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Lecture No. 20 
Forced Convection-3 

 

Welcome back to this third lecture on forced convection. Near the end of last lecture we 

had looked at some simple correlations for fully developed heat transfer during laminar 

flow in a circular tube, also correlations for heat transfer during thermally developing 

flow. Let us now take some illustrative examples; the first example we look at is this.  
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Let us say we have a tube, uniform smooth tube with internal diameter D of 1.5 

centimeters. Water flows through that tube at a rate of 50 kilogram per hour; the tube is 

heated uniformly at a uniform heat flux of 2000 watt per square meter at some location z. 

The mean bulk, mean temperature of water is 40 degrees C. We will assume that the 

velocity and temperature profiles are fully developed at this location and we have to 

determine what is the local heat transfer coefficient at z and we also have to determine 

what is the wall temperature at z.  
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First the fluid is water; the local bulk mean temperature is 40 degrees C so we have to 

determine properties of water at 40 degrees C. This turn out to be conductivity .634 watt 

per meter Kelvin, density of 992.2 kg per meter cube and kinematic viscosity of 0.659 

into 10 raise to minus 6 meter square per second. To determine Reynolds number we 

have to determine the mean velocity; this will be the flow rate divided by density divided 

by the flow area pi by 4 D squared. If you substitute the flow rate 50 divided by 3600 

kilograms per second density as determined, the diameter of .015 meter, you will get this 

velocity to be 0.0792 just about 8 centimeters per second. Next we determine the 

Reynolds number which is V bar in to D divided by nu and you will get this thing 

substituting the values of V bar D and nu to be 1803. This is less than 2000; or say 2300. 

Hence flow is laminar - this is the first step.   
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Now we have laminar flow, we have heat flux uniform, we have already assumed fully 

developed velocity and temperature profiles and hence we can use the result for the fully 

developed constant heat flux laminar flow situation in a circular tube which will give us 

the local Nusselt number out there as 4.364. The Nusselt number by definition is local 

heat transfer coefficient into the diameter D divided by the thermal conductivity k. So we 

know the Nusselt number, we already know the diameter; we have already determined 
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the thermal conductivity. So the local heat transfer coefficient turns out to be 184.4 watt 

per meter squared per Kelvin; that is the first conclusion.   

 

Now, the heat transfer coefficient itself is the heat flux; it is uniform so we don’t have to 

use the subscript z divided by the wall temperature at that location minus the mean 

temperature at that location. So we know the heat transfer coefficient, the wall heat flux 

is specified 2000 watt per meter squared, Tmz is specified 40 degrees C so only unknown 

in this equation is Twz and if you calculate that out, it turns out be 50.8degrees C. Now, 

let us look at some other problem - slightly different; let us modify the situation. 
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Let us say we have a very similar tube, in fact a very similar situation - same diameter, 

water flowing at 50 kg per hour. But let us say now that the wall temperature is 

maintained at 50.8 degrees C uniformly here as well as here and at some location z - 

actual location z - Tm happens to be 40 degrees C. Again assume fully developed velocity 

and temperature profiles and we have to determine the heat transfer coefficient at that 

location and the wall heat flux at that location.  
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Now, notice that compared to the previous problem, the diameter remains the same, the 

flow rate remains the same and the temperature at which the properties are to be 

determined also remains the same hence the Reynolds number also remains the same. So 

we have Reynolds number of 183 that means it is laminar flow and laminar flow plus T 

wall is some constant value gives us the situation where the local Nusselt number based 

on the diameter is 3.657 this will now be the nu hz into D by k. D and k are now different 

from the previous illustrative example.   

 

Nusselt number is lower hence our heat transfer coefficient will also be lower and that 

turns out be 1504.6 watt per meter squared Kelvin and the heat flux at the wall at that z is 

calculated as heat transfer coefficient into wall temperature at that location minus the 

mean temperature of the fluid at that location and this turns out to be 1669 watt per 

square meter. So notice that uniform heat flux boundary condition gave us a slightly 

higher heat transfer coefficient a uniform temperature boundary condition will give us a 

lower heat transfer coefficient and hence a lower heat flux 

 

Again I would like to bring your attention to this assumption that it is a fully developed 

velocity and temperature profile in this case as well as in the earlier case. Suppose the 

velocity or in particular the temperature profile was not fully developed then what will 

happen? Remember that in the thermal entry length, the heat transfer coefficients are 

higher than in the fully developed situation hence under the assumption of fully 

developed velocity temperature profile, we have obtained perhaps the lowest possible 

heat transfer coefficient in either the first case or the second case.  

 

Hence, in the case we have obtained because the heat transfer coefficient was perhaps the 

lowest and estimate for the highest possible temperature of the wall if the heat coefficient 

were higher that would be lower than the value of computed and in the second case we 

have determined perhaps a lowest possible value for the heat flux because during the 

development region thermal entry length the heat transfer coefficient will be higher and 

hence the heat flux will also be higher. 
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So, remember that the fully developed situation acts as a limiting situation for the entry 

length problem. Now let us look at a third problem 
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Again we have the same tube and a similar flow situation - water flows at a rate of 50 kg 

per hour through a tube of diameter 1.5 centimeter. The inlet temperature of water Tmi is 

30 degrees Centigrade, the length of the tube is 1 meter. We have a fixed length of tube; 

the wall of the tube is maintained at a uniform temperature of 70 degrees C. Because the 

wall is at a higher temperature than the inlet temperature of water, water will get heated 

up and the exit temperature will be somewhere between 30 and 70 degrees C. Our 

problem is to determine what is the mean bulk temperature at the exit. 

 

Now this is a problem where we will have to consider the average heat transfer 

coefficient over this length and relate the answer to that. Now for determining the 

average heat transfer coefficient over the length we will have to use properties at the bulk 

mean temperature; that is the inlet temperature plus the exit temperature by 2 that would 

be the bulk mean temperature. Now the exit temperature is not known so we will have to 

estimate the bulk mean temperature to start with; later on we will check this estimate.  
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See the exit temperature will never exceed 70. Depending on the length whether it is 

short or long - if it is too short, it will be near 35-40, if it is long it will be 60-65. Let us 

assume just as a guess that let the exit temperature be 50; we are not estimating directly 

the exit temperature but suppose it were 50 then the bulk mean temperature for property 

evaluation would be 40 degrees C. 

 

We have, we already have listed with us properties at 40 degrees C so that is a good 

assumption to start. So let us assume that T mean bulk is 40 degrees C; for property 

evaluation again, I will list out the properties for water rho 992.2 kg per meter q, k 0.634 

watt per meter Kelvin, nu 0.659 into 10 raise to minus 6 meter square per second, Prandtl 

number equal to 4.31 that is dimension less, Cp equals 4174 joules per kilogram Kelvin.  

We have the same flow rate, same diameter, same properties, so the Reynolds number 

turns out to be 1803 which implies that the flow is laminar. Now we have to begin 

heating from z equal to 0 so this is a thermal entry length situation. Let us calculate the 

dimensionless value of z. z star we know is z by D divided by ReD in to Prandtl number; 

the total length in this case z would be equal to L, 1 meter divided by 0.015 meter divided 

by Reynolds number 1803 into Prandtl number 4.31 - this turns out to be 0.00858. 

 

Now, we look at the correlations which we saw yesterday for thermal entry length. We 

notice that this particular value of z star, it is marked within the range of the correlation; 

it is not large and beyond the correlation where we will say that look it is almost fully 

developed. 
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So, we will have to use the appropriate correlation. Since it is laminar and it is a situation 

of constant wall temperature, we have this correlation. This is the average Nusselt 

number; over the length L which is represented by z star is 1.615 z star raised to minus 1 

by 3 - this turns out to be7.889. If it were fully developed this would be 3.634 so this is 

significantly higher than that, not quite twice but definitely more. Why more than twice? 

Now this Nusselt number is nothing but the mean heat transfer coefficient or the average 

heat transfer coefficient over that length multiplied by D divided by k. We know the 

diameter, we know the conductivity so h bar turns out to be 3303.4 watt per meter 

squared Kelvin. Notice that this is higher than what we obtained for the fully developed 

situation. 

 

Now, we know the area of the tube pi into D into L; everything is known. We now know 

the average heat transfer coefficient so we should be able determine the heat flow rate 

from the wall to the fluid because heat flow rate from the wall to the fluid would be heat 

transfer coefficient into area into temperature difference between the wall and fluid. 

However because it is a constant heat flux, constant wall temperature situation, we have a 

uniform wall temperature; this is the, say the length, this is 70 degrees C. The fluid enters 

at 30 degrees C, it will heat apply like this, not in a straight line but in a curvilinear 
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fashion initially it will heat up fast then it will heat up slow. Consequently it is not easy to 

directly write an expression for the mean temperature difference between the wall and the 

fluid because it varies from point to point. Let us do the following exercise to determine 

the mean temperature difference. 
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Let us say that this is the tube, this is, this is the inlet section, this is the exit section. This 

is z equal to 0 where the temperature is Tmi; this is the exit section temperature Tme. z 

equals L, z increases like this. Let us take a small slice and consider it as a control 

volume. In this control volume thickness delta z so one wall is at z, another wall is at z 

plus delta z. We will now apply to this the first law of thermodynamics. Flow takes place 

at a rate of m dot so the heat absorbed must equal the outflow of enthalpy.  

 

How much is the heat transfer from the wall to the fluid? That will be the mean heat 

transfer coefficient; once having calculated the mean heat transfer coefficient, we assume 

that that is the heat transfer coefficient applicable everywhere. Multiplied by the area of 

heat transfer in this slice, that will be pi D delta z multiplied by the local temperature 

difference that is the wall temperature. We need not use the subscript z minus the local 

mean temperature Tm or Tm at z and this should equal m dot into enthalpy out minus 
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enthalpy in and that would be equal to m dot into Cp of the fluid into Tm at z plus delta z 

minus Tm at z. Transposing terms notice that this can be written down as dT mz; we will 

get dT mz divided by T wall minus Tm z equal to h bar pi D delta z divided m dot Cp - 

this delta z can be considered a small slice dz. Now we integrate either side from z equal 

to 0 to L. 
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The resulting equation is - Log of Tm exit minus T wall divided by Tm inlet minus T wall 

equals minus h bar pi DL divided by m dot Cp. Now, notice that in this expression, we 

have the values of everything except Tme; wall temperature is known, inlet temperature of 

the fluid is known, heat transfer coefficient has been calculated DL, m dot are specified, 

Cp has been determined. So if you substitute you will get ln Tme minus wall temperature 

of 70, 30 minus 70 will be equal to minus h bar that was 334 multiplied by pi multiplied 

by .015 multiplied by L that is 1 meter m dot which is 50 divided by 3600 kg per second 

multiplied by Cp which is 4174.  

 

Solving this for Tme notice that the right hand side is negative and that means this 

argument of the logarithm will be a number less than 1 and that means the numerator will 

be smaller in magnitude than the denominator. The denominator has a magnitude 40 so 
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the numerator will have a magnitude less than 40 so Tme will be higher than 30; it will be 

somewhere on the side of 70, higher than but lower than 70. And if you calculate Tme that 

turns out be 53.8 degree C. 

 

Now, we started off by having assumed the bulk mean temperature; we needed that 

assumption to determine the properties. We had assumed 40 degrees C; let us check that 

assumption. The bulk mean temperature now turns out to be inlet bulk temperature plus 

exit bulk temperature by 2; average of inlet and exit - this turns out to be 41.9 degrees C, 

we had assumed 40 degrees C. It is different - higher by about 2 degrees C properties; 

will be slightly different. If insists one can now recalculate the properties at say  41.9 

degrees C go through the same exercise and maybe you will get a slightly improved value 

of Tme. 

  

If this assumption were to differ from this calculated value by very significant amount 

say 10 degree, 15 degree then it is definitely worth redoing the calculation with the new 

corrected value of the bulk mean temperature because the properties would change 

reasonably significantly. With a temperature difference of about 2 degrees C they are 

unlikely to change but anyway it may be a good exercise for you to check that out. After 

having studied laminar flow through a tube, let us now look at turbulent flow heat 

transfer in a tube or a pipe - circular one. 
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Unlike laminar flow because of the eddies form during turbulence and turbulent mixing, 

turbulent flow is invariably difficult to analyze; much more difficult than laminar flow 

and hence we obtain information for turbulent flow essentially from experiments and all 

the correlations or almost all correlations which we have for turbulent flow are based on 

experimental data. In a way turbulent flow is slightly simpler because in turbulent flow 

the effect of the boundary conditions are small.  

 

We notice that for fully developed boundary condition in laminar, fully developed 

profiles in laminar flow, we had significantly different values of the Nusselt number 

depending on whether the boundary condition is that of uniform heat flux or the boundary 

condition is that of uniform wall temperature. In turbulent flow, because of the mixing of 

all lamina these differences reduces significantly.   

 

You will hardly ever find a correlation in turbulent flow specifically for say uniform wall 

temperature boundary condition or specifically for uniform wall heat flux boundary 

condition; almost always a single correlation is applicable to both. Again, because of 

turbulent mixing, the effect of the entry length is small during turbulent flow; laminar 

entry lengths tend to be larger, they tend to increase with Reynolds number. Turbulent 
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entry lengths are usually smaller and they do not have a significant effect of Reynolds 

number on them.  
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For turbulent flow, heat transfer in a pipe, perhaps the famous historically important is 

the celebrated Dittus Boelter correlation more than 75 years old but it is still being used 

because it is simple, straight forward and works reasonably well. The Dittus Boelter 

correlation provides the local heat transfer coefficient under fully developed conditions 

and the equation is reasonably simple. The Nusselt number is a function of Reynolds 

number and Prandtl number and is equal to.023 into Reynolds number raise to .8 Prandtl 

number raise to some exponent n where the exponent n is .4 for heating and .3 for cooling 

so heating data correlates well with n equal to .4, cooling data correlates well with n 

equal to .3. 

 

For this correlation we will have to determine properties which are evaluated at local bulk 

mean temperature to determine the local heat transfer coefficient. But if you are 

considering an average heat transfer coefficient over a length, you must use the bulk 

mean temperature over that length. It is reasonably wide in its validity - Prandtl number 

going from .3 right up to 100 - so water is included, air is included and some not very 
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high viscosity oils are also included. And Reynolds number in the turbulent zone from 

2300 to something like 100 and 20000. Of course, the Dittus Boelter correlation is pretty 

old; we are attracted to it because of its simplicity. 
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The current recommendation for the most suitable correlation is the Gnielinsky 

correlation; it is also about 25-30 years old. Notice that here the Nusselt number is 

provided as a function of not only the Reynolds number and the Prandtl number but also 

the friction factor for flow through that tube and the friction factor itself will have a 

dependents on Reynolds number so it has reasonably complicated dependents on 

Reynolds number as well as Prandtl number. This also provides the local value of the 

heat transfer coefficient when the velocity and temperature profiles are fully developed.  

Again like the Dittus Boelter correlation, the properties are evaluated at the local bulk 

mean temperature. It has a slightly wider validity - Prandtl number going from .5 to 2000 

- so some reasonably high viscosity oils are also included. The Reynolds number going 

from 2300 to 5 million - this also is a higher range. Depending on the smoothness or the 

roughness of the pipe, this can be applied by using appropriate correlation for f; for the 

smooth pipe, you use a correlation for f which pertains to smooth pipe. For rough pipe the 
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effect of epsilon by D or e by D can be included using the Chen’s correlation. So the 

effect of smoothness or roughness of the pipe is included through the effect on f. 

 

Let us take an illustrative example based on the Gnielinsky correlation.  
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You are now going to look at the same old pipe with which we were playing around. We 

have a tube of some length L which we are going to determine here. It is given that the 

diameter is 1.5 centimeter, the wall temperature is maintained everywhere at 90 degrees 

C. The inlet temperature is 50 degrees C; we want the exit temperature to be 65 degrees 

C. So this is a design problem where we are not given the length of the pipe; we are given 

the requirement that the exit temperature should be 65 degrees C and we have to 

determine the length of the pipe. 

 

The fluid flowing through this is water and the velocity is 1 meter per second at inlet. 

One thing is straight forward here; we know the inlet temperature, we know the outlet 

temperature. We have to determine the overall length so we are talking of a situation 

where we will have to determine the average heat transfer coefficient.  
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We know the inlet temperature and outlet temperature so we can determine the bulk mean 

temperature 50 plus 65 by 2 which is 57.5 degrees C and at this for water, the following 

properties will be interpolated out. So at 57.5 degrees C the properties of water are 

density 984.4 kg per meter cube, kinematic viscosity .497 into 10 raise to minus 6 meter 

square per second, Cp 4178 joule per kilogram Kelvin, Prandtl number 3.12, conductivity 

.656 watt per meter Kelvin. Now we need to know the velocity at the bulk mean 

temperature where the density is 984.4, what is specified is velocity at inlet. So we need 

to determine at inlet, density will, density at 50 degrees C and this turns out to be 988.1 

kg per meter cube.  

 

Using this density and the velocity at inlet, let me call this V bar. We get m dot is rho at 

50 degrees C multiplied by pi D squared by 4, area multiplied by the mean velocity at 

inlet - this turns out to be 0.1746 kilogram per second and based on this if we calculate 

velocity at the bulk mean properties that is at a density of9eighty 4.4 this will turn out to 

be m dot which is calculated divided pi by 4 D squared in to rho where rho is9eighty 4.4  

We will get a slightly higher velocity which is 1.0038 meters per second, it is this 

velocity which determine the mean properties that we will be using to determine the 

Reynolds number. 
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The Reynolds number is now calculated as V bar D by nu that turns out to be 30295 

which is well in the turbulent zone. Prandtl number is already greater than .5 so in 

principle the Gnielinsky correlation should be applicable. For that, first we have to 

determine the friction factor assuming the tube to be smooth; there is no specification of 

any roughness. We will use the smooth tube correlation .079 ReD raise to .25 which is the 

recommended correlation for smooth tubes to be used with the Gnielinsky correlation; we 

will get .00598.  

 

If you use the Gnielinsky correlation you will get the Nusselt number which because we 

have determined it at average properties, the average Nusselt number which turns out be 

152.98 which is h bar D by k from which we get h bar equal to 6690.3 watt per meter 

squared Kelvin, see the high value a few thousands for this. Now we have our relation for 

a uniform wall temperature situation - log of Tme minus T wall divided Tmi minus T wall 

equal to minus h bar pi DL by m dot Cp. 

 

Now we have been specified Tme, Tmi, Tw; left hand is known, we have determined h bar, 

we know D and L, we know D, we know m dot, we have determined Cp, L happens to be 

the unknowns. So solving this equation for L, we get L to be 1.088 meters nearly 1.9 

centimeter. Remember that for the average, the local heat transfer coefficient to be used 

for the average value, we need L by D to be greater than 60.  

 

If we determine L by D, this turns out to be 1.088 divided by 0.015. This turns out to be 

something like 72.5 which is greater than 60; hence h bar is a good estimate that means 

the effect of entry length is small. With this we come to the end of this lecture and with 

this we complete the basic study of a forced convection heat transfer through a tube. In 

the next lecture we begin a study of heat transfer from a flat plate exposed to a free 

stream.  


