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Now in today’s lecture we begin with the topic of mean temperature difference in a heat 

exchanger. We are going to first define the term - what we mean by the mean temperature 

difference in a heat exchanger - and then we are going to derive expressions for the mean 

temperature difference for various flow classifications, that is for parallel flow, counter 

flow, the 3 cases of cross flow and so on. Let us consider some heat transfer surface.   

 

(Refer Slide Time: 01:31) 

 
 

Let me draw a heat transfer surface like this across which heat is flowing, some heat 

transfer surface. A fluid - a hot fluid - let us say is flowing on the top side. Let us say this 

is the hot fluid and let us say the cold fluid flowing on this side showing on the other side. 

This is the heat transfer surface and let us take some elementary area dA on this heat 

transfer surface. Let us say somewhere on this heat transfer surface, we take an 

elementary area dA anywhere on this heat transfer surface. Let us assume that the 
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temperature of the hot fluid at dA is Th on this side of dA and the temperature of the cold 

fluid on the other side of dA is Tc.  

 

Now, we know from our knowledge of heat transfer that the heat transfer rate dq across 

this elementary area dA, the heat transfer rate dq is given by U - the overall heat transfer 

coefficient. May consider fouling multiplied by Th minus Tc which we are calling as 

delta T multiplied by dA - this is our expression for the heat transfer rate. And if I ask 

you what is the total heat transfer rate across this heat exchanger, you will say, well all I 

need to do is to integrate this expression over the whole area A of the heat transfer 

surface. So, the total heat transfer rate in the heat exchanger, the total heat transfer rate - 

let me add the word rate here - in the heat exchanger q will be given by the integral U 

delta T dA where the integration is carried out over the whole area A of the heat 

exchanger. So, the integration is carried out over the whole area of the heat exchanger 

that is the total heat transfer rate. Now, if I assume that the overall heat transfer 

coefficient is a constant not varying over the surface of the heat exchanger if U is 

assumed to be a constant, some constant value, then we can say the expression for q 

simplifies to, then q is equal to U. 
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U can be taken outside the integral delta T integrated over the area A. Now I define the 

quantity mean temperature difference as follows. I say define mean temperature 

difference by the expression delta Tm. delta Tm stands for the mean temperature 

difference in the heat exchanger and I define it as - delta Tm is equal to 1 upon A the 

integral of delta T dA, the integral being over the whole area A of the heat exchange. 

Thus, if I introduce this definition into my expression for q, I get - thus q is equal to U A 

delta Tm  - that is the expression that I get. And what we have here is the basic 

performance equation of a direct transfer type heat exchanger.  

 

So, let me just sort of circle it to give it its, give importance. I will put a circle, put a 

rectangle round it to say this is an important equation which we are going to use for 

calculating the performance of a direct transfer type heat exchanger; this is our basic 

performance equation. Put a rectangle angle to give it, give importance and say this is the 

basic performance equation. This is the basic performance equation for a direct transfer 

type heat exchanger. So, suppose I have a direct transfer type heat exchanger whatever it 

be, shell and tube plate, fin plate, whatever it is, if I want to calculate the q - the amount 

of heat transferred per unit time in that heat exchanger - I will need to know the value of 

U, the overall heat transfer coefficient. I will need to know of course the heat transfer 

area in that heat exchanger and I will need to know the mean temperature difference for 

the heat exchange. I will need to have some expression for calculating the mean 

temperature difference, the mean temperature difference which depend upon the 

temperatures of the fluids, 2 fluids, the hot fluid and the cold fluid at the inlet and the 

outlet. So, I need to find ways of calculating delta Tm based on my knowledge of Thi, The, 

Tci, Tce - that is what I am going to do next.  

 

Now, our next job is find expressions or ways of calculating delta Tm for parallel flow, 

for counter flow, for cross flow - all the 3 cases of cross flow, that is all going to be our 

next job. We have defined a delta Tm. How do we get? It is a value for different flow 

situations so let us look first at parallel flow. Let us say now, our next job is to derive an 

expression - mean temperature difference in parallel flow. 
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Derive an expression for the mean temperature difference in parallel flow - that is our 

next job. Now, let us first look at a parallel flow heat exchanger, a typical parallel flow 

heat exchanger. Let us say, let me for the moment not to confuse you, let us put a cover 

on the lower side so that we focus attention on the upper part of the figure. Here, we have 

a parallel flow heat exchanger 

 

(Refer Slide Time: 09:50) 
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The flow rate - this is the shaded, the hatch lines indicate the heat transfer surface area is 

A and this heat exchanger has a length L in the direction x. x is measured from this side, 

the left hand side - it has a length L, a breadTh B at right angles to the paper. So, the area 

A of this parallel flow heat exchanger is A is equal to BL. The flow rate on the hot side is 

m dot h. You can see it is  shown here - the flow rate on the cold side is m dot c shown 

here. The hot fluid enters with the temperature Thi and leaves with a temperature The, the 

cold fluid enters with the temperature Tci and leaves with a higher temperature Tce. We 

would like to find, derive not find, derive an expression for the delta Tm, the mean 

temperature difference for this parallel flow heat exchanger, that is our job.  

 

Now, let us now before we start deriving the expression, let us just for a moment 

qualitatively see the picture before us. This is the, these are temperature profiles on the 

hot side and the cold side. On the hot side, the fluid is entering with a temperature Thi and 

as it goes along the length of the heat exchanger it is giving up heat and reducing in 

temperature to value The. On the cold side, the fluid is entering with the temperature Tci 

and as it goes along the length of the heat exchanger it is increasing in temperature to a 

value Tce at the exit. So, these, let me put arrows to show the directions of the 

temperature profiles, the flow directions. 

 

So, the temperature difference between the hot and the cold fluid at the inlet is Thi minus 

Tci and that is delta Ti we will call that as delta Ti. Similarly, the temperature difference 

at the outlet of the heat exchanger would be The minus Tce and we will call that as delta 

Te so that is the position. Now, the delta Tm - the mean temperature difference for this 

heat exchanger - is going to lie between these 2 extremes. One extreme is delta Ti and the 

other extreme is delta Te. delta Tm is going to lie between these 2 extremes, some value 

in between these. We want an expression for delta Tm in terms of Thi Tci Thi and Tce. 

Consider, let us now derive the expression so let us consider some elementary area dA of 

this heat exchanger.  
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Consider an elementary area dA, elementary area dA, which will be equal to B the 

breadTh of the heat exchanger which is a constant in to dx. Let us consider some 

elementary area and the heat transfer occurs across it. Before we do that, let us make 2 

assumptions which are reasonable assumptions. Let me put those down and then start 

continue with the derivation. We are going to make 2 assumptions; let me show those.  
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First, we will make the assumption that the overall heat transfer coefficient U is a 

constant; the value of U for this heat exchanger all over the area of the heat exchanger is 

a constant so U is a constant - that is assumption 1. The second assumption we are going 

to make is the heat exchanger is adequately insulated so that there are no heat losses to 

the surrounding. What we mean by this is the hot fluid, whatever heat it gives up, 

whatever loss of enthalpy it has, all that energy flows to the cold fluid; none of that 

energy is lost to the surroundings. And usually this is a good assumption because that is 

the purpose of a heat exchanger - to transfer heat from a hot fluid to a cold fluid not to 

lose the energy to the surroundings. So, heat exchangers are adequately insulated so that 

the heat losses to the surroundings are in fact negligible. So, let us make the 2 

assumptions: U is a constant and heat losses are negligible to the surroundings therefore 

enthalpy change of the hot fluid will be equal to enthalpy change of the cold fluid. 

  

Now let us continue with our derivation. I said to you, let us take an elementary area dA 

of the heat exchanger which is equal to Bdx. What is the heat transfer rate across this 

areas dA? We know that already from earlier. dq is nothing but U delta T dA; dA is 

nothing but B dx that is so many Watts is the heat transfer rate across the elementary area 

dA. Now, when this heat transfer takes place - because this heat transfer takes places 

from the hot side to the cold side - the enthalpy of the hot side flow decreases by this, by 

this amount, and the enthalpy of the cold fluid increases by this amount. The enthalpy 

decrease of the hot fluid is shown, is seen by the decrease in temperature. So, over the 

length dx the temperature of the hot fluid decreases by dTh. So, we will say this must be 

equal to the change in enthalpy on the hot side m dot h Cph dTh and that must be equal to 

the increase in enthalpy on the cold side which is equal to m dot C Cpc dTc.  

 

Notice I have put a negative sign on the dT on this first one, why? Because dTh will be 

negative in the positive direction which I am measuring from the inlet x, is being 

measured from the inlet, so dTh - the temperature of the hot side - will go on decreasing 

in the positive direction. dTh will be a negative number so I need to put a negative sign in 

order to get an enthalpy change and equate this to the heat transfer rate across the area 

dA. So, these are all equal expressions; this is the heat transfer rate {acr} (17:00) across 
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the area dA this is the enthalpy change on the hot side this is the enthalpy change on the 

cold side and they have to be all equal.  

 

Now, delta T is nothing but Th minus Tc delta; T is Th minus Tc therefore d delta T - if I 

take a differential - is nothing but dTh minus dTc. I. can write this, as now I have an 

expression for dTh out here and an expression for dTc out here. So, instead of dTh I can 

write minus dq upon m dot h Cph and instead of dTc I will get minus dq upon m dot c Cpc 

using these 2 expressions. And further for dq, I can write the expression.The first 

expression so I can say this is equal to minus U delta T B dx; I am substituting for dq 

from this expression here the first one and into bracket 1 upon m dot h Cph plus 1 upon m 

dot c Cpc - that is what I will get. So, d delta T is equal to minus U delta T Bdx in to 1 

upon m dot h Cph plus 1 upon m dot c Cpc.  

 

(Refer Slide Time: 19:10) 

 
 

Let us integrate this expression from inlet to outlet; so let us say, let us rewrite this 

expression as d delta T upon delta T, bring the delta T to the left hand side and integrate 

this expression from inlet to outlet, that is integrate inlet; at the inlet the value of delta T 

is delta Ti at the outlet it is delta e. So expression integrated from inlet to outlet - this 

must be equal to minus 1 upon m dot h Cph plus 1 upon m dot c Cpc. It is a constant; it 
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comes outside the integral, U is a constant so it comes outside the integral; B is a 

constant, comes outside the integral. Only the dx remains inside so integral of dx 0 to L - 

the whole length of the heat exchange L - and if I do this and integration. Now, by the 

wa,y before I go further let me say we should be careful here. delta Ti is Thi minus Tci - I 

mentioned that earlier but I am writing it down now delta Te is equal to The minus Tce. 

delta Ti is the temperature difference between the hot and the cold side at the inlet end; 

delta Te is the temperature difference between the hot and the cold side at the exit.  

 

Now, therefore we get with the integration, I will get log to the base e delta Te by delta Ti 

- it is  the left hand side - is equal to minus 1 upon m dot h Cph plus 1 upon m dot c Cpc 

multiplied by U multiplied BL which is nothing but A the area A of the heat transfer 

surface and that is equal to, I can write that further as equal to minus, now for m dot hCph 

I can write Thi minus Th e and divided by q which I will take outside.  

 

So, I will take 1 upon q plus for m 1 upon m dot c Cpc, I can write Tce minus Tci and 

again a q which I take outside; that is the total heat transfer rate in the exchanger is 

nothing but m dot h Cph Thi minus Th e and multiplied, the whole thing multiplied by 

UA. So, I can further simplify and finally get my expression which I am looking for; I get  
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q is equal , now the expression in the final form is - q is equal to UA delta Ti minus delta 

Te divided by the logarithm to the base e delta Ti by delta Te - that is the final expression 

that I get. This is the performance equation for a parallel flow heat exchanger and if you 

compare this; compare without basic performance equation for a direct transfer type heat 

exchanger, what was that? Comparing with the general equation q is equal to UA delta 

Tm; if I compare this, this is our general equation for any direct transfer type heat 

exchanger.   

 

(Refer Slide Time: 24:06) 

 
 

Then you can see for parallel flow, for parallel flow, comparing with this we say for 

parallel flow delta Tm is equal to delta Ti minus delta Te divided by logarithm to the base 

e delta Ti by delta Te and delta Ti is Thi minus Tci delta Te is Th e minus Tce. So, you 

achieved our objective now for parallel flow heat exchanger if I know the temperatures of 

the 2 fluids at the inlet and outlet. I know delta Ti, I know delta Te, I can calculate delta 

Tm for parallel flow. Once I have this, go to my basic equation q is equal UA delta Tm 

and I will get the heat transfer rate in the heat exchanger. this is what we have achieved. 
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Now, we are going to do the same thing for counter flow one by one; as I said, first we 

will do for parallel flow then for counter flow. So, our next job is to proceed for counter 

flow in a very similar manner so I will not spend that much time in this derivation.  

 

(Refer Slide Time: 25:20)  

 
 

Our next job is to derive an expression for the mean temperature difference in counter 

flow; derive an expression for the mean temperature difference. We will proceed more or 

less in the same fashion with some small difference which I will point out as we go along. 

First, let us look at a counter flow heat exchanger - a sketch of it - as we did for parallel 

flow and then put down the equations again. But we will move a little faster because as I 

said the derivation is somewhat similar. Let us look again at the top half of this figure 

rather than the whole figure.  
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Here, there are counter flow heat exchanger length L breadth B at right angles to the 

paper flow rate on the hot side m dot h, flow rate on the cold side m dot c same as earlier. 

But, notice however fluid entering on the hot side enters with a temperature Thi leaves 

with the temperature Th e. The fluid on the cold side enters from the other side has a 

temperature Tci and leaves with the temperature Tce. So, now the flow, the directions of 

flow are reversed. We will again consider an elementary area dA which is equal to Bdx. 

So, we have got the same sketch except in that the 2 fluids are flowing in opposed 

directions so Thi and Tci are on the 2 sides of the heat exchanger. 

 

Let us look at the sketch of the temperature profiles; here are the 2 temperature profiles. 

On the hot side, this is the fluid entering at Thi, decreasing in temperature as it goes along 

the length of the heat exchanger and leaving at a temperature The. On the cold side, it is 

entering on the other side that is where The is entering on this side and as it goes along the 

length of the heat exchange, then the cold side fluid picks up and leaves at a temperature 

Tce. So, the 2 temperature profiles now look something like this and we will define delta 

Ti as Thi minus Tce, which is different from the earlier definition of delta Ti. delta Ti will 

be in counter flow, will be Thi minus Tce and delta Te in counter flow will be The minus 

Tci, so keep that in mind as we go along.  



 13 

Now, let us proceed with the derivation. As I said the derivation will be more or less on 

the same lines; there will be hardly any difference. We can move a whole lot faster. 

 

(Refer Slide Time: 27:58) 

 
 

We will make the some assumptions, make some assumptions. What were they? Number 

1, U is a constant, and number 2, no heat loss heat losses to the surroundings. Change of 

enthalpy on the hot side is equal to change of enthalpy on the cold side; the decrease in 

enthalpy on the hot side is equal to the increase in enthalpy on the cold side. Consider 

again an elementary area dA, consider an elementary area dA equal to Bdx, dq - the heat 

transfer rate. Proceed in more or less in the same fashion as earlier. Dq - the heat transfer 

across dA - will be U Th minus Tc; temperature difference from hot side to the cold side 

multiplied by Bdx, that is equal to minus m dot h Cph dTh. Notice the negative sign 

because dTh will be negative in the positive x direction and that is equal to minus m dot c 

Cpc in to dTc.  

 

So, the difference now is I have a negative sign out here; also because in the positive x 

direction, the temperature on the cold side is also decreasing. Let me show that sketch 

again just to illustrate what I mean. This is the x direction, the positive x direction in this 

direction, hTh is decreasing, Tc is also decreasing. So, dTh and dTc are negative 
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quantities therefore I need to put a negative sign on them to get a positive value of dq. So, 

that is the difference between parallel flow and counter flow, this negative sign. Now, we 

proceed with the same algebra. We can write d delta T is equal to dTh minus dTc which 

is equal to minus dq upon m dot h Cph plus dq upon m dot c Cpc and using again the first 

and second and the third equations which we had earlier.  

 

(Refer Slide Time: 31:00) 

 
 

If we do a little algebra we will get this is the equal to, further this is equal to minus U 

delta T minus U delta T Bdx in bracket 1 upon m dot h Cph minus 1 m dot c Cpc and then 

I integrate from inlet to outlet so I will get d delta T upon delta T is equal to minus 1 

upon m dot h Cph minus 1 upon m dot c Cpc UB the integral over dx. And performing the 

integration I will get a logarithm to the base e delta Ti by delta Te is equal to minus 1 

upon m dot h Cph plus, sorry, minus 1 upon m dot c Cpc multiplied by UBL which is 

nothing but UA, where keep in mind however that in counter flow delta T e is Th e minus 

Tci. Note this difference from parallel flow and delta Ti is equal to Thi minus Tce - these 

definitions are different from parallel flow, that you should note.  

 

 

 



 15 

(Refer Slide Time: 33:05) 

 
 

Therefore, we can write further - this log to the base e delta Te by delta Ti is equal to 

minus 1 upon q in to bracket Thi minus Th e minus Tce minus Tci - these are the changes 

in enthalpy on the hot side and cold side - the whole thing multiplied by UA. Or finally 

our basic performance equation q is equal to UA delta Ti minus delta Te divided by 

logarithm to the base e delta Ti by delta Te. Notice we have got the same equation as we 

got for parallel flow; it is the same equation, there is no, in terms of symbols we have the 

same equation. But delta Ti and delta Te mean different things in parallel flow and in 

counter flow there are defined differently; that has to be always kept in mind.  

 

In fact, let me just draw a sketch here so that again there is no confusion. These are the 

temperature profiles on the hot side and on the cold side; this is Thi decreasing to The and 

on this is, on the cold side Tci increasing to Tce. This difference The minus Thi Tci is equal 

to delta Te; this is delta Te and this difference out here is delta Ti; that is what has to be 

kept in mind - Thi minus Tce is delta Ti. Now if I again compare with our basic 

performance equation, comparing with our general performance equation, q is equal to 

UA delta Tm. For any direct transfer type heat exchanger I will get delta Tm in counter 

flow is equal to delta Ti minus delta Te divided by the logarithm to the base e delta Ti by 
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delta Te where delta Ti and delta Te are as defined just a moment ago. So, this is my 

expression for the mean temperature difference in counter flow. 

 

So now, if I have counter flow heat exchanger, I know the inlet temperatures in the hot 

side and cold side, the outlet temperature on the hot side and cold side. I know how to 

calculate delta Tm for that counter flow heat exchanger. The moment I have got the delta 

Tm, I can say the heat transfer rate for that counter flow heat exchanger is U - the overall 

heat transfer coefficient into the area A into the delta Tm in counter flow as calculated 

from this expression.  

 

Now we go to the next case. No. Before we go to the next case of cross flow, let me look 

at one special case of counter flow which is worth talking about. 

 

(Refer Slide Time: 36:31) 

 
 

So, for a moment let us talk about one special case of counter flow before we move on to 

the cross flow situation, a special case of counter flow. What is that? The special case of 

counter flow which we want to look at occurs when m dot h Cph is equal to m dot c Cpc - 

suppose we have this situation. The product of the flow rate and the heat and the specific 

heat on the hot side equals the value on the cold side. Then, it follows since q the change 
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of enthalpy on the hot side and the change of enthalpy on the cold are numerically equal. 

It follows that Thi minus Th e must be equal to Tce minus Tci; the changes of temperature 

on the 2 fluids must be equal or I can rewrite that as Thi minus Tce is equal to Tc Th e 

minus Tci. Thi minus Tce is nothing but delta Ti in counter flow and Th e minus Tci is 

nothing but delta Te so we have delta Ti equal to delta Te for this special case. 

 

Now, if I substitute into my expression for the mean temperature difference that delta Ti 

is equal to delta Te, substituting into the expression for delta Tm we get, if you do it you 

can see straight away without even, I am substituting it on paper, we get an indeterminate 

quantity. We will get 0 upon 0; you get, we get an indeterminate quantity – 0 upon 0. So 

what we do if we have a situation like this? Calculus or knowledge of calculus tells us 

that if you want to calculate the value we need to differentiate the numerator and 

denominator and apply what is called as L'Hopital's rule.  

 

(Refer Slide Time: 39:05) 

 
 

So, let us define - delta Ti divided by delta Te, let us say this is equal to some quantity p 

in which case our expression for delta Tm becomes delta Te p minus 1 divided by the 

logarithm to the base e of p. And we want to find this in the limit as p tends to 1 as delta 

Ti tends to delta Te. L'Hopital's rule, say apply L'Hopital's rule - this is from our 



 18 

knowledge of calculus. L'Hopital's rule says differentiate the numerator and denominator 

with respect to p so you will get delta Tm is equal to the limit p tends to 1. I am 

differentiating now the numerator, the denominator with respect to p. delta T remains 

same; p minus 1 when differentiated with respect to p gives me 1. The logarithm of p 

when differentiated with respect to p gives me 1 upon p and if I now put the limit p equal 

to 1 I will get this is equal to delta Te.  

 

So, the application of L'Hopital's rule gives me the value of this indeterminate quantity 

delta Tm and what we find is that delta Tm is equal to delta Te which is nothing but delta 

Ti. And in fact, in this particular case, what really happens is the following. What we 

really get is the temperature profiles - on the two sides are two parallel lines like this; this 

is on the hot side, this is on the cold side. This is delta Ti, that is Thi minus Tc, this is 

delta Te which is The minus Tci and if you have 2 parallel lines it follows for the 

temperature profiles. If you have two parallel lines, it follows that delta Tm must be equal 

to delta Te must be equal to delta Ti - that is really what we are getting. So for the special 

case, the temperature profiles tend to be straight lines - 2 parallel lines - and delta Tm 

becomes equal to delta Ti or delta Te. So, this is one special case of counter flow worth 

talking about.  

 

Now let us go on to cross flow. We want to now get expressions or get value for the mean 

temperature difference in cross flow. We have 3 cases there. You recall we have both 

fluids unmixed, that means we have fins on both sides which prevent the fluid from 

moving in a direction and mixing with itself. Then, we have one fluid mixed the other 

unmixed or we have both fluids mixed. So, let us take first case one in cross flow - both 

fluids unmixed.  
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Now, this is how the temperature profile is going to look. In this case, this is the hot side 

fluid and this is the cold side fluid, this is the hot side fluid, this is the cold side fluid. The 

temperature on the hot side fluid is Thi - uniform everywhere. While entering this is Thi in 

the cold side; while entering it is uniform but now since it is a fluid in which no mixing 

takes place - it is both fluids unmixed - any fluid particle at Tci which enters here is going 

to come into contact with hot fluid at Thi and is going to heat up the most.  

 

On the other hand, a fluid particle entering at this side at Tci will come into contact with 

hot side fluid. On the other side which is at a lower temperature, it has been cooled in 

moving through the heat exchanger; so this fluid particle is going to heat up less. So why, 

leaving the heat exchanger the cold side profile is going to be something like this. In the 

same way, you can see the hot side fluid is going to be something like this. So, the 

temperature of the cold and the hot fluids will now be functions of x and y. Keep that in 

mind. Now, let us write down the expression that we get and see how far we can go. 
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So, let me first make a statement both for this case - cross flow, both fluids unmixed, both 

Th and Tc are functions of x and y; x and y are what we had earlier. Let me go back to the 

sketch - x is this direction that means the cold fluid is moving; y is the direction in which 

the hot fluid is moving. We need two directions now; it is a two dimensional problem 

unlike parallel flow and counter flow which have one dimensional problems. So, we had 

only the x direction there, that is important that you keep that in mind.   

 

Now we have variations in x and in the y direction. So, Th and Tc are functions of x and 

y. Consider again an elementary area dA; consider an elementary area dA which will be 

equal to dx dy. It is a 2 dimensional problem so we can say dq - the heat transfer rate of a 

- ur d across dA is equal to U Th minus Tc into dx dy. If we assume U to be a constant 

and integrate over the whole area A of the heat exchanger we will get q is equal to U 

integral; we will now have to do a double integral Th minus Tc dx dy where the 

integration over x is from 0 to L and the integration over y is from 0 to B. 

 

Let me go back to the sketch that we had and show again this is the area A of the heat 

transfer surface; hot fluid flowing on one side, cold on the other side. In the x direction, 

the length is L in the y direction, the length is B, flow length is B so BL is the heat 
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transfer area. x has to be integrated from 0 to L; y has to be integrated from 0 to B. That 

is what we are doing in order to find out the total heat transfer rate. Therefore, we can see 

straightaway comparing with our basic equation, comparing with q is equal to UA delta 

Tm - that is our basic equation. 

 

We have delta Tm  in cross flow is equal to: this is for cross flow delta Tm, for cross flow 

is equal to 1 upon BL the double integral in 0 to B, 0 to L, Th minus Tc multiplied by dx 

dy - that is our expression for delta Tm in cross flow. So, you can see it is more 

complicated than we had earlier; we have now got a double integral which has to be 

handled. So, the determination of delta Tm is going to be much more complicated and it 

has been done numerically so we don’t have to worry about it; we will get the results. But 

it is not as straight forward as it is for parallel flow or for counter flow which were one 

dimensional problems. Now let us look at the other case - case two. What is case two? 
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One fluid mixed, the other fluid unmixed. Let us assume the cold side fluid is mixed and 

the hot side fluid is unmixed. Now what we are going to get is something like this. This is 

our cold side fluid. Let me draw its temperature profile. This is our cold side fluid 

uniform while entering which is Tci and this is where the fluid is entering, cold fluid 
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entering. This is my direction x; this is my direction y. Let us say the hot side fluid, let 

me draw again a sketch there of the hot side fluid, this is the temperature profile at the 

inlet uniform while entering so this is Thi that I am showing, fluid temperature profile 

while entering on the hot side this is Thi.  

 

Now, the hot side fluid is unmixed therefore its temperature profile will be non-uniform 

at the exit, something let us say like this. The fluid on this side which is unmixed will get 

cold more, the fluid on this side will get cold less, and we will have some non-uniform 

temperature profile with Th being a function of x and y; Th will be some function of x 

and y. On the other hand, on the cold side since we have got mixing, any fluid particle 

that enters here and gets heated; any cold particle that enters here and gets heated. The 

movement that happens, they can also mix transversely with each other and get two 

uniform temperature, then proceed further and again receive heat from the hot side.  

 

So, on the cold side we are going to have a uniform temperature profile; because of the 

mixing taking place on the cold side we are going to have a uniform temperature profile 

like this on the cold side. This is the temperature profile on the cold side like this - this is 

Tce, this was The, here which is a function of x and y,  Th which was function of x and y 

and The which was varying.  

 

So, we should note that whereas Th is a function of x and y, Tc - because of mixing - is a 

function of only of x. So, this is going to be the situation when we have one fluid mixed 

and the other unmixed and the third case which we have is when both fluids are mixed in 

which case we are going to get something like this. Let us draw that situation. 
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(Refer Slide Time: 51:09) 

 
 

We are going to have mixing on both sides so we will have the fluid on that side, uniform 

temperature while entering and uniform temperature while leaving mixing on both sides. 

So, I am going to have now a temperature profile because of the mixing on both sides 

which is something like this. So, this is Tci, this is Tci, this is Tce also uniform because 

mixing is taking place on the cold side. Similarly, Thi like this on the hot side and The on 

the cold side, so this will be Thi. The temperature profile on the hot side, this is Thi and 

this will be The, uniform while leaving. Because of mixing this will be The, so in this case 

now Tc will be a function of x and Th will be a function of y. 

 

So, it is still a two dimensional problem but the Th is a function of y only and Tc is a 

function of x. So we have got more complicated situation. These integrations which I - 

for finding out the mean temperature difference for these 3 cases - the integrations to find 

out delta Tm have been done numerically. 
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(Refer Slide Time: 53:36) 

 
 

The integrations for the 3 cases of cross flow have been done numerically and the results 

are presented in the form of a correction factor F; the results are presented in the form of 

a correction factor F. F is defined as - F is equal to the delta Tm in cross flow divided by 

the delta Tm if the arrangement had been counter flow. That is how the results are 

presented in the form of correcting factor F which is delta Tm cross flow upon the delta 

Tm if the arrangement had mean counter flow. 

 

(Refer Slide Time: 55:38) 
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If the bulk exit temperatures on the hot side and the cold side, if the bulk exit 

temperatures - they may be non-uniform but if I get a mean value and call it the bulk exit 

temperature, if the bulk exit temperatures on the hot side and cold side are The and Tce, 

then delta Tm  - if the arrangement had been counter flow - we know that delta Tm in 

counter flow will be Thi minus Tce minus The minus Tci. The logarithm to the base e Thi 

minus Tce divided by Th e minus Tci delta Ti upon delta Te. So the final results based on 

this numerical integration are given in the form of a correction factor F. F is equal to the 

delta Tm in cross flow upon the delta Tm; if the arrangement had been counter flow, we 

know how to calculate the delta Tm in counter flow.  

 

Now next time, I am going to tell you how F has been determined and how it is presented 

graphically so that once we get a value of F we can get the delta Tm in cross flow.  


