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Forced Convection - 2 

 

Welcome back to the second lecture in forced convection.  

 

(Refer Slide Time: 01:13) 

 
 

Near the end for the previous lecture, we were about to study heat transfer to a fluid 

flowing in a tube and we said we would look at the constant temperature boundary 

condition and the constant heat flux boundary condition on the wall.  
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We had sketched briefly what was expected in the 2 cases; now let us look at the 

phenomenon and exactly what happens in some detail.  

 

(Refer Slide Time: 01:43)  

 
 

First let us consider the situation of constant temperature at the valve; let me sketch a 

tube and let us say - of course I should also show a centerline - the wall is maintained at 

Tw, some fixed value. And let us say that the fluid enters at some uniform temperature 
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Tfi; let me say this is the temperature profile at the inlet Tfi. Since the wall temperature is 

higher than this let us say the wall temperature is represented by Tw. Now we are going 

to study what happens as the fluid gets heated.  

 

Let us draw a few sections. If there were no heating the temperature profile would remain 

what it was - equal to Tfi. Suppose the wall were insulated, this would have been the 

temperature profile but the wall is not insulated, it is a temperature higher than the fluid 

inlet temperature. So there will be some heat transfer from the wall to the fluid, heat 

transfer will continue as the fluid flows.   

 

After a short distance, the fluid layer near the wall would have reached the wall 

temperature but the effect of the wall temperature would not have penetrated significantly 

into the fluid. The wall temperature here, the fluid temperature over much of the cross 

section would remain equal to Tfi. After some more distance, a larger layer near the wall 

would have been affected by the hot wall and we will get a profile perhaps something like 

this. The flat region here - temperature continues to be almost equal to Tfi - would have 

narrowed down.  

 

After some distance may be the effect could have been complete all over the diameter of 

the tube, may be just at the center the lamina would remain at a temperature of Tfi. 

Beyond that the even this layer would get heated; we will get a profile like this and still 

further down if this is the wall temperature it would come much nearer the wall 

temperature. So the profile which was initially flat would go on developing, the flatness 

in the middle would reduce, wall effect will increase and then after some distance - after 

long distance - everything would tend to come to Tw; the effect of Ti would almost be 

lost.  

 

Let us plot some parameter against distance from entry Z; let me first plot Twall which is 

easy to plot - Twall is constant. Let us plot the fluid temperature; we assume that at the 

inlet it was lower than the wall temperature. So this is Tfi and as fluid gets heated up the 

mean temperature of the fluid, it would go on increasing after a large length, it would 
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come almost equal to Tw but over a finite length it will increase but never really reach 

Tw. So this is the fluid temperature, mean temperature of the fluid, as it gets heated up.  

 

If we calculate the heat transfer coefficient notice that initially the gradient near the wall 

will be large, it will go on reducing as we proceed. Similarly the temperature difference 

between the wall - the mean temperature of the fluid will go on also reducing. Initially it 

would be almost equal to Tw minus Tfi later on it would be a small fraction of that. 

Combining these 2 it turns out that the heat transfer coefficient, only I should use a 

different color for that starts off as large values and then becomes almost constant after 

some distance.  

 

This particular zone where the heat transfer coefficient is a function of z is known as the 

thermal entrance region and this is, this z is known as the thermal entry length. Beyond 

that although the temperature of the fluid keeps on increasing the heat transfer coefficient 

doesn’t significantly change. So from this point onwards is a zone of fully developed 

temperature profile.  

 

We will look at what is exactly meant by a fully developed temperature profile slightly 

later; we will define it properly. Now after looking at a situation where we have constant 

temperature at the wall, let us look at the other situation where we have a constant heat 

flux at the wall.  
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Again let me sketch a tube but now on the wall we have imposed all over right from the 

beginning, a uniform heat flux all over the circumference; this is the center line. Let us 

again say that the temperature profile at the entry is flat and is given by Tfi and now again 

let us plot and look at the temperature profile as it develops. If there were no heat flux, 

the temperature everywhere would equal Tfi but now there is a heat flux so the fluid gets 

heated up and first the lamina of the fluid near the wall would get heated up. 

 

So, we will have a profile something like this. Notice that the heat flux at the wall would 

dictate the temperature gradient at the wall Dt by Dr because k into Dt by Dr would be 

equal to heat flux in magnitude by Fourier’s law. So after some distance we will have a 

flat profile in the center and rising to the wall this would now be wall temperature at this 

location. As we progress, more and more lamina will get heated and we will have a 

temperature profile like this.   

 

The gradient at the wall will remain the same; the center position portion which would be 

unaffected more or less would remain flat but that would narrow down; T wall would 

naturally be higher now. You will reach a stage where perhaps the penetration of the wall 

effect is through and through. The wall temperature here would still be higher and after 
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that the gradient at the wall will remain the same but even the center temperature would 

go on increasing. So we notice that the wall temperature increases along the length in the 

direction of flow.  

 

Again let us sketch the fluid temperature profile, the wall temperature profile and the heat 

transfer coefficient qualitatively. Now notice that we have a constant heat flux from the 

wall so over a given length a fixed amount of heat is being added and by using the first 

law you will be able to determine that over fixed lengths, the temperature would rise by 

fixed amount or in mathematical terms, the fluid, mean fluid temperature would increase 

linearly from the inlet along the length of the tube.  

 

So, let me plot that; let me emphasize it is linear by strictly drawing it linear. So this is Tfi 

and this is Tf as a function of z. What happens to the wall temperature? Notice that 

initially the wall temperature would be near the fluid inlet temperature so the wall 

temperature would also start from here, it would increase and then after sometime it 

would keep on increasing but parallel to this and after some distance it will become 

parallel to this. The gradient at the wall is fixed; even the temperature difference between 

the wall temperature and the mean fluid temperature would be constant.  

 

You will notice that the wall temperature goes on increasing faster than the fluid 

temperature up to a certain distance, beyond that the temperature difference between the 

wall and the fluid will remain constant. This is the temperature difference this is T wall 

minus T fluid. What happens to the heat transfer coefficient? The heat flux is constant so 

the heat transfer coefficient is inversely proportional to this temperature difference 

between the wall and the fluid.  

 

In this zone where the temperature difference doesn’t change the heat transfer coefficient 

plotted as a function z would be a uniform value whereas here it will start decreasing 

from very high values because here the temperature difference is pretty small but the heat 

flux is uniform. So you start with high values of heat transfer coefficient; as the fluid 

continues to flow it reduces and then remains constant. Again the zone here is the thermal 



 7 

entry length and the zone from this point onwards is the zone of fully developed 

temperature profile.  

 

Now we have qualitatively mentioned a fully developed temperature profile in this case 

as well as in the earlier constant wall temperature case. It is time for us now to look at a 

quantitative definition of the fully developed temperature profile.  

 

(Refer Slide Time: 17:27)  

 
 

This is a mathematical definition and what it says is this – take a ratio of temperature 

differences 1 at any location z; take the temperature at the wall, subtract from that the 

temperature at the center that is in the denominator. In the numerator, you have 

temperature at some radius r, subtract from that the temperature at the center. So here we 

have the temperature at some r measured with respect to the center temperature. Here is 

the wall temperature measured with respect to the center temperature. You take the ratio 

of these 2 since this temperature is a function of r as well of that of z. In general, this 

could be a function of both r as well as z however we say that if this ratio happens to be a 

function only of r, then we have a fully developed temperature profile.  
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What is the physical significance of the fully developed temperature profile? We know 

that in case of the constant heat flux case, the temperature profile maintains its shape but 

keeps on shifting to higher and higher values. In the case of the uniform wall temperature 

case, we have a temperature profile which sort of asymptotically approaches the flat 

temperature profile but when it is fully developed the physical significance is that the 

shape of the temperature profile - the qualitative shape - does not change along the flow 

length that is along z. And the second one is what we have already seen is that the value 

of the local heat transfer coefficient also does not change with z; this is more important 

for us.  

 

Now with this background, let us solve the governing equations of force convection for 

the case of a fully developed temperature profile, fully developed velocity profile and 

laminar flow. Now, if we have a fully developed velocity profile in laminar flow, we 

know what the velocity profile is; that is a standard problem all of us have solved in fluid 

mechanics.  

 

(Refer Slide Time: 20:22) 

 
 

Now we have constant heat flux and this indicates that the mean temperature of the fluid 

will go on increasing linearly with z which is the distance along the flow. So we can say 
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that the temperature in the fully developed case would be some constant into z plus some 

function of r and we can even determine this constant; this is related to the heat flux on 

the wall, also to the mass flow rate of the fluid and it is CP.  

 

Using this that it varies linearly with z and has a component which is an additive 

component which is a function of r, the energy equation reduces to this equation. This C1 

exists here and the Vz component of the velocity also enters the equation. And since we 

know from our fluid mechanic study that Vz in case of fully developed laminar flow is 

Vmax into 1 minus r squared by r square, I think this is an equation all of us know. We 

have an equation, a differential equation for temperature in terms of r containing the 

radius constant C1 which is related to the heat flux alpha and the radius also, the radius of 

the tube. This is a second order ordinary differential equation so we will need 2 boundary 

conditions. The 2 boundary conditions for this tube with a constant heat flux r as follows.  

 

(Refer Slide Time: 22:36)  

 
 

One is at the center length; we have seen that whenever the flow is fully developed or 

even otherwise the temperature profile is symmetric with respect to r equal to 0 and we 

use that fact to create a boundary condition at r equal to 0. That is the centerline of the 
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tube which is dT by dr at r equal to 0 if 0. So the temperature profile at the center is 

locally flat that is what it means.  

 

The Fourier’s law gives us the condition for the temperature profile at the wall. If this is 

the temperature profile at the wall, there is a heat flux; specify q by Aw - it is in the 

negative r direction. So by Fourier’s law, conductivity into temperature gradient at the 

wall would equal the heat flux from the wall into the fluid because of the heat flux in the 

negative r direction; the negative sign in the Fourier’s law is taken care off. So this gives 

us the temperature profile, sorry, the boundary condition at the wall.  

 

So, we have a second order ordinary differential equation and 2 boundary conditions - 

one at r equal to 0 and one at r equal to r - and these two we can use to obtain a solution. 

The general solution is - I will close this for the time being – so that this solution is clear. 

 

(Refer Slide Time: 24:31)  

 
 

Notice that it depends on the heat flux; there is a term which says part of the temperature 

is linearly increasing with z. So this is the C1 into z term, this is the effect of the radius r 

so this is that f of r which we talked about earlier. You will notice that since alpha equals 

k by rho CP the term containing z does not really depend on k because alpha also contains 
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a k in it. So this term will be independent of the conductivity but it will depend on CP; it 

will depend on Vmax whereas the second term which is a function of r does not depend on 

Vmax. This Vmax cancels out, alpha also cancels out so it does not depend on Vmax. So it 

does not depend on the low rate, it does not depend on alpha, so it does not depend on rho 

or CP but it will depend on k. So we have one term which is proportional to z, which 

depends on Vmax and CP and we have another term which is a function only of r which 

does not depend on the rho CP Vmax it depends only on k.  

 

Now this is a general solution for temperature as a function of z and as a function of r but 

what we are really interested in is to determine the heat transfer coefficient and the heat 

transfer coefficient is the heat flux at the wall divided by the temperature difference 

between wall and the mean temperature of the fluid. So we have now determined Tw and 

Tm from this expression; now naturally Tw would be a function of z. Tm would be 

function of z but in the fully developed temperature profile case we have seen that we 

expect Tw minus Tm to be independent of z.   

 

The wall temperature can be obtained by substituting for the radius small r the value of 

the radius of the tube, inner radius of the tube. So you put small r equal to capital R and 

you get temperature at the wall; if you do that you will get the temperature at the wall in 

this form. Again you will notice there is a term containing z and that is a term containing 

capital R; small r does not have a place here because we are evaluating this at small r 

equal to capital R. So this is the variation with z and this is the local variation with 

respect to r.   

 

Now, we have to determine the mean temperature of the flow rate and here we have to be 

careful. The mean temperature is determined using this definition and let us look at what 

this definition means. 
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Notice in the numerator - the numerator is CpT which is a representation of the enthalpy 

into rho Vz into pi; rdr is a area element. So rho Vz into pi rdr is the mass flow rate 

flowing through a small radial annulus at r width dr. So this is something like m dot into 

enthalpy so this is the actual enthalpy outflow at that particular cross section whereas if 

you multiply the denominator with the left hand side it indicates now that Tm is the mean 

temperature at which we can say that the enthalpy outflow occurs. So m dot into Cp into 

Tm would represent the actual enthalpy outflow because this is the actual enthalpy 

outflow and this is the mean temperature which represents that.  

 

Now, this is the expression to explain what a mean temperature is; we have a constant 

property situation and in this situation this simplifies. Cp is constant so it comes out of 

the integral sign in the numerator and denominator gets canceled out; density is also 

assumed constant so that also gets canceled out, also 2 pi is a common factor in the 

numerator and denominator. So the mean temperature - the final expression - turns out to 

be integral from 0 to capital R T Vz rdr divided by integral 0 2 capital R Vz rdr.  

 

Now, we have for this temperature which is a function of r and Vz which is a function of 

r expressions; Vz is nothing but Vmax into 1 minus r square by r square and for the 
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temperature, we substitute this equation where the temperature is again a function of r. 

When you do that you will get an expression for Tm which looks like this.  

 

(Refer Slide Time: 30:58)  

 
 

In characteristics, it is very similar to the expression for the wall temperature. Let me get 

the expression for the wall temperature; expression for the wall temperature is here. So 

this is the wall temperature expression here; this is the mean temperature expression.   

 

(Refer Slide Time: 31:33) 
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Notice that the first term which contains z is the same because this increases linearly with 

z. This also increases linearly with z and slope is the same; the coefficient of z would be 

the slow rate of rise of temperature. This C3 also is a common term, the difference exists 

only in these 2 terms so when you subtract from the wall temperature the mean 

temperature we will get an expression which we substitute in the heat transfer coefficient 

definition to get the heat transfer which is by definition the heat flux at the wall divided 

by wall temperature minus the mean temperature to be equal to 24 k by R.  

 

Notice that there is no effect of z; C3 also drops out from Tw minus Tn, there is a 

common factor q by A at the wall. So, all that remains is some number and conductivity 

and the radius. We have said earlier that we would like to express the heat transfer 

coefficient in the form of the dimensionless number and hence if we calculate the Nusselt 

number in this case which is h into diameter. For Nusselt number, the typical 

characteristic length used is the diameter divided by k so Nusselt number based on 

diameter equals hD by k - that turns out to be 48 by 11 which numerically is 4.364.   

 

So, if you have a circular tube with constant heat flux the fluid is assumed to have 

uniform properties, the flow is laminar and when the temperature profile as well as the 

velocity profile is fully developed the Nusselt number is 4.364. Whenever you remember 

this, you should also remember the conditions under which it is valid. The conditions for 

this are laminar flow, constant properties and fully developed V and T profiles. This is 

where the problem which we started to solve - determine the Nusselt number for fully 

developed flow, laminar, uniform heat flux – ends.  

 

Let us look at the constant wall temperature case; in this case an analytical solution can 

be obtained but the algebra in calculus is not as simple and straightforward as that for a 

constant wall temperature case. If you look up some advanced on convective heat transfer 

you will find this derivation there. All that we need to note is the result and notice that the 

result is similar to that for constant wall temperature case, constant heat flux case. There 

the Nusselt number was 4.364; now we have a lower Nusselt number 3.657. 
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Again notice that this is for a circular tube in which the flow is laminar. Fully developed 

fluid can be assumed to have constant properties and the wall temperature is constant. By 

fully developed we mean both fully developed velocity profile as well as fully developed 

temperature profile.  

 

(Refer Slide Time: 36:06)  
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Now let us go back; we said that when we had a developing temperature profile if you 

plot the Nusselt number which is proportional to the heat transfer coefficient along z, you 

will see there is a thermal entry length in which the heat transfer coefficient will reduce 

and beyond that it will essentially remain constant. We have obtained solution in this 

zone; what happens in this zone in the zone of thermal entry zone.  

 

Let us look at the solutions which have been obtained in thermal entrance region; it is 

assumed that the velocity profile is fully developed so before the heating begins either at 

a uniform heat flux or at a uniform wall temperature, the fluid has travelled through the 

tube for some distance and the velocity profile is already fully developed. Then the 

temperature profile starts developing so we have a situation of thermal entrance zone and 

in this case it has been shown that the average Nusselt number over length z.    

 

(Refer Slide Time: 37:43)  

 
 

See if this is the local Nusselt number, what we want to know is - say over this length - 

what is the average Nusselt number? Then over this length, what is the average Nusselt 

number? The average Nusselt number will go on changing till the end of the thermal 

entry zone. It will go on changing for sometime in this region but beyond that the effect 
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of the thermal entry length will be too small for us to worry about this zone of higher 

Nusselt numbers.   

 

So, it turns out that both the average Nusselt number over a length z from the beginning 

of heating or even the local Nusselt number at a given z is a function of the dimensionless 

axial distance. See, in the fully developed zone, we notice that it is not function of 

anything; it is a constant but in the thermal entry region it is a function of the distance but 

the distance as represented by a dimensionless axial distance called z star. And that is 

nothing but z divided by D which itself is a dimensionless number being a ratio of 2 

lengths divided by Reynolds number based on diameter and Prandtl number.  

 

Let us look at the solutions which can be put in terms of this correlations; we have 

correlations for the constant wall heat flux case and then we have correlations for the 

constant wall temperature case. 

 

(Refer Slide Time: 39:54)  

 
 

There are 2 zones of z where we have 2 different forms of the correlation but you should 

notice the following. The average Nusselt number based on diameter over the length z 

from the beginning of thermal entry to some location z is a function only of z star which 
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is z divided by D divided by Reynolds number into Prandtl number. Whichever thing you 

look for - z less than point z star, less than .3 or greater than .03 - the average Nusselt 

number keeps on decreasing with z star. So as you go along the length, the average 

Nusselt number will go down and down but it will not reduce to 0.   

 

Notice that as z star becomes larger and larger this Nusselt number for constant wall heat 

flux merges or approaches the fully developed value of the Nusselt number. The value of 

the Nusselt number for the fully developed temperature profile in case of constant wall 

temperature again we have a similar set of results. Here also we will find that the Nusselt 

number keeps on reducing with z star.  

 

Let us say common characteristic again as z star becomes larger and larger; the Nusselt 

number - the average Nusselt number, average Nusselt number - over that large length 

will keep on approaching or will asymptotically approach the average Nusselt number the 

local Nusselt number for the fully developed temperature profile under that constant wall 

temperature case. You will notice that for a given a value of z star, that is at for a given 

situation, for a given length, the average Nusselt number and hence the average heat 

transfer coefficient which is obtained in case of a constant wall heat flux situation will 

always be higher than that obtained in a constant wall temperature case.  

 

After sometime we will solve an illustrative example based on these correlations. Now 

apart from these correlations which give you average Nusselt number over a thermal 

entry length. 
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There are textbooks and handbooks and compilations which provide correlations for the 

following. The local average Nusselt number - we have seen that; we looked for the 

average Nusselt number over z but a correlation for the local Nusselt number as function 

of z are also available. Then we notice that after certain distance, the local Nusselt 

number does not really change with z star. So this is the value of z star at which the 

thermal entry zone ends and we have correlations available for thermal entry lengths also.   

Now these correlations which we looked at are for a situation where the velocity profile 

is fully developed but the temperature profile is developing and we said that this means 

that before heating begins - heating of any kind begins - there is a length of tube through 

which the fluid has been flowing. So the velocity profile is fully developed but it is also 

possible that the fluid enters a tube with a flat velocity profile say from a stagnation 

chamber and almost immediately starts getting heated so in that case we have a 

developing temperature profile simultaneously with a developing velocity profile. So this 

is a situation where we have simultaneous development of temperature profile and 

velocity profile; so both of them develop simultaneously and correlations are available 

slightly more complex in books than the average correlation average Nusselt number 

correlations but we will find these correlations in textbooks.  
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For design of heat exchange equipment usually we will need the average Nusselt 

numbers. That is why I have exposed you to the average Nusselt number correlation; if 

you really want to study local effects you must look at correlations for local heat transfer 

coefficients. Now it is time to solve some problems but before solving problems 

remember that as preliminary. 

  

(Refer Slide Time: 45:58)  

 
 

We have to do the following. We have looked at correlation for laminar flow; later we 

will look at correlations for turbulent flow. So we have to check using Reynolds number 

whether the flow is laminar or not; if it is not laminar it will be turbulent and a different 

set of correlations will have to be used. So this laminar turbulent thing we will have to 

resolve. Second - actual flow it is like water and air have their properties which are may 

be minor, may be major functions of temperature. So our constant property data or 

constant property correlations are not exactly applicable but they work very well when 

properties are evaluated at a proper reference temperature.  

 

For example, if there is a fluid flowing in a tube; Tmi is the mean temperature at the inlet, 

Tme is the mean temperature at the exit. Quite often the properties are evaluated at the 

mean bulk temperature which is the arithmetic average of inlet and exit temperature. This 
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temperature is used for evaluation of properties; this is what is usually done. However, 

the authors of the correlation may specify a different temperature for property evaluation. 

It may be a modification of this or emetic mean bulk temperature, wall temperature, take 

the average of that.   

 

So, whenever you look at a correlation in a book or handbook, read around. Find out the 

conditions under which it is applicable and the mean temperature at which properties are 

to be evaluated. We stop here today. In the next lecture, before going to be turbulent 

flow, we will solve some problems using the information and correlations which we have 

studied so far.  


