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Forced Convection-1 
 

Welcome. We now begin our study of forced convection which is the next topic. Perhaps, 

as you already know, forced convection is the presence of fluid flow along with heat 

transfer and this fluid flow is caused by some external agency like a pump or blower. 

Typical situations for forced convection would be flow through a duct or a set of ducts 

when there is a blower or a pump.   
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A cold fluid may be entering the duct, the duct is heated either because it is exposed to a 

hot fluid on the other side, may be to a flame or may be an electric heater is wound on it. 

It picks up heat and goes out as warm or hot fluid; this is a typical, very common forced 

convection situation. Another situation is one in which you have a number of tubes as in 

a heat exchanger. I am showing a cross section and fluid is forced to flow over them. 

Tubes contain hot fluid so their surface is at a higher temperature than that of the fluid; 
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the fluid passes over and through the tube banks becoming warmer - this is another 

forced convection situation.  

 

A third forced convection situation not much different from this is a gas turbine blade, 

hot fluid from the combustion chamber flows around the blade. The blade may be 

stationary if it is a straighter blade, the blade may be rotating if it is a rotator blade and 

these hot gases expose this blade material to very high temperature and there is a heat 

transfer from the head hot gases to the blade material. There are many other situations but 

these are the 3 typical situations which are very common. What will we study in this set 

of lectures on forced convection? This is a typical list of topics.  
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First we will restrict ourselves in this set of lectures to single phase forced convection; 

that means we are not considering situations where liquid evaporates or boils in to a 

vapor nor a situation where a vapor will condense in to a liquid nor a situation where a 

liquid will freeze and form solid particles like water freezing in to ice these are 2 phase 

situations and we will keep away from them at least for the time being. 
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After some initial discussion, we will look at some basic governing equations for forced 

convection. We will look at their rather simplified forms because in the general case the 

governing equations for forced convection tend to be very complicated. Then we will 

look at 3 typical, very common situations; one is flow through a tube essentially a case of 

internal flow, then boundary layer over a flat plate - a basic case of external flow - and 

flow across a cylinder which also is a basic case of external flow. Whenever appropriate 

we will be looking at the analogy principles, analogy between fluid flow and heat transfer 

and we will make ourselves conversant with some correlations for these situations and 

may be for some slightly different situations. Now we will look at the basic situation in 

forced convection.  
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In forced convection, invariably we have a surface which is exposed to a fluid - may be 

liquid or gas. For the sake of illustration, let us assume that the surface is hot and the fluid 

is cold compared to each other. Let us take a point on the surface; let us say that the 

temperature at that point on the wall of the solid is Tw. It would vary from location to 

location if this is the position on the wall, it could be a function of x.  Similarly the fluid 

flowing across this at a reasonable distance away from the solid so as not to directly feel 

the presence of the hot solid let me a temperature Tf.   
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The fluid will be getting heated up so this temperature could also vary along x because 

the fluid is cooler than the solid, there will be a flow of heat from the solid to the fluid by 

convection. Now let me say that the heat flux at that point is q by A at the wall and again 

this may be varying from one point to another point so let me say this is q by A wall at 

that particularly x. Our aim in forced convection is to determine a relation between the 

heat flux from the wall to the fluid and related to the temperature of the wall at that point 

and temperature of the fluid at that point; this is a local situation.  

 

We may not be interested in local variation of temperature, local variation of heat flux so 

may be in a gross way in an way let us say that I have a surface. Let us say the surface 

area is A, the mean temperature of the surface is Tw bar. There is fluid flowing, the mean 

temperature of the fluid which is exposed to the surface is Tf bar and let us say that the 

flow of heat from the solid to the fluid is q over this area A. Here we would like to relate 

q to the area A, the temperature Tw bar and the temperature Tf bar whereas this is the 

average case, whereas here we would like to relate heat flux at the wall to temperature of 

the wall at that point and temperature of the fluid at that point. Naturally this will not be 

related only to this; it will be related to the geometry, the flow rate of the fluid, the local 

velocity of the fluid and properties of the fluid.  

 

We have already seen in the introductory lectures that whenever there is a process of 

convection, a solid exposed to a heat fluid and heat transfer from the solid to the fluid by 

convection, we define a parameter as the heat transfer coefficient.  
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Considering the 2 situations which we looked at just now - the local situation and the 

average situation we can define the local heat transfer heat coefficient and the average or 

the mean heat transfer coefficient. The local heat transfer coefficient may vary from 1 

position to another so we generally use a subscript x denoting the position for h. hx is the 

local heat transfer coefficient which is a ratio of the wall heat flux from the wall to the 

fluid at that location divided by the temperature of the wall at that location minus 

temperature of the fluid at that location.  

 

Notice that the heat transfer coefficient is always defined as a positive so if you have heat 

flux from the wall to the fluid in the denominator, you should have wall temperature 

minus the fluid temperature. If you use a heat flux from the fluid to the wall which may 

be convenient if the fluid is warmer than the wall, then you will have heat flux from the 

wall to the fluid in the numerator and in the denominator you will have the fluid 

temperature minus the wall temperature. On an average or mean basis, you can determine 

the average heat transfer coefficient or a mean heat transfer coefficient over an area A.  

 

So, here we have defined the average heat transfer coefficient denoted often as h bar or 

have as the heat flow rate from the wall to the fluid divided by the area. So q wall to fluid 
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divided by area gives us something like the average heat flux; then that thing is divided 

by the mean temperature of the wall minus the mean temperature of the fluid. We should 

remember that the SI units for the heat transfer coefficients are Watt per meter squared 

Kelvin.  

 

Heat transfer coefficients hardly ever go below a few Watt per meter squared Kelvin so 

we never have any reason for using mill watt or micro watt. Large heat transfer 

coefficients do occur; a few thousand Watt per meter squared or even a few hundred 

thousand Watt per meter squared are not uncommon in some situations. So if need be we 

can use kilowatt per meter squared Kelvin but somehow it turns out that Watt per meter 

squared Kelvin is the most common unit.  

 

Now, those of and almost all of us are exposed to fluid mechanics and we know that we 

tend to correlate all our data in terms of dimensionless numbers. So, even the data for 

heat transfer in forced convection is finally correlated in terms of some dimensionless 

numbers.  
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In a situation of forced convection the significant parameters turn out to be the heat 

transfer coefficient, properties of the fluid namely density, conductivity, viscosity; here I 

have used dynamic viscosity, specific heat. Some geometric parameters I have just 

included; 1 L as a reference length and the flow parameter - the velocity of the fluid.  

If you use Buckingham’s pi theorem, we obtain the following 3 dimensionless numbers. 

One turns out to be h into L by k, another row VL by mu and the third cp mu by k. This 

row VL by mu, well, we already know that as Reynolds number so there is nothing new 

about it. So the Reynolds number represents the flow properties of the fluid, flow 

situation of the fluid. The Nusselt number hL by k you know similar to the bio-number; 

we remember in the bio-number, we have the conductivity of the solid; here we have the 

conductivity of the fluid. This Nusselt number is a dimensionless version of the heat 

transfer coefficient so any heat transfer coefficient information or data is finally 

converted in to dimensionless form in the form of the Nusselt number.   

 

The third dimensionless number, the second number specific to convective heat transfer 

is the Prandtl number and it is interesting to know that the Prandtl number cp mu by k is a 

function only of the properties of the fluid - specific heat, dynamic viscosity and thermal 

conductivity. We already know the significance of the Reynolds number from our fluid 

dynamic study. Let us look at the significance of the Nusselt number and the Prandtl 

number.   
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We know that the Nusselt number is hL by k. Let us consider A area to be the area across 

which heat transfer takes place and we can rewrite this as L by kA in the numerator and 1 

over hA in the denominator. Now notice that the numerator represents the thermal 

resistance for a conduction situation in particular; if we consider a slab of thickness L 

area A and conductivity k, a slab of fluid in which only conduction takes place of 

thickness L, this will be the thermal resistance for conduction. This, well, there is a heat 

transfer coefficient so this is the, for the, in a similar situation the thermal resistance for 

convection. So the Nusselt number represents the relative importance of the conduction, 

thermal resistance and the convective thermal resistance.  

 

In a situation where forced convection effects are significant, we expect the convective 

heat transfer coefficient to be high and hence the resistance to convection Rth, convection 

which goes in to the denominator to be low meaning we will have a high Nusselt number 

so high Nusselt number represents very good convection situation. So if we have a 

situation of forced convection, a better situation, a more effective forced convection 

effects would mean that the Nusselt number is high.  
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Prandtl number – it is special in the sense that it is a function only of 3 properties and we 

can rewrite this as mu by row divided by k by row cp. We know that mu by row is the 

kinematic viscosity, usual represented - nylon nu and k by row cp is the thermal 

diffusivity alpha. Notice that both have units of something like meter square per second 

area per unit time and what does the numerator represent? A high nu means a reasonably 

large viscosity. So this represents the efficacy of the fluid for momentum transfer; a 

viscous fluid will have a high value of nu.  

 

alpha on the other hand, notice that larger the conductivity means larger the alpha; heat 

will be transferred faster by conduction. Lower the cp means larger the alpha, lower the 

cp means for the same amount of heat gain, the temperature will rise significantly so the 

alpha represents efficacy of the fluid for heat transfer. So Prandtl number in a sense 

represents the ease at which a fluid is able to transfer momentum or shear forces to the 

ease by which the fluid can transfer heat.   

 

Naturally, we expect a fluid which has a high viscosity to have a Prandtl number; a fluid 

which has a conductivity will have a low Prandtl number. Since the Prandtl number is a 

property of the fluid and not of the flow situation, one should notice that for a large 

number of gases Prandtl number is of the order of 1. Air at ambient temperature and 

pressure as roughly .7, you take oil, say lubricating oil, engine oil of a car. Here we have 

high viscosity; Prandtl number is of the order of or greater than 100. Prandtl numbers of 

300, 500 are not uncommon, particularly for low temperature oil.   

 

If you take mercury, a liquid metal, low viscosity, high conductivity, any other liquid 

metal as liquid sodium liquid potassium, situations of high conductivity, comparatively 

low specific heats, comparatively low viscosities - here the Prandtl number is of the order 

of or less that .01. So you will get a range of Prandtl numbers depending on the fluid and 

its state, pressure and temperature going from something like .001 at one extreme with 

liquid metals and something like almost of the order of 1000 for viscous oil. After 

undertaking this basic discussion on forced convection and the heat transfer coefficient, 
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Nusselt number and Prandtl number, let us start looking at the governing equations for 

forced convection.   

 

The forced convection situation is characterized by a flow of fluid which already exists; 

there is a also a heat transfer so conductivity will play a part. Process of conduction will 

also be involved so the governing equations pertaining to forced convection are the 

governing equations for fluid flow plus the governing equation for transfer of energy.  
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So, we will have definitely the continuity equation and the momentum equation - these 2 

equations pertain to fluid flow. But now there is a heat transfer, heat is a form of energy 

so the energy equation is required for heat transfer for convection and as we have already 

seen in the study of conduction, the energy equation by itself is not sufficient because it 

provides relations between heat fluxes. We have to relate heat fluxes to temperatures and 

temperature gradients by using the Fourier’s law. So the equations for fluid flow, we will 

use continuity equation and momentum equations; the additional equations used are the 

energy equations, energy equation and the Fourier’s law of heat conduction. Since we 

have studied the continuity equation and the momentum equations already, let us look at 

the energy equation.  
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The energy equation represents the law of conservation of energy - the first law of 

thermodynamics. Now in forced convection, we have a fluid system; something is 

coming in to any control volume, we consider something is going out of the control 

volume so we apply it in the open system form. So the general open system would be a 

control volume; some mass flow rate would be going out, some mass flow rate would be 

coming in. There will be heat transfer to the system, there will be shear work, there could 

be shaft work and even the energy of the system could be changing with time. The first 

law of thermodynamics relates all these quantities to each other. In the introductory part, 

the first few lectures we have seen this reasonably general form of the first law of 

thermodynamics for a control volume.  
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We have heat transfer term, we have the shaft work term, we have the shear work term, 

we have the energy storage term and this is the net outflow of energy by convection, net 

inflow of energy by convection and we have the kinetic energy term, the enthalpy term 

and the potential energy term. In a typical, a general forced convection situation many of 

this terms would be nonexistent or negligible; we can get rid of them.  

 

For example, we will assume that steady state exists so if you have steady state this term 

will go away. We will assume that it is a pure heat transfer situation, there is no work 

being done; this term would be significant. In case of turbines, compressors, pumps it is 

not significant in case of boilers, condensers, heat exchanger and so on, so this will be 0. 

We will also neglect shear work in a large number of heat transfer situations; the shear 

work term doesn’t exists, it is absolutely negligible. It becomes significant only in case of 

very high speed gas flows high MAC number almost hypersonic flows so this also is 

negligible. Then we will also assume that the potential energy terms are negligible and 

the kinetic energy terms are also negligible. So you will notice that the general form of 

the energy equation will end up with some very gross major simplification and this 

simplification leads to the simplified form which is directly pertinent to forced 

convection heat transfer.  
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And you will notice that we have the heat transfer to the control volume and on the right 

hand side we have the total net outflow of enthalpy. This is the outflow of enthalpy from 

parts of the controlled surface where the fluid goes out; we have denoted it with this 

subscript o. And this is the inflow of enthalpy over the part of the control surface where 

the fluid is coming in as denoted by the subscript i. And notice the assumptions - 

negligible shaft work, negligible shear work, negligible changes in kinetic and potential 

energy and also steady state.  

 

Now, our aim is to finally derive a differential equation for forced convection just the 

way we derived earlier a differential equation for conduction. We do that by applying this 

equation to a small control volume; first we will apply it to a control volume and model 

the q term, next we will model the enthalpy outflow and inflow terms.   
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To obtain an expression for q, let us consider Cartesian coordinates and let us also 

consider a two dimensional situation. Let us say we have, this is the x direction and this is 

the y direction and let us say in our fluid domain, let me a draw control volume. I am 

drawing it large so that I can mark out the heat flow rates. Let us say the extent is from x 

to x plus delta x and from y to y plus delta y; just for convenience you can take even take 

x minus delta x by 2 to x plus delta x by 2. We will have heat flowing in by the process of 

conduction from here and here and heat flowing out like this. I am showing heat flow 

rates in the positive x and positive y direction.   

 

Now, let us use the Fourier’s law of conduction to write expression for these 4 heat flow 

rates by conduction. This heat flow rate would be minus k dT by dx that is gradient in the 

x direction. We are looking at the flow heat in by conduction in the x direction multiplied 

by area which will be delta y in to 1. Let us say we are considering volume which is a 

unit thick, perpendicular to the plane of the paper so this delta y. A similar term will 

occur here minus k dT by dx into delta y; the difference is this term is evaluated at x 

location on the x coordinate, this term is evaluated not at x but at x plus delta x.  

Similarly this heat flow from the lower edge will be minus k. We are looking at heat flow 

in the y direction so dT by dy partial multiplied by area which will be delta x in to 1. 



15 

Similarly on the other side, we will have a very similar term minus k dT by dy in to delta 

x into y. Again this term is evaluated at the bottom end of the control volume which is at 

y and this term is evaluated at the opposite end of the control volume which is y plus 

delta y. Notice that when we evaluate this term and this term y doesn’t change so let us 

look at x and x plus delta x. Similarly when we evaluate these 2 terms, they are at some 

fixed value of x, y only changes. We now write these down together as the q term in our 

first law of thermodynamics.  

 

Notice that the 4 terms shown in the previous figure are all represented here but since q is 

inflow, these 2 terms will contribute positively.  
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These 2 terms would effectively be subtracted because the arrows move out of the control 

volume so we have the 2 inflow terms and 2 outflow terms with a negative sign. Now we 

go back, we have modeled our q term; it is now necessary for us to model the enthalpy 

outflow terms.  
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Again to model the enthalpy outflow terms, we have the same coordinate system x and y 

and let me re-sketch that control volume whose extent was from x to x plus delta x and y 

to y plus delta y. Now mass flow is in and out and along with the mass, enthalpy will be 

convicted so there is a mass flow like this, some mass flow is out like this, there is a mass 

inflow like this, there is a mass outflow like this. 

 

Let us look at this term, the mass flow here would be row into Vx into area which will be 

delta y in to 1 and the enthalpy which is being carried by that is h. So the enthalpy inflow 

through this face is row Vx delta y in to h, similarly there will be enthalpy outflow here 

row Vx delta y into h. The difference this is at locating x at the left edge of the control 

volume, this is at location x plus delta x which is the right edge of the control volume. Let 

us look at these 2 enthalpy flows, the mass flow in here will be row into Vy. We are now 

looking at the flow in the y direction; area will be delta x in to 1. it carriers with it 

enthalpy h and a similar term here row Vy delta x h. But the difference - this term is 

evaluated at y the lower edge of the control volume, this term is evaluated at y plus delta 

y which is the upper edge of the control volume.  
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We combine these 4 terms - remember what we want is enthalpy outflow; we have 2 

outflows here and 2 inflows. So we will have 2 terms contributing additively and 2 terms 

contributing in a negative way so this is what we get.  

 

(Refer Slide Time: 38:00)  

 
 

The enthalpy outflow terms, these are the sum of the outflowing streams, this is the sum 

over incoming streams. We have 2 outflowing streams and 2 incoming streams so these 4 

terms together represent these 2 terms. Now we have an expression for the q term, we 

have an expression for the other 2 terms in the first law of thermodynamics. We will now 

combine these terms and the resulting equation we will try to convert into a differential 

equation by taking the limit as delta x tends to 0 and delta y tends to 0. When you do that, 

this is what you will end up with.  
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On the left hand side of this equation, we have terms containing conductivity and 

temperature gradients both in the x direction and y direction; this is the final form of the q 

term of our first law of thermodynamics. On the right hand side, we have terms 

containing Vx, Vy and h. These are the enthalpy outflow terms - the final form in the 

differential equation of the enthalpy outflow terms. You should immediately notice that if 

Vx and Vy are both 0, there is no fluid flow taking place; then what we have obtained is 

nothing but the conduction equation, the right hand side becomes 0.  

 

Now although this is a proper energy equation it is not directly useful because we have 

temperature and we have enthalpy. So we relate enthalpy to temperature by noticing that 

the derivative of enthalpy with temperature is defined as the property cp - specific heat at 

constant pressure. What we also do is we expand these terms and once we expand these 

terms and assume constant properties and incompressible flow, we will find out that a 

number of these terms get canceled because they satisfy the continuity equation. So what 

we do is expand these terms, use the continuity equation for simplification and replace h 

in terms of cp and T. When we do that, this is what you will get.  
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I have written it in a form which you will generally find in text book; so you have the 

enthalpy outflow terms on the left hand side and the net heat inflow terms on the right 

hand side. So these are the terms representing enthalpy outflow and these are the terms 

representing the net heat inflow. Quite often, these are known as the convection terms 

and these are known as the conduction terms, sometimes also called diffusion terms. 

Again you will notice that if Vx is 0 everywhere, Vy is 0 everywhere, that this equation 

energy equation reduces to conduction equation.  

 

A very common situation in forced convection heat transfer is flow through a duct, 

particularly circular ducts. I think flow through a circular duct is one of the most 

common, overwhelmingly common forced convection heat transfer coefficient. And the 

Cartesian coordinate system is not a useful system for, through a circular duct, to analyze 

flow through a circular duct which we will do slightly later. We convert the energy 

equation from Cartesian coordinate to cylindrical polar coordinates.  
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So again, remember that this is a simplified version which is valid for the steady state 

constant property situation, flow situation and axisymmetric situation. It also assumes 

that temperature Vr and Vz, these are functions of only the radius and the axial coordinate 

z and there is no swirl and that means v theta is 0 everywhere.  In case of a swirl 

situation, you will have to consider non-zero V theta and appropriate terms. You will 

enter not only in the momentum equations and continuity equation but even in the energy 

equation. Again in this energy equation, notice that on the left hand side here we have the 

convection terms and here we have the conduction terms.  

 

After this basic derivation of the governing equation, the most important governing 

equation being the energy equation for situations for forced convection, we now move to 

analyze and look at 3 typical situations. The first is heat transfer to a fluid flowing in a 

tube.  
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We will consider steady laminar flow and we will consider 2 situations represented by 2 

basic boundary considerations - these are thermal boundary conditions on the wall. One is 

if the wall is maintained at a constant temperature and the other when the wall is exposed 

to a constant heat flux. This happens and it is a good approximation if the wall is directly 

heated by resistivity or the wall has a heating coil wound over it. We will study each of 

these in terms but let me sketch and show you what we mean by the 2 situations.  
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The first one, a constant wall temperature situation the temperature here, will be T wall is 

constant. This is the inner surface of the tube through which the fluid is flowing and let 

the inlet temperature of the fluid be Tfi and let us assume for the time being Tfi is less 

than T wall, let us consider this case. Let us say T wall is something like 90 degrees C 

and Tfi is something like 30 degrees C. What will happen? The wall is warm, is warmer 

than the fluid.  

 

So, there will be a heat flow from the wall to the fluid and this Tf will go on rising as the 

flow proceeds from 30 degrees C it will go to 40 degrees C to may be 60 degrees C but in 

any case but in any case Tfe exit temperature will always be less than 90 degrees C 

because the fluid will never be able to heat up beyond the wall temperature. This is the 

situation of constant T wall; the other situation is that of a uniform heat flux on the wall q 

by A at the wall is maintained at some constant value say 1000 watt per meter square. So, 

we don’t talk about the wall temperature; it is not specified. Let us say the fluid enters at 

a temperature Tfi, let us say 30 degrees C. What happens is it gain heat from the wall at a 

uniform rate; since we have a steady flow this will go on rising almost uniformly. So, you 

will end up with 40 degrees C, 50 degrees C, 60 degrees C - it will go on rising. What is 

the exit temperature? There is no limit; it will have to be calculated based on the area the 

amount of heat flow. The wall temperature will also need to be calculated; it will vary 

along z, we will have to determine what it is. Exit temperature will also have to be 

determined; here temperature will also have to be determined along the fluid flow and the 

exit temperature but the wall temperature is maintained - this is the constant wall heat 

flux situation. In this lecture, we stop here; in the next lecture, we will consider in detail 

first the problem of heating with a constant wall heat flux, then the problem of heating 

with a constant wall temperature.  

 


