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Welcome to this sixth topic on heat and mass transfer. In the next few lectures, we will be 

studying natural convection in these lectures; we will restrict ourselves to single phase 

natural convection. 
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Two phase flows, condensation and boiling will be taken up in a later chapter. The 

equations of natural convection, those governing the phenomenon of heat transfer and 

fluid flow during natural convection tend to be complex because of the presence of 

buoyancy forces and hence we are not going to look at those equations nor shall we study 

the methods for solving those equations. We will essentially look at correlations based on 

either analysis or experiment or combination and use them to calculate heat flow rates 

during natural convection. We will look at dimensionless numbers using which those 

correlations are built up and then we will look at some situations which are very common 

in practice and for which very nice correlations are available. 



The situations that we will study are a vertical flat plate, a horizontal cylinder, a 

horizontal plate of some typical shape like a square plate, a rectangular plate or a circular 

plate and finally natural convection in enclosed spaces or cavities. If we look at a 

situation of natural convection, we will see the following.  
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There is no bulk flow during natural convection so if I have a surface - just showing some 

surface which is say hot - so we have a hot surface say at some temperature Tw and it is 

immersed or exposed to a fluid at say T infinity away from the plate uninfluenced by its 

presence, let the temperature be T infinity. There is no bulk flow that means if the hot 

surface were not to be at a different temperature from the fluid, the fluid would remain 

stagnant. But now let us assume that the hot surface has a wall temperature which is 

higher than the fluid temperature. The fluid is not flowing so because of conduction from 

the hot surface layers near the hot surface, we will have their temperature approaching Tw 

so some sort of a temperature gradient will be established.  

 

Now the lamina near the wall are at a higher temperature so the density of these layers 

near the wall - let me call them rho1. Compared to the density in the free stream we will 

have rho1 less than rho infinity because we have assumed the wall temperature to be 



higher than the free stream temperature. So, that means, in this bulk fluid there is a zone 

of low density; this zone of low density leads to buoyancy forces acting on this and hence 

this zone of low density tends to move up thus setting up the process of natural 

convection. It moves up is replaced by fluid from the bulk and the process establishes 

itself as a process of natural convection.  
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So, in short, the situation in natural convection is that there is no bulk flow; whatever is 

the flow caused is due to buoyancy. The buoyancy in turn is caused by a density 

difference and the density difference in turn is caused by the temperature difference 

between a surface and the fluid surrounding that surface. And because of this temperature 

difference causing density difference causing buoyancy forces causing flow - because of 

this link - the fluid flow and heat transfer is linked to each other; this is the main 

characteristic of natural convection. The natural convection is also called free convection 

and we will soon see why.  

 

Let us look at the advantages and disadvantages of natural convection as a heat transfer 

process. 
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First, there is no bulk flow in natural convection so we don’t have to consume any power 

to drive a pump or rotate a compressor or blower. Perhaps, because there is no power 

consumption required the natural convection may perhaps be called as free convection. 

Because there is no fluid flow equipment involved, associated with natural convection, 

there is no noise process of natural convection - almost invariably proceeds in a quiet 

fashion. Because there is no bulk flow, there is hardly any vibration associated with flow 

phenomenon or with an equipment nearby.  

 

The disadvantages compared to forced convection are - heat transfer coefficients in 

natural convection are low typically by an order of magnitude. If you look up the 

problems we have solved with the forced convectio0,n forced convection with air gave us 

heat transfer coefficient of the order of maybe 7500 Watt per meter squared Kelvin. With 

natural convection, the order of heat transfer coefficients with air would typically be10-

12 Watt per meter squared Kelvin.  

 

With water, forced convection would easily provide heat transfer coefficients of the order 

of a 1000 Watt per meter squared Kelvin or even higher. Water during the process of 

natural convection will lead to heat transfer coefficient of the order of a few tens of Watts 



per meter squared Kelvin - maybe 20,30, 40 of that order perhaps 10000 and 50 that is 

about it.   

 

Because the heat transfer coefficients are low, the area required for a given amount of 

transfer of heat is large. Because natural convection depends on density differences and 

gravity, the direction of gravity and the orientation of the surface plays a role and because 

there is no fluid flow, no blower to switch on or off, no velocity to adjust, natural 

convection is difficult to control.  

 

Now let us look at some dimensionless numbers associated with the phenomenon of 

natural convection.  
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First, we should note and we will always or quite often compare the process of natural 

convection to that of forced convection. Since there is no bulk velocity in natural 

convection, there cannot be a physical reference velocity and hence the Reynolds number 

will not play a role in a situation of natural convection. However, instead of Reynolds 

number we have a different number; we will soon come to that. We are interested in a 

heat transfer coefficient and the dimensionless number Nusselt number would represent 



the heat transfer coefficient in the dimensionless form. We have come across the Prandtl 

number during our studies of forced convection; we have the Prandtl number present in 

almost all correlations of natural convection.  

 

Since Reynolds number doesn’t exist but the whole process is a process of natural 

convection, is caused by temperature difference leading to density difference leading to 

buoyancy force and flow, the temperature difference would be represented in a 

dimensionless number and that dimensionless number , a very common number in natural 

convection correlation, is the Grashof number. It has the gravitational acceleration 

coefficient of expansion, temperature difference, length and viscosity. Let us look at the 

Grashof number; it is significance and how it comes about.  
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Notice that the force of buoyancy would equal the density difference between the fluid 

and the surrounding multiplied by the volume of the fluid multiplied by the gravitational 

acceleration. The gravitational force will be acting downwards, buoyancy force would be 

acting upwards so the net force of the buoyancy will be the gravitational acceleration 

volume. Let us represent it by cube of some reference length multiplied by the density 

difference, say the bulk density in the free stream is rho infinity and say for the layers 



near the wall, the density is lower. Assuming the wall is hotter than the fluid, rho infinity 

minus rho w, so this would be representing the buoyancy force.  

 

Now, the density difference is related to the temperature difference. We define the 

volumetric thermal expansion coefficient; this is usually given the symbol beta and this is 

defined as1over; rho partial of rho with respect to T at a constant pressure. The negative 

sign is included to obtain a positive value of beta because as temperature increases 

density decreases for almost all fluids, that is a common occurrence. So partial of rho 

with respect to T is a negative number so this negative sign here gives us positive values 

of beta for tabulation and calculation. 

 

Now, this can be approximated as minus1over - say the bulk density rho infinity 

multiplied by ratio of rho infinity minus rho w to T infinity minus Tw. And which gives 

us rho infinity minus rho w to be equal to beta rho infinity Tw minus T infinity; this 

temperature difference between the wall and the fluid is usually represented by delta T. 

And now if you look at the buoyancy force force of buoyancy in terms of g, beta, etcetera 

would now be g L cube beta rho infinity into delta T.  

 

Now, when you include this force of buoyancy and use the Buckingham’s pi theorem, 

you will get a dimensionless number which we will, we call the Grashof number, symbol 

Gr. 
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This is defined as g beta delta T L cube, terms which we come across in the force for 

buoyancy divided by nu squared. Notice that beta and nu would be properties, g is 

acceleration due to gravity, L is the characteristic length and delta T is the temperature 

difference between the surface and the fluid. Delta T is always defined as a positive 

number; if the surface is hotter than the fluid it will be T wall minus T fluid, if the fluid is 

hotter than the surface it will be T fluid minus T surface; so the Grashof number is 

always expressed as a positive number.  

 

L is the characteristic length and quite often to represent that it is based on a specific 

characteristic length; we will use L as a subscript on the Grashof number. Just the way 

we have appreciated the significance of Reynolds number as a ratio of inertia forces to 

viscous forces, if you expand the Grashof number it can be shown that the Grashof 

number represents the ratio of forces which are like this. You put inertia force, multiply it 

by the buoyancy force and divide it by the square of the viscous force - this is the 

representation of the Grashof number, the significance of the Grashof number.  

 

If the viscous force is dominant Grashof numbers would be small, if the buoyancy force 

is dominant Grashof number will be large. Apart from Grashof number, we have a 



Rayleigh number related to the Grashof number; it is related to Grashof number because 

we find that quite often in correlations for natural convection, we come across the 

product Grashof number multiplied by Prandtl number. This product is so common that 

we define it as the Rayleigh number symbol Ra. And again if the Grashof number is 

based on a certain characteristic length L, we base the Rayleigh number also on the same 

characteristic length L and we will find that the Rayleigh number has a subscript L quite 

often associated with it indicating that it is based on a particular characteristic length. 

And because of this the correlations for natural convection would usually be written 

down as Nusselt number as some function of either Grashof number or Rayleigh number 

and Prandtl number 

 

Almost all natural convection correlations will have this general form which is similar to 

the general form for forced convection where we will have Reynolds number and Prandtl 

number. Now, let us move on to situations of interest to us and let us look at correlations 

for natural convection in those situation.  
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Let us first look at a vertical flat plate; a common enough situation - external walls of 

buildings, walls of heated packages in cuts which are vertical or neat vertical. This would 



be the situation representing that. It need not be a flat surface; if the surface is curved but 

not very sharply curved even then these correlations will be applicable. Let us look at a 

situation where we have vertical flat surface; let us say it is at some temperature Tw and 

is exposed to some fluid at T infinity. Let us - for the sake of illustration - assume that the 

wall temperature is higher than the fluid temperature; the wall is warmer or hotter than 

the fluid. Let us also assume that the gravity is acting downwards - that is our default 

assumption in any case. 

 

As we go away from the wall, we will notice that the temperature reduces from the wall 

temperature to the free stream temperature. Because of the higher temperature near the 

wall density will reduce, fluid would tend to move up.  At the wall itself, the velocity will 

be 0 but away from the wall, slightly away from the wall, velocity will increase but as it 

goes away the temperature difference reduces. So the density difference also reduces, so 

buoyancy forces decay off and you will end up with a velocity profile something like this. 

If this is the y direction, this would be the velocity profile Vy - it would be a function of x 

and this is the temperature profile T. Now if you look at this situation, at different values 

of y, let us say this is y equal to 0 and we are looking at various situations. Near the wall 

bottom edge, there will be a very thin effect of this boundary layer but that boundary 

layer will start growing and we will end up with a zone near the wall like this which we 

would call the natural convection boundary layer. At any.in the boundary layer we will 

have a temperature profile, we will have a local velocity profile.  

 

Out here, we will have a slightly different temperature profile and a slightly different 

velocity profile. Fluid in this zone will be moving up and this zone will be known as the 

natural convection boundary layer. It is similar to the forced convection boundary layer 

but with the difference that this is the zone in which the temperature is significantly 

different from the free stream temperature; the effect of the wall is seen because the 

temperature is different. The density is different because of density difference; there are 

buoyancy forces which cause local flow of fluid. In the free stream, the Vy will tend to be 

0 because the bulk is not moving at all; it is a natural convection situation. 

 



(Refer Slide Time: 25:14)  

 
 

The situation is slightly different but very similar if we have the plate at a temperature 

lower than the free stream temperature. Let us assume now that the wall temperature is 

lower than the free stream temperature, now what happens? The wall temperature is 

lower, some layers near the wall cool down; that will be a thermal boundary layer and 

because of this lower temperature the density here will be higher, the fluid will tend to 

sink because of higher density. The net effect of buoyancy would be to move denser fluid 

layers downwards. So, we will have a velocity profile like this - if you call y axis 

downwards, then Vy will be positive downwards and this is the temperature profile which 

will start from the wall temperature near the wall and increase to T infinity in the free 

stream.  

 

The overall view - the boundary layer will now start developing from near the tip, the top 

edge, grows as you move downwards and fluid in the boundary layer would start going 

down. Here also the same situation - wall temperature and free stream temperature, the 

wall temperature is assumed to be lower than the free stream temperature and this zone is 

the natural convection boundary layer. Compared to the first situation where we assumed 

the wall temperature to be higher than the free stream temperature, the boundary layer 

here began with the bottom edge and became thicker as we move upwards in the 



boundary layer, the fluid was drifting upwards. When the wall is cooler than the 

surroundings the boundary layer starts from the top edge, grows as you go down, the 

fluid tends to move down in that boundary layer. These situations are more or less 

symmetric to each other in the vertical direction.  

 

If you assume that gravity is acting downwards, the situation of a hot wall facing a fluid 

is similar to the situation of a cold wall facing a fluid with the vertical direction reversed. 

Here fluid tends to move up, here the fluid tends to move down. After having looked at 

the basic process for a vertical flat plate, we look at a correlation - the recommended 

correlation - for a vertical flat plate. 
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This being a basic situation, number of correlations are available since long; however the 

currently recommended correlation which is validated against experimental data over a 

wide range of Rayleigh numbers and Prandtl number is that by Churchill and Chu 

published in 1975. It is valid for Rayleigh number up to10 raise to 12 from near 0 and for 

all Prandtl number; for all Prandtl number, we mean Prandtl number of practical 

importance. So this typically means Prandtl number from something like .0001 to a 

Prandtl number of something like 1000 or 1200. This is the extreme range of Prandtl 



numbers that will we will come across from the liquid metal range of low Prandtl 

numbers to heavy oils range of high Prandtl number. 

 

This correlation provides average Nusselt numbers; we will note that in our study of 

natural convection, we are not going to look at local Nusselt numbers or local heat 

transfer coefficient here. We will look at only correlations pertaining to average heat 

transfer coefficients and average Nusselt numbers. Properties are to be evaluated at the 

mean film temperature that is the arithmetic average of the wall temperature and the bulk 

fluid temperature and this correlation is essentially applicable or derived using data on 

constant temperature boundary condition. So, it is assumed that the surface is at some 

uniform temperature Tw, the heat flux may vary, heat transfer coefficient local may vary 

but the local surface temperature is at a unique uniform value. However it turns out that 

for other situations, say for a constant heat flux situation, we may still use the correlation. 

It will give you reasonably good results provided you define the heat transfer coefficient - 

the average heat transfer coefficient - as the average heat flux divided by the average 

temperature difference. Here is the correlation itself. 
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The correlation is provided in two ranges – one, Rayleigh number less than 10 raise to 9 

and the whole of the boundary layer tends to be a laminar boundary layer and another for 

Rayleigh number higher than 10 raise to 9 up to its range of applicability, limit of 

applicability which is a Rayleigh number of 10 raise to 12. In this zone, the boundary 

layer tends to be turbulent at least over a major part of the length of the plate. In either 

case, you will find that the average Nusselt number is related to the Rayleigh number as 

well as the Prandtl number and as you go to lower and lower Rayleigh numbers the heat 

transfer coefficient decreases significantly.  

 

Here you will notice that for low Rayleigh number the Nusselt number is somewhat 

proportional except for this constant to the fourth root of the Rayleigh number whereas 

for higher Rayleigh number you will notice that the Nusselt number is somewhat 

dependent on the cube root of the Rayleigh number. Although we have Rayleigh raise to 

one-sixth, here the whole bracket is squared up so there will be the major term, will be 

the Rayleigh number raise to 1 by 3 if you expand this bracket. Of course, the Prandtl 

number is also sitting there as well as in the Rayleigh number because we have seen that 

the Rayleigh number is nothing but Grashof number multiplied by Prandtl number. That 

combination comes up so often that it is convenient for us to define the Rayleigh number. 

After having looked at the correlation, now let us look at an illustrative example. 
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Let us solve a problem where we have a vertical plane. I will first show an isometric view 

of say height L .5 meters and width w of 1 meter; it is a vertical flat plate. Let us say that 

the plate temperature is maintained at a uniform 100 degrees C; maybe on the other side 

steam is condensing at aTmospheric pressure. It is exposed to air and the air temperature 

is 40 degrees C, pressure of air is1 aTmosphere. This air is stagnant so we have a situation 

of natural convection.  

 

We have to determine the average heat transfer coefficient by natural convection and we 

have to determine the heat transfer by natural convection. We will see while working out 

this problem that radiation may play a role because when a surface is exposed to a fluid 

and maybe there are other surfaces surrounding it. The second part of the problem - we 

will study the effect of radiation; also, we would like to know what is the heat transfer by 

radiation or what is the likely heat transfer by radiation and is it significant or 

insignificant compared to the heat transfer by natural convection. After having obtained 

the specification of the problem, it is time for us to draw a neat sketch. 
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We know that the width of the plate will not play a major role; height is .5 meter, width is 

1 meter, wider than the height and let us neglect any edge effects. So we will essentially 

consider a plate with a vertical extent L of .5meters. Let us say T wall is 100 degrees C; 

since we are going to consider radiation, we will also write the corresponding Kelvin 

temperature - this will be 373 K. It is exposed to air which is at 1 aTmosphere, T infinity 

is 40 degrees C which is 313 K. 

 

The first thing we have to do is to read off properties at the main film temperature; the 

main film temperature here Tm is wall temperature plus fluid temperature divided by 2 

which is 70 degrees C which turns out to be 343 K. So for air at 1 atmosphere and 70 

degrees C we will now read off from a table of properties. We need the kinematic 

viscosity which is 20.2 into10 raise to minus 6 meter square per second, Prandtl number 

is 0.694, thermal conductivity is 0.0297 Watt per meter Kelvin. We also need to 

determine beta required for computing the Grashof number or the Rayleigh number.   

 

We assume air to behave like an ideal gas; so a very good assumption at 1 atmosphere 

and 70 degrees C. Beta turns out to be equal to1over T temperature at which beta is to be 

determined; this would be now the mean film temperature in Kelvin and this turns out to 



be 1over 343, unit is of1over Kelvin. With all the properties computed, we will calculate 

the Grashof number. 
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Based on the vertical extent, L g beta delta T L cube by nu squared. We know L, we have 

determined beta and nu, we will use the value of gas 9.81 meter per second per second - 

the standard acceleration due to gravity, delta T is 100 minus 60 which is 40 degrees C. If 

you substitute these numbers, you will get the Grashof number to be equal to 3.714 

into10 raise to 8 and the Rayleigh number to be equal to Gr L into the Prandtl number. 

We have already read off the Prandtl number so the Rayleigh number turns out to be 

3.714 into 10 raise to 8. A small mistake - the Grashof number was 5.352.  

 

Now this Rayleigh number is less than 10 raise to 9; that means according to the 

Churchill and Chu correlation, this implies laminar flow. And we have to use the first of 

the two Churchill Chu relations; RaL is less than10 raise to 9 so we will be using this 

particular correlation. If we substitute into that using the Churchill Chu correlation, we 

will get the average Nusselt number based on L to be 701.9 which is defined as the 

average heat transfer coefficient into L divided by conductivity of air. We know length; 

we have read off the conductivity so only unknown is the average heat transfer 



coefficient and this gives us the average heat transfer coefficient to be 4.27 Watt per 

meter squared Kelvin. Notice the low value - not even 5 Watt per meter squared Kelvin.  

So the heat transfer by natural convection will be average heat transfer coefficient into 

the area of the plate multiplied by the temperature difference between the plate and the 

surroundings fluid. This is 4.27, area of the plate .5 meters by 1 meter height into width 

multiplied by temperature difference which is 60 degrees C and this gives us the natural 

convection heat flow rate to be 128.1 Watt so about 125-130 Watt.  

 

Now let us look at the radiation effect.  
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We will assume that the temperature of surrounding surfaces is the temperature of the 

fluid surrounding the plate, no different from that although in principle it could be 

different but let us assume that it is so. So this turns out to be 40 degrees C which is 313 

K, this is an assumption. Also we need the emissivity of the wall; let us assume the worst 

case. In the worst case let us assume that the wall is black so the emissivity is one. This 

also is assumed as a worst case; it can’t be higher than this.   

Now with these assumptions, our heat transfer by radiation will turn out to be the wall 

emissivity sigma which is the Stephen Boltzmann constant multiplied by area of the plate 



multiplied by the wall temperature raise to 4 minus the surrounding surface temperature 

raise to 4. We have assumed that to be T infinity so this gets T infinity raise to 4. We 

have assumed this to be one, this is 5.67 into 10 raise to minus 8 Watt per meter squared 

Kelvin raise to 4. Area is .5 into 1, temperature of the wall 100 degrees C - 373 Kelvin - 

raise to 4 minus 313 Kelvin raise to 4 and this gives us the heat transfer by radiation to be 

276.7 Watts. 

 

Notice that this is more than twice the heat transfer by natural convection; that means in 

natural convection processes radiation may play a very significant role. Now, here we 

have assumed that the emissivity is 1 as a worst case; we will notice that even if 

emissivity were less than 1; 1 means it is a properly blackened surface and its emissivity 

is that of a black body but a typical surface, metallic surface, non-polished, oxidized, a 

general surface which we come across which has not been treated would typically have 

an emissivity of around .5 - half of this. So even if the wall emissivity is .5 you will 

notice that the heat transfer by radiation will be around 138 Watt which would still be of 

the order of the heat transfer by the natural convection. And this means that in almost all 

natural convection situation, radiation plays an important role and may contribute 

significantly to the total heat transfer.  

 

Look at this particular case and in other illustrative examples also, we will return to that 

case.  
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We consider epsilon wall equal to 1. In that case, we had q natural convection to be 128 

Watt, q radiation to be 3276 Watt; the total turned out to be 404 Watts. Notice that in this 

case the radiative contribution was roughly two-thirds. Even with the wall epsilon equal 

to .5, the natural convection heat transfer would remain at 128 Watt. The radiative 

component would reduce to 130 Watt and the total heat transfer would then be 266 Watt. 

Even then, you will notice that the radiation plays at least a 50 percent role - this is one 

particular case. Depending on the situation, the natural convection heat transfer, this 

contribution may not be 50 percent or more than 50 percent but it will be a significant 

contribution. Whenever we solve problems in natural convection, we should keep in mind 

that radiation may play a role and take account of it.  


