.  

  

Now the results for given, before I go to the actual presentation of the values of F, how 

they are presented, let me just make a statement. For given values of Thi, The, Tci and Tce 

that is given values of the inlet and outlet temperatures on the hot side and cold side, I am 

making a statement - for given values of Thi, The, Tci and Tce for the given values, the 

delta Tm in counter flow is the highest. That is, for given values of this 4 quantities, if I 

calculate delta Tm in parallel flow, if I calculate delta Tm in counter flow, in cross flow 

for any of the 3 cases, what I will find is the delta Tm in counter flow is the highest of all 

flow arrangements, amongst all flow arrangements; this is what we will find. Therefore, it 
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follows therefore since delta Tm in counter flow is always going to be the highest, it 

follows that F - the correction factor F - which we have defined above here must be 

always in the range 0 to 1.  

 

It must be a fair number which will range between 0 and 1; 0 less than equal to F less 

than or equal to 1 that is follows. And with this definition of F, if we are to calculate the q 

for a cross flow arrangement  

 

(Refer Slide Time: 07:30) 

 
 

Therefore, if we are to calculate q for a cross flow arrangement, we will get q for a cross 

flow arrangement is equal to U A delta Tm cross flow which is with the definition of F 

equal to UA F delta Tm counter flow. So, when we have a cross flow problem, a situation 

of cross flow, we will calculate the delta Tm in counter flow; get F which has been 

obtained by numerical integration. Then which, I will tell you shortly how we get it from 

the various charts or graphs available and substitute into this as our basic performance 

equation.  

 

Now the quantity F - how do we get it? F based on the numerical integrations, F is 

plotted; the results which have been obtained by numerical integration F is plotted as a 
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function of two parameters R and S, dimensionless parameters R and S. R is defined as, 

let me put down the definitions R is equal to T1i minus T1e divided by T2e minus T2i and 

I will tell you in a moment what is 1; what are the subscripts 1 and 2? And S is equal to 

T2e minus T2i divided by T1i minus T2i. Now, the subscripts 1 and 2 correspond to the 2 

fluids, the subscripts 1 and 2 correspond to the 2 fluids correspond to the 2 fluids. 
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Subscripts 1 and 2 correspond to the two fluids. For cases 1 and 3, what are cases 1 and 

3? Cases 1 and 3 is - case 1 is both fluids unmixed and case 3 is both fluids mixed. For 

cases 1 and 3 of cross flow, these 2 cases of cross flow it is immaterial which subscript 

corresponds to the hot side and which to the cold side. It doesn’t matter you can take, 

either way the results are valid. That means for this situation, cases 1 and 3, these 

situation for cases 1 and 3 subscript 1 can be equal to h and subscript 2 can be equal to c. 

Or we may have the reverse - subscript 1 can be equal to c and subscript 2 can be equal to 

h. It doesn’t matter which way you take it; both are equally acceptable. The results - 

numerical results - come out right. It is only for case 2 that you have to be a little careful; 

for case 2, let me put down what you do. 
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For case 2 that is one fluid mixed and the other unmixed, care has to be taken; care must 

be taken to see that the mixed fluid has subscript 1. The mixed fluid maybe the hot fluid 

or the cold fluid, it doesn’t matter which one but take care to see that the mixed fluid is 

given subscript 1 and the unmixed fluid automatically becomes subscript 2. That is the 

only precaution we have to take. So, these are 2 parameters in terms of which the values 

of F are found out. Now what are these parameters? What is the dimensionless parameter 

R? If you look at it, it is nothing but the ratio of the change of temperatures of the 2 

fluids, that is what is R. And R by definition therefore will be a positive quantity but 

unbounded greater than or equal to 0 and the limit 0. 

  

What is S? The parameter S the second dimensionless quantity - it is the ratio of change 

in temperature of one of the fluids, ratio of change of temperature of one of the fluids to 

the difference of inlet temperatures of the 2 fluids - Thi minus Tci, that is what it is. So, 

automatically by definition you  can see the parameter S is going to be a number which is 

going to be between 0 and 1. The particular results that we get for R, the result that we 

get for R - if you were to plot them. First just let me show the variation; it looks 

something like this. 
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Suppose this is the results that are obtained based on the numerical integration for any of 

the cases 1 to 3. If I plot F against S, S can range from 0 to 1, F can also range from 0 to 

1. Then, for a particular value of R a typical variation of S maybe something like this. 

This is some particular value of R, some specified value of R. We will get, this is the kind 

of variation which we get for F and these has been obtained based on the numerical 

integration which I mentioned to you earlier. Now, let us look at actual results which 

have been obtained. I am going to show you 3 charts for the 3 cases of cross flow. 
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This is the chart which I am showing; you know the correction factor F for the mean 

temperature difference in single pass cross flow both fluids unmixed - case 1, what we 

have called. These are results based on the numerical integration to obtain the mean 

temperature difference in cross and to get the correction factor F. So, on the y axis you 

have the correction factor, on the x axis you have the parameter S and the different values 

for the different graphs are the values of R ranging here from .2 to 4. The value of R 

equal to 0 will be the horizontal line and the vertical line, this will correspond to R equal 

to 0. So, this is these are the results for the correction factor F for the case of both fluids 

unmixed.  
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Now, let us look at the next results. I am just showing these results which are to be used 

for actual calculations. The next figure shows the correct, let me read out, shows the 

correction factor F for mean temperature difference in single pass cross flow fluid with 

subscript 1 - mixed, fluid with subscript 2 – unmixed. The nature of the curves is of 

course the same. But the values are very different for the different cases. Again it is F 

plotted against S with R as the parameter varying from 0 or to 4.  0 is this case the 

vertical line that is 0 then .2, .4, .6, .8 all the way up to 4. These are typically values 

encountered in practice; R greater than 4 is probably not encountered very often so the 

values are not plotted there at all. 
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And then finally, here is the correction factor F - results for correction factor F plotted for 

mean temperature difference in single pass cross flow for the case of both fluids mixed; 

similar results but of course numerical values are different. So, depending upon which 

cross flow case you have, you will go to the appropriate figure and read off the values of 

S that is the point I want to mean.  

 

We will do a numerical example so that you will be to use, learn how to use these graphs. 

Now, let us just talk briefly about some special cases before we do some numerical 

examples, going to do a couple of numerical examples to illustrate all these ideas. First, 

let us just look at two special cases; these two special cases are the following. 
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a m dot h Cph tending to infinity - this is one special case. The value of the product of the 

flow rate and the specific heat on the hot side is very high tending to infinity or 

automatically it follows that q is finite and m dot h Cph tends to infinity. Then, the change 

of temperature on the hot side of the hot side fluid must be tending to 0. b is the reverse 

case; the other case that is m dot c Cpc tends to infinity. The product of the flow rate and 

the heat capacity on the cold side is tending to infinity and therefore since it is tending to 

infinity Tce minus Tci is tending to 0. So, these are 2 special cases.  

  

Now, if you were to calculate the mean temperature difference for these 2 cases that is 

either a or b, if you were to calculate the mean temperature difference for these 2 cases, 

what you will find is the value of the mean temperature difference will be the same 

whether the arrangement is parallel flow, counter flow or cross flow, any of the cases of 

cross flow. You can do that yourself and convince yourself that that is what will happen. 

The fluid temperature on one side doesn’t change and as a result, the values of mean 

temperature difference come out to be the same whatever be the flow arrangement. I 

would like you to check it on your own and in your mind you should be able to explain 

why this is also happening.  
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Cases a and b - incidentally one way of looking at them is to say that m dot h Cph is 

tending to infinity. The other way of looking at case a is to say it is a case in which a 

saturated vapor is condensing. Suppose I have a saturated vapor at some temperature Ts 

and it is condensing at the same temperature. Obviously, since it is saturated vapor, the 

temperature will not change as it changes from vapor to liquid so automatically the 

temperature Ts will not change on the hot side. So, case a also corresponds to a saturated 

vapor condensing and vice versa. Case b corresponds to a saturated liquid evaporating. 

So, remember case a and b can be interpreted in two ways; one interpretation is the flow 

rates are very high on one or the other side, the other interpretation is that case a 

corresponds to the case of saturated vapor condensing and case b to a saturated liquid 

evaporating. So, these are 2 special cases and as I said it is worth noting that the mean 

temperature difference is the same in these cases regardless of the flow arrangement. 

Now, the same idea, again I have shown in a sketch here so I will be sort of repeating 

things here. 
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This is the figure a corresponding to m dot h Cph tending to infinity; the temperature on 

the hot side doesn’t change or this could be a vapor condensing. The temperature on the 

cold side is increasing. The b is the case of m dot c Cpc tending to infinity so the 
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temperature on the cold side doesn’t change; this could be a saturated liquid evaporating 

and the hot side fluid is giving up heat slowly like this. The way I have shown it, it is 

parallel flow but remember - even if it is counter flow all that will happen is I will get a 

mirror image kind of variation of Tc in the other direction. And therefore you can see 

why the main temperature difference is the same whether it is counter flow, cross flow or 

parallel flow. So, these are 2 special cases.  

  

Now, let us do a couple of problems to illustrate all these ideas of mean temperature 

difference for different flow arrangements. Let us take one example - a numerical 

example. 
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We have a parallel flow heat exchanger to be designed, a parallel flow heat exchanger to 

be designed to cool 5 kilograms per second of air from 500 centigrade to 350 centigrade 

by an equal flow rate of air entering at 90 degrees centigrade. 5 kg per second of air to be 

cooled from 500 to 350 on the cooling side, the same flow rate of air entering Tci being 

90 degree centigrade. We are given that the heat transfer coefficient on the hot side hh is 

equal to 60 and on the cold side hc is equal to 30 - these are the values of h. Calculate the 

area A of the heat exchanger, that is the example to be solved.  
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Take Cp; we need the value of Cp; take Cp of air on both sides to be 1020 joules per 

Kelvin per kilogram Kelvin, take this value of Cp. So, design a parallel flow heat 

exchanger; that means find the area A of a parallel flow heat exchanger for given 

conditions. Let us just draw a sketch of what we have, what we are asked to do. This is, 

let us say - let me draw the sketch of the heat exchanger.  
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Let us say this is our heat exchanger, this is the heat transfer surface, the fluid on the hot 

side, it is a parallel flow heat exchanger. m dot h equal to 5 kilograms per second, m dot c 

is given to be the same - 5 kilograms per second. Thi, you are told the inlet temperature 

on the hot side equal to 500 centigrade; Tci equal to 90 degrees centigrade, The given to 

be 350 centigrade. The value of hh heat transfer coefficient on the hot side is equal to 60 

in the usual units, Watts per meter squared Kelvin, and the value of hc on the cold side 

equal to 30 Watts per meter squared Kelvin. So, find the area, these are the exit points; 

find the area A of the heat exchanger, the configuration is parallel flow.  

  

We can sketch the temperature profiles - on the hot side going to be something like this, 

on the cold side it is going to be something like this. This is 500, this is 90, this is 350. 

Now, the flow rates on the hot side and the cold side are equal and the Cps are given to be 
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equal. Therefore, it follows that the change of temperature on the hot side and the change 

temperature on the cold side must be equal. So, the change of temperature on the hot side 

is 150 so it follows that the change of temperature on the cold side must be also 150. So, 

Tce must be equal to 240, that follows I don’t have to even do any real calculation for 

that. So, delta Ti is equal to 410 and delta Te is equal to 110 degree centigrade. These are 

temperature profiles on the 2 sides; these are the values of delta Ti and delta Te. It is 

relatively a very simple problem. We have to remember we have to substitute into the 

expression q is equal to U A delta Tm. So, we need to get q, we need to get U, we need to 

get delta Tm then we will get the value of A so let us get them one by one. Let us get the 

value of, first, the value of q.  
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q is equal to 1020 that is the specific heat into the flow rate 5 into the change of 

temperature on the hot side or cold side - it doesn’t matter which side you take - 500 

minus 350. And that comes out to be 765 into 10 to the power of 3 Watts. This is the heat 

transfer rate in the heat exchanger. The value of delta Tm in parallel flow is equal to delta 

Ti minus delta Te divided by log to the base e delta Ti by delta Te. So, it is 410 minus 

110 divided by logarithm to the base e 410 divided by 110 and that comes out to be 

2208.02 degrees centigrade.  
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Now, we are given the values of hh and hc; we aren’t told anything about fouling so we 

will have to make an assumption. First of all about fouling and secondly about the 

thermal resistance B by k - we are not told anything about that. But, notice the values of 

hh and hc are low; they are low because we have got air flowing as the heat transfer 

medium. So, values of hh and hc are bound to be of the order 50, 60, 100 something like 

that, not going to be in thousands with air flows. Automatically, it follows that the 

thermal resistance of any metal wall you can take, any typical wall, a millimeter thick, 2 

millimeters thick, take a conductivity of a metal of 10, 20. You will immediately see its 

thermal resistance will be insignificant compared to 1 upon hh or 1 upon hc.  

 

Similarly, if you look at any of the fouling factors that I have given you, you will 

remember those fouling factors are for a situation involving liquids. With gases fouling 

factors which are in the region of .30s, 130s, 230s, 4 in the usual units will be there, 

effect will be negligible compared to the thermal resistance offered because of the heat 

transfer coefficient. So, with gas flows the values of a neglecting fouling is a good 

assumption. Neglecting the thermal resistance of the metal wall if that data is not 

available is also a good assumption. And we can say in this situation 1 upon U is equal to 

1 upon hh plus 1 upon hc. We just leave out B by k saying it is negligible and we will also 

not consider fouling because it is bound to be negligible compared to the values of h that 

we are seeing for gas flows. So, all that we get is this is equal to 1 upon 60 plus 1 upon 30 

and therefore the value of U comes out to be equal to 20 Watts per meter squared Kelvin. 

Now substitute into our basic performance equation to get the value of A. 
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So, our basic performance equation is q is equal to U A delta Tm; in this case delta Tm in 

parallel flow. So, we will get A is equal to q which is 10, q which is equal to 1020 into 5 

into 150 divided by A UA. U is 20 sorry U delta Tm so U is 20 and delta Tm is 2208.02. 

So, we get the area A of the heat exchanger to be 167.75 square meters, that is the answer 

to the problem - 167.75 square meters for the given data that we have got.  

  

Now, let us say instead of a parallel flow heat exchanger, the arrangement instead of 

being parallel flow is counter flow. I ask you to calculate the area A of the heat exchanger 

if the flow arrangement is counter flow; let us do a further calculation. Calculate the area 

of the heat exchanger if the flow arrangement is counter flow. In this case, notice we 

again have to substitute into the same expression q is equal to U A delta Tm. q is not 

going to change here is my basic expression, q is equal to U A delta Tm. q is not going to 

change, U is not going to change, what is going to change is the delta Tm. So, get a new 

value of delta Tm for counter flow situation and again substitute into our basic equation. 

What is delta Tm in counter flow? Now let us calculate that.  
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delta Tm in counter flow would be, notice this is a case of counter flow with m dot h Cph 

equal to m dot c Cpc, notice that. Therefore, T in this case with m dot h Cph equal to m 

dot c Cpc, the temperature profile on the 2 sides are going to be parallel lines like this. So, 

we are going to have 500 here, hot side fluid entering temperature, 350 leaving. Entering 

Tci 90, leaving Tce 240 and we will get the value of delta Ti and delta Te - both delta Ti 

and delta Te. Both in this case will be 260 degree centigrade. So, delta Tm counter flow 

will be equal to the same, delta Tm counter flow will also be equal to 260 degree 

centigrade. This is the case of the 2 temperature profiles being parallel to each other; this 

is that special case which we talked of earlier. As I said, q and U don’t change therefore 

A will be equal to the value of q which is 765000 Watts divided by the value of U and the 

value of delta Tm - 260. So, we get 147.12 square meters; so this is the value for the area 

A, the arrangement is counter flow.  

 

I will make a statement here without proving it that if it is a cross flow arrangement, any 

kind of cross flow arrangement, then you are going to get since this is the counter flow 

arrangement is 147.1 2 and in parallel flow you have got 167.75. A cross flow 

arrangement, any cross flow arrangement, would give an area between these 2 extremes; 

parallel flow gives the highest, count flow gives the least. You will get a value for cross 
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flow in between these two; I am just making that as a statement. So, this is a good 

numerical example to illustrate how we substitute into our basic performance equation - q 

is equal to U A delta Tm - and calculate the area A of a heat exchanger for a given 

application. Now, let us do one more problem, another numerical example. 
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The problem we are going to do now is the following - we say 1000 kilograms per hour 

of water at 50 degrees centigrade enters a single pass cross flow heat exchanger and 

leaves at 40 degree centigrade. A hot water stream, 1000 kilogram per hour of water, 

enters at 50, leaves at 40. The heat from this hot water, the heat is transferred to cooling 

water entering at 35 centigrade and leaving at 40 degree centigrade. The cooling water 

which is cooling this hot water enters at 35 and leaves at 40 degree centigrade. Calculate 

the area of the heat exchanger if the fluids on both sides are unmixed.  

 

Take U to be 1000 Watts per meter squared Kelvin with fouling included; that means the 

effects of fouling are included in this value of U. Take the value of U to be 1000 Watts 

per meter square Kelvin and the value of Cp on both sides, the Cp for water on both sides 

to be 4174 Joules per kilogram Kelvin; take the value of Cp to be the following. It is a 

straight forward example of calculating area, very similar to the earlier one excepting that 
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now the flow configuration is cross flow with both fluids unmixed. Now, let us just draw 

a sketch.  
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Here is let us say a schematic diagram. This is the area, the cross flow situation; let us say 

this is the heat transfer area A which we have to find out. This is the hot fluid entering 

here, m dot h equal to 1000 kg per hour, Thi entering at a temperature of 50 degree 

centigrade, leaving at a temperature of - hot fluid leaving at a temperature of 40 degrees 

centigrade, cold fluid Tci entering with the temperature of 35 centigrade and leaving with 

a temperature of 40 degrees centigrade. Calculate the area A.  

  

Now again our basic performance equation is q is equal to U A delta Tm. In this case, we 

are going to get to the correction factor F so we will write this as U A F which will come 

from that graphs, multiplied by delta Tm if the arrangement had been counter flow. So, if 

I want to get the value of A, I should get q, I should get U, I should get F; so let us get 

each of the quantities. First of all – q; what is q? q is nothing but the flow rate on the hot 

side 1000 divided by 3600 so many kilograms per second into 4174, is the value of Cp, 

into the change of temperature on the hot side 50 minus 40 and that is equal to 11594.4 so 
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many Watts; so that is the value of q? What is delta Tm in counter flow? Let us get the 

value of delta Tm in counter flow. 
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delta Tm will be equal to, this is the, let us draw a sketch for. If it is a counter flow 

situation starting with 50 going out at 40 on the hot side, cold side entering at 35 and 

leaving at 40, so we have delta Ti is equal to 10 and delta Te equal to 5. So, we have 10 

minus 5 divided by logarithm 10 divided by 5 which comes out to be 7.21 degrees 

centigrade. Now, let us go the charts since both fluids are unmixed; since both fluids are 

unmixed, it is immaterial whether subscript 1 corresponds to the hot side and subscript 2 

to the cold side or vice versa. It doesn’t matter which you take; so we say take T1  equal 

to Th and T2  equal to Tc. Let us take that; it doesn’t matter which you take, you will get 

the same answers. 
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Therefore R is equal to Thi minus The divided by Tce minus Tci which is equal to 50 

minus 40 upon 40 minus 35 which is equal to 2. And S is equal to Tce minus Tci upon Thi 

minus Tci and that will be equal to for40 minus 35 divided by - Thi minus Tci - 50 minus 

35 which is .333.  

  

Now, we go to figure which I had shown you earlier for the case of the results obtained 

for single pass cross flow; recall I had given you some situations there. And if you recall, 

let us just show that figure again. Both fluids unmixed here; we have this is the situation 

correction, factor F for both fluids unmixed. Now, in this case R is equal to 2 and S is 

equal to .333 so this is the graph of R is equal to 2; here this is the graph of R is equal to 

2. Take S equal to .333, somewhere here, go up here to R is equal to 2 which means 

somewhere out here you will go at this point, then go horizontally and read of the value 

of F. So, here is the value of R equal to 2; get S equal to about .3, it will come somewhere 

here. Go horizontally and you will get F is equal to .91 from the figure, F is equal to .91. 

Therefore, now last step, area A is equal to q divided by U delta Tm counter flow into F 

so it is equal to 11594.4 divided by the value of U is 1000. Value of delta Tm in counter 

flow is 7.21 and the value of F is .91 so we get area A equal to 1.77 square meters and 
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that is the answer for this particular problem; that is the answer for this particular 

problem. 

  

So now, for different flow configurations through the help of these 2 examples, we have 

illustrated how to obtain the area A for a given heat exchanger. Now this is one 

technique, the q, using the equation q is equal to U A delta Tm - this is one technique for 

finding out. The other technique which is also used which is the other method which is 

also used for finding out the effect the area A of the heat exchanger or the performance of 

heat exchanger is what is called as the effectiveness NTU method. 
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And the effectiveness NTU method is, there are certain reasons why this particular 

method has been developed. So, next time we will look at the effectiveness NTU method; 

we will discuss it, derive some relations for it and show how it is also applied for doing 

calculations with heat exchanges.  


